• Tidak ada hasil yang ditemukan

3. BAB III Potret Penggunaan Energi dan Emisi

N/A
N/A
Protected

Academic year: 2017

Membagikan "3. BAB III Potret Penggunaan Energi dan Emisi"

Copied!
42
0
0

Teks penuh

(1)

BAB III

POTRET PENGGUNAAN ENERGI DAN PRODUKSI EMISI

DI INDUSTRI BAJA DAN INDUSTRI PULP-KERTAS

3.1 SEKTOR INDUSTRI BAJA

3.1.1 Deskripsi Proses Industri Baja 3.1.1.1 Proses Peleburan

A. Blast Furnace (Tanur Tinggi)

Blast furnace merupakan suatu reaktor tinggi untuk memproses bijih besi (pig iron) menjadi cairan logam melalui rekayasa metalurgi yaitu “kokas (coke) dan material karbon lainnya” dimanfaatkan sebagai reagent kimia untuk sumber panas dalam prosesnya. Biji besi dan kokas diangkut ke atas tungku dalam bentuk bongkahan kemudian jatuh secara gravitasi ke dalam tungku peleburan. Panas pembakaran diperoleh dari pembakaran parsial antara kokas, bahan bakar yang diinjeksikan dengan udara panas (preheated air) ke campuran gas karbon mono oksida (CO), hydrogen (H2), dan metana (CH4).

(2)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-2

PT. Energy Management Indonesia (Persero) 2011

Berikut ini merupakan fungsi masing-masing raw materials yang digunakan pada proses blast furnace yaitu :

a. Biji besi (pig iron);

Biji besi yang digunakan bervariasi umumnya besi oxida hematite (Fe2O3), besi oxida tersebut direaksikan secara inderect reductions. Proses reduksi untuk mengubah besi oksida (Fe2O3) menjadi besi (Fe) sebagai berikut :

Gambar 3.2 Proses reduksi mengubah besi oksida (Fe2O3) menjadi besi (Fe) b. Kokas;

Material kokas dalam proses pembakaran memiliki peranan sebagai berikut:

Menghasilkan panas

Pembakaran tidak sempurna menghasilkan gas karbon monoksida sebagai reduktor.

Mekanisme reaksinya sebagai berikut:

Begins at 450° C

Begins at 600° C

Begins at 700° C

(3)

c. Batu kapur;

Batu kapur berfungsi untuk mengikat kotoran (sulfur) dari FeS pada besi cair menjadi terak (slag) yang terapung diatas besi kasar cair. Mekanisme reaksinya sebagai berikut :

Produk yang dihasilkan pada proses di blast furnace adalah besi kasar cair (belum ada penambahan material alloy). Logam cair dari blast furnace kemudian dimasukkan ke dalam Basic Oxygen Furnace (BOF) disertai dengan penambahan material alloy.

Berikut merupakan jenis material yang ditambahkan di dalam BOF yaitu :

Besi kasar cair

Baja bekas (steel scrap)

Oksigen dibutuhkan untuk mengurangi kadar karbon hingga mencapai yang dikehendaki.

Batu kapur dibutuhkan untuk mengikat kotoran menjadi terak. Unsur-unsur paduan terdiri atas; Fe-Mn, Fe-Si, Fe-Cr, Fe-Ni, dst.; berfungsi untuk membentuk paduan sehingga menghasilkan sifat fisik dan kimia sesuai dengan spesifikasi customer.

Sesudah komposisi kimia baja tepat sesuai dengan spesifikasi yang diinginkan, selanjutnya dilakukan pemeriksaan komposisi kimia sample menggunakan spectrometer, seterusnya dilakukan pouring (pemindahan caian logam ke dalam ladle) untuk selanjutnya dituang melalui tundish menuju cetakan.

(4)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-4

PT. Energy Management Indonesia (Persero) 2011

Penuangan baja cair dapat dilakukan dengan dua cara, dalam bentuk balok baja (ingot) dan slab atau billet dengan proses cor continue (continuous casting).

B. Direct Reduction Iron (DRI)

Direct reduction merupakan proses reduksi langsung menggunakan reduktor yang berasal dari gas alam. Pabrik Besi Spons menerapkan teknologi berbasis Gas Alam dengan proses reduksi langsung menggunakan teknologi Hyl. Pabrik ini menghasilkan besi spons (Fe) dari bahan mentahnya berupa bijih pellet (Fe2 03 and Fe3 04) dengan menggunakan Gas Alam (CH4) dan air (H2O ).

Gambar 3.4. Flow chart proses DRI Proses produksi spons secara garis besar sbb:

1. Proses Pemurnian Gas Alam

Pasokan gas alam sebelum diproses menjadi gas reduksi terlebih dahulu dibersihkan dari fraksi berat hidro carbon bawaan, menghilangkan kandungan mercury (Demercurizer), dan menghilangkan kandungan sulfur (Desulfulizer).

2. Pembentukan Gas Reduksi ( Gas Proses )

Gas alam ( CH4) yang sudah bersih, pada reformer dipanaskan dan direaksikan dengan air yang sudah berupa steam sehingga terbentuk gas reduksi Carbon Monoksida (CO) dan Hidrogen (H2).

3. Proses Reduksi

Gas reduksi sebelum masuk reactor terlebih dahulu dipanaskan di unit Gas Heater hingga mencapai temperature 935 0C, kemudian diinjeksi dengan gas oksigen untuk menaikan temperatur hingga mencapai 960 ºC. Pada reactor pellet mengalami proses reduksi langsung oleh gas reduksi sehingga menghasilkan spons.

(5)

- Gas Heater; berfungsi Untuk memanaskan gas proses dari reformer sebelum masuk ke reactor dan diinjeksi O2 untuk menaikan tempratur.

- Reaktor; berfungsi Untuk mereduksi pellet menjadi spons dengan

menggunakan gas proses.

- Rotary valve; berfungsi Untuk mengontrol produksi spons yang keluar

dari reaktor.

C. Electric Arc Furnace

Electric Arc Furnace (EAF) menghasilkan panas dengan cara melewatkan arus AC melalui suatu elemen resistansi berupa elektroda dari carbón atau graphite pada

furnace , kemudian terbentuk percikan bunga api listrik antara logam yang akan dilebur dengan elektroda tersebut.

Gambar 3.5. Proses Electric Arc Furnace

Aliran Material Proses Pembuatan Slab dengan jalar EAF sebagai berikut:

1. Melting (Peleburan)

Bahan baku yang dilebur adalah Besi Spons dan Scrap dengan perbandingan 80 : 20, Temperatur lebur sampai mencapai + 1680 0C.

2. Rinsing

Proses ini berfungsi untuk pengaturan komposisi kimia, homogenisasi, dan pengaturan temperatur baja cair.

3. Casting

(6)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-6

PT. Energy Management Indonesia (Persero) 2011

4. Scarfing

Proses ini berfungsi sebagai:

- Test line permukaan slab.

- Perbaikan permukaan slab.

5. Cutting/Ripping

Cutting adalah proses pemotongan slab ke arah lebar slab dan ripping adalah proses pemotongan slab ke arah panjang slab.

3.1.1.2 Proses Pembentukan Baja (Forming) A. Pembentukan Baja Lembaran Panas

Proses pembuatan baja lembaran panas merupakan proses pembentukan baja dengan terlebih dahulu melakukan pengkondisian/menaikkan temperatur material dasar baja. Jenis proses ini pada umumnya adalah pengerolan baja (rolling) dengan menggunakan bahan baku billet, bloom atau slab. Fasilitas produksi pada proses ini terdiri dari :

Reheating furnace.

Untuk persiapan proses pengerolan,baja slab dimasukan ke dalam Reheating Furnace dimana baja akan dipanaskan hingga mencapai temperatur pengerolan (1200–1250oC). Parameter-parameter penting dalam proses ini seperti temperatur pemanasan,waktu pemanasan dan metode penaikan temperature dikontrol secara otomatis oleh komputer.

Sizing Press.

Sizing Press berfungsi untuk mengurangi ukuran slab hingga 159 mm untuk lebar tertentu dan lebar lainnya maksimum 100 mm untuk meningkatkan fleksibilitas produksi.

(7)

Reverse Roughing Mill

Reverse Roughing Mill digunakan untuk mereduksi slab dengan ketebalan 200mm menjadi transfer bar dengan ketebalan 28-40 mm. Lebar dari transfer bar ini dikontrol oleh vertical rolledgear.

Finishing Mill

Proses pengerolan kontinyu pada finishing mill berfungsi untuk mereduksi transfer bar menjadi baja lembaran (strip) dengan ketebalan akhir sesuai permintaan konsumen (1,8 s/d 25 mm). Dalam proses pengawasan yang ketat dilakukan terhadap parameter-parameter seperti ketebalan baja lembaran,deviasi ketebalan,lebar baja lembaran dan temperatur pengerolan akhir. Komputer proses dalam hal ini berperan untuk melakukan pengontrolan secara otomatis.

Laminar Cooling

Proses didalam Water Laminar Cooling secara semi otomatis dikontrol oleh sistem komputer dengan tujuan mendapatkan baja lembaran dengan kualitas yang baik.

Down Coiler

Baja lembaran dibentuk menjadi gulungan ( coil ) dengan mengunakan 2 buah mesin down coiler.

Shearing Line

Baja lembaran panas yang berbentuk gulungan dapat diproses lebih lanjut menjadi kondisi slit, trimmed atau recoiled.

Hot Skin Pass Mill

Tekanan kecil diberikan sepanjang baja lembaran untuk memperbaiki kondisi fisik baja yang dihasilkan.

B. Proses Pembuatan Baja Lembaran Dingin

Proses pembuatan baja lembaran dingin merupakan proses pembentukan baja pada temperatur ambien. Pada proses ini tidak diperlukan proses pengkondisian/ menaikkan temperatur material dasar baja. Fasilitas produksi pada proses ini terdiri dari :

Continuous Pickling Line.

(8)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-8

PT. Energy Management Indonesia (Persero) 2011

ketidakseragaman dan untuk mehilangkan ketidakteraturan permukaan. Proses eliminasi senyawa oksida dilakukan secara mekanik (mengunakan scale breaker) dan juga secara kimiawi (menggunakan HCI). Continuous Pickling Line juga dapat digunakan untuk proses oiling baja lembaran panas ( kondisi pickled dan oiled ).

Tandem Cold Mill.

Proses penipisan baja lembaran terdiri dari pengerolan dingin ( setelah descaling menggunakan continuous pickling ) dan oiling baja lembaran panas dalam bentuk gulungan yang diproduksi di Pabrik Baja Lembaran Panas.Tujuan dari proses pengerolan dingin adalah untuk mengurangi ketebalan baja yang dihasilkan,untuk memperoleh permukaan yang halus dan padat dengan atau tanpa pemanasan selanjutnya dan untuk mendapatkan sifat-sifat mekanik yang dapat dikontrol.

Gambar 3.7. Diagram alir proses pembuatan baja lembaran dingin Electrolytic Cleaning Line.

Walaupun residu minyak pelumas proses pengerolan diperlukan dalam pembentukan rolled strip dengan derajat ketahanan tertentu terhadap korosi,residu sematcam itu harus dihilangkan sebelum memasuki proses selanjutnya dimana permintaan dari konsumen mensyratkan permukaan baja yang bersih. Fasilitas ini juga dapat digunakan untuk mengeliminasi iron fine pada permukaan strip.

Batch Annealing Furnace.

(9)

untuk mengembalikan ductility dan sifat mampu membentuk, sesuai permintaan konsumen.

Continuous Annealing Line

Continuous Annealing Line ( CAL ) dapat disebut sebagai salah satu factor kunci yang berperan dalam kemajuan teknologi produksi baja lembaran dingin dalam tahun-tahun terakhit ini. CAL melalui proses pemanasan, soaking, pendinginan dan over-aging, dapat menghasilkan produk mulai dari deep-drawing quality sheet hingga high-tensile strength sheet.

Temper Mill

Temper rolling merupakan istilah yang digunakan pada proses akhir pembuatan baja lembaran dingin yang bertujuan antara lain untuk memberikan kekasaran yang tepat pada permukaan, memperbaiki keratan dari baja lembaran, untuk menutupi kerusakan pada derajat tertentu, dan utuk memeberikan tegangan yang cukup dalam upaya menekan yield point untuk mengeliminasi strecher strains selama proses pembentukan dipelangan.

Finishing Line

Baja lembaran dingin gulungan dapat diproses lebih lanjut menjadi bentuk sheared,trimmed,atau recoiled.

C. Proses Pembuatan Batang Baja Kawat

Fasilitas produksi pabrik ini terdiri dari :

Reheating Furnace

Untuk persiapan pengerolan billet atau bloom dimasukan ke dalam Reheating Furnace tipe walking beam dimana baja dipanaskan hingga mencapai temperatur pengerolan ( 1200-1250º C). Parameter-parameter penting dalam proses ini seperti temperatur pemanasan,waktu pemanasan dan metode penaikan temperatur dikontrol secara otomatis oleh sistem komputer.

Pre-roughing Mill

Unit ini berfungsi mereduksi billet atau bloom menjadi 107 x 107 mm ( maksimum) dengan tujuan meningkatkan fleksibilitas produksi.

Roughing Mill

(10)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-10

PT. Energy Management Indonesia (Persero) 2011

Gambar 3.8. Diagram alir proses pembuatan batang kawat Finishing Mill

Finishing Mill berfungsi untuk mereduksi diameter baja batang kawat sesuai permintaan konsumen dengan menggunakan proses no twist mill. Hasil rolling ini akan menghasilkan beberapa diameter dari 5,5 s/d 20 mm dengan grade Low Carbon, Medium Carbon, SWRY11,High Carbon dan Cold Heading. Dalam proses pengawasan yang ketat dilakukan terhadap parameter-parameter penting seperti diameter batang dan temperatur pengerolan akhir. Komputer proses dalam hal ini berperan untuk melakukan pengontrolan secara otomatis.

Cooling Zone

Proses pendinginan dengan menggunakan teknologi Stelmor dilakukan untuk mendapatkan batang kawat baja berkualitas baik.

Down Coiler

Dengan fasilitas ini, baja batang kawat dibentuk menjadi gulungan.

3.1.2 Monitoring Pelaksanaan Audit

Monitoring merupakan salah satu kegiatan pada pekerjaan“Implementation of Energy Conservation and CO2 Emission Reduction in Steel and Pulp & Paper

(11)

A. Lingkup Monitoring

Dalam pelaksanaan monitoring ini lingkup kegiatan yang dilakukan oleh NMC meliputi koordinasi dengan RC untuk melakukan audit energi, pengumpulan data historis energi untuk disusun menjadi baseline energi, dan baseline emisi CO2 dari seluruh industri yang dilakukan audit energi oleh masing – masing RC diantaranya :

a. RC 1 untuk wilayah DKI Jakarta, Banten, dan Bandung melakukan audit energi terdiri dari 12 indusri baja.

b. RC 2 untuk wilayah Jawa Tengah dan Jawa Timur melakukan audit energi terdiri dari 16 industri baja.

c. RC 3 untuk wilayah Sumatera dan Kepulauan Riau kemudian melakukan audit energi terdiri dari 7 industri baja.

Jumlah industri yang direncanakan dilakukan monitoring adalah sejumlah 35 industri baja.

(12)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-12

PT. Energy Management Indonesia (Persero) 2011

Tabel 3.1. Lanjutan

B. Hasil Monitoring

Dari kegiatan monitoring yang telah dilakukan oleh NMC maka hasil yang dapat diperoleh diantaranya : Pada umumnya industri obyek cukup terbuka dan menyambut baik kegiatan IECER phase-1. Namun terdapat beberapa industri yang kurang siap untuk mengukuti kegiatan ini khususnya pada kegiatan audit energi.

a. Skedul pelaksanaan audit energi yang terlalu singkat sehingga hasil yang diharapkan dari pekerjaan ini belum mencapai output yang diharapkan, seperti masih perlu dilakukan kajian yang mendalam terhadap identifikasi potensi penghematan energi pada masing – masing industri.

b. Sulitnya mendapatkan kepastian jadwal masuk ke industri obyek yang berdampak pada bergesernya rencana waktu pelaksanaan.

(13)

2768; 61,5% 1089; 24,2%

632; 14,1%

10; 0,2%

Steel Making Reheating f urnace Rolling mill Off ice

d. Kurang tersedianya metering dan sistem monitoring energi pada beberapa industri sehingga proses pengumpulan data cukup sulit untuk dilakukan sesuai dengan kebutuhan data yang diperlukan.

e. Kelompok industri baja yang dilakukan obyek dibagi menjadi 2 :

1. Steel Making (mempunyai peleburan)

2. Metal Forming (tidak mempunyai peleburan)

3.1.3 Potret Penggunaan Energi

Penggunaan energi di industri baja pada umumnya digunakan untuk proses peleburan scrap baja menggunakan tungku peleburan, proses perlakuan panas (heat treatment) menggunakan reheating furnace, proses pembentukan logam (metal forming) seperti rolling, wire drawing, ekstrusi, forging, piercing dan proses finishing seperti grinding dan permesinan. Gambar dibawah merupakan

breakdown distribusi pemakaian energi di integrated steel making setelah disetarakan ke konversi energi (TOE) berdasarkan hasil survei audit energi yang dilakukan.

Gambar 3.9. Pie chart distribusi pemakaian energi di industri baja

Pada pie chart diatas, persentase pemakaian energi terbesar adalah untuk proses peleburan sebesar 61,5%, reheating 24,2%, metal forming (rolling)

(14)

LAPORAN AKHIR

Implementation of Energy Kementerian Perindustria

PT. Energy Management Indo Tabel.3.2. Daftar Produ

of Energy Conservation and CO2 Emission Reduction In Industrial Sect ndustrian Republik Indonesia

ent Indonesia (Persero)

ftar Produksi, Komsumsi Energi, dan IKE Industri Baja

strial Sector (Phase 1)

3-14

(15)

A. Peleburan Baja

Sesuai dengan karakter proses, sumber energi yang digunakan di proses peleburan baja adalah energi listrik, kokas dan energi yang berasal dari reaksi eksotermik di tungku peleburan. Penggunaan bahan energi listrik lainnya banyak digunakan untuk peralatan utilitas (pompa, fan, blower, mesin pengangkat, kompresor, dll). Peralatan penggunaan energi terbesar adalah peralatan Electric Arc Furnace (EAF) dan/atau Induction Furnace. Potret konsumsi energi untuk kelompok industri yang memiliki fasilitas peleburan EAF dan fasilitas peleburan IF dapat dilihat pada tabel berikut.

Tabel 3.3. Potret konsumsi energi di industri baja yang memiliki fasilitas EAF

No Nama Industri

Produksi Konsumsi Energi

IKE

Baseline Keterangan

Ton/tahun GJ/tahun GJ/Ton

1 PT. Jakarta Steel Megah

Utama (JSMU) 46.514 114.936 2,47

Hanya energi listrik di EAF Proses

2 PT. Jakarta Cakratunggal

Steel (JCS) 500.000 975.000 1,95

Hanya energi listrik di EAF Proses

3 PT. Power Steel Indonesia

(PSI) 180.000 433.800 2,41

(16)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-16

PT. Energy Management Indonesia (Persero) 2011

Tabel 3.4. Potret konsumsi energi di industri baja yang memiliki fasilitas induction furnace.

No Nama Industri

Produksi Konsumsi

Energi IKE Keterangan

Ton/tahun GJ/tahun GJ/Ton

1 PT. Bangun Sarana

Baja (BSB) 18.145 49.218 2,71 Hanya energi listrik plant

2 PT. Bintang Timur

Steel (BTS) 31.214 105.628 3,38 Hanya energi listrik plant

3 PT. Era Baja Prima

(EBP) 26.438 106.542 4,03 Hanya energi listrik plant

4 PT. Sanex Steel

(SS) 252.300 574.739 2,28 Hanya energi listrik plant

5 PT. Trieka Aimex

(Foundry) 444 3.907 8,80 Energi listrik dan energi primer

6 PT. Pindad

(Foundry) 2.876 8.225 2,86 Hanya energi listrik plant

7 PT. Indohanco

(Rolling) 559 872 1,56 Hanya energi listrik IF

8 PT. Inti General

(IG) (Rolling) 27.453 245.979 8,96 Energi listrik dan energi primer

9

PT. Ria Sarana Putra Jaya (RSPJ) (Rolling)

11.140 81.567 7,32 Energi listrik dan energi primer

10 PT. Jaya Pari Steel

(JPS) (Rolling) 40.152 134.108 3,34 Hanya energi listrik plant

11 PT. Yuan Teai (YT)

(Wire Drawing) 829 6.748 8,14 Energi listrik dan energi primer

12 PT. Itokoh

(Foundry) 24.000 354.720 14,78 Energi listrik dan energi primer

13 Koperasi Batur Jaya

(KBJ) (Foundry) 432 2.143 4,96 Hanya energi listrik plant

14 PT. Jindal (Rolling) 140.000 152.600 1,09 Hanya energi listrik rolling

15

PT. Abadi Jaya Manunggal (AJM) (Rolling)

18.744 44.986 2,40 Hanya energi listrik plant

16

PT. Growt Asia Foundry (GAF) (Foundry)

40.779 210.827 5,17 Energi listrik dan natural gas

17

PT. Asia Raya Foundry (ARF) (Foundry)

9.830 54.950 5,59 Energi listrik dan natural gas

18 PT. Baja Pertiwi

(BP) (Foundry) 429 2.490 5,81 Energi listrik dan BBM

(17)

Dari hasil pengolahan data audit energi, intensitas konsumsi energi listrik rata-rata diproses EAF 2,49 GJ/ton produk. Jika dibandingkan besaran tersebut dengan intensitas konsumsi energi listrik kondisi best practice di EAF steel mini mills (1,5 GJ/ton) maka dapat dikatakan konsumsi energi di industri obyek masih lebih boros. Kondisi yang sama juga terjadi untuk total konsumsi energi. Rata-rata industri baja obyek berada pada besaran 3,1 – 3,5 GJ/ton produksi (lihat laporan masing-masing RC). Hasil pengolahan data produksi dan konsumsi energi dari industri obyek diperoleh kurva hubungan intensitas energi dan produksi rata-rata di proses peleburan pada Gambar berikut. Terlihat bahwa semakin besar kapasitas produksi, nilai IKE akan menurun. Dari nilai kapasitas yang ada, kelompok industri baja dengan menggunakan tungku EAF lebih efisien dibandingkan dengan industri baja yang menggunakan tungku induksi.

Gambar 3.10. Grafik sebaran intensitas konsumsi energi terhadap tingkat produksi

(18)

LAPORAN AKHIR

of Energy Conservation and CO2 Emission Reduction In Industrial Sect ndustrian Republik Indonesia

ent Indonesia (Persero)

gan neraca energi pada EAF antara best world prac AF proses di Indonesia berdasarkan hasil audit energ

t world EAF condition

b. kondisi rata-rata audit di indu

Perbandingan neraca energi di EAF antara world b kondisi EAF di hasil audit energi di industri baja

ntensitas konsumsi energi di proses peleburan baja EAF de world best practice). Sumber: Berkeley National Laborato

analisis keseimbangan energi, diperoleh konsumsi e tri obyek rata-rata 902,0 kWh/ton sedangkan besa ebesar 637,3 kWh/ton. Terlihat bahwa konsumsi en byek rata-rata lebih tinggi sebesar 264,7 kWh/ton (

practice. Konsumsi energi akan jauh lebih tinggi pa ggunakan tungku induksi dalam proses peleburannya. n hasil perhitungan neraca energi pada tungku ind

strial Sector (Phase 1)

3-18

2011 orld practice dan kondisi dit energi ICCTF-2010.

di industri baja EAF

a world best practice dan tri baja.

ja EAF dengan bahan baku l Laboratory, 2008.

(19)

Gambar 3.13. Neraca energi di IF berdasarkan audit energi di industri baja.

Berdasarkan hasil identifikasi yang dilakukan, beberapa hal yang menjadi faktor pengaruh besarnya konsumsi energi spesifik di proses peleburan baja (EAF) tersebut antara lain adalah:

1. Pengontrolan penggunaan energi listrik, kokas, dan bahan bakar lainnya dalam setiap peleburan (heat).

2. Sistem dan kondisi pemasukan umpan (scrap charging) mencakup metode charging, kapasitas, frekwensi charging dan temperatur scrap.

- Kebersihan & jenis alloy material charging

- Bentuk dan packing density darimaterial charging

- Rasio material charging yaitu (rasio scrap baja vs starting block/besi spons)

- Jarak stok material (raw materials) terhadap tungku peleburan

- Jenis pengangkutan raw materials yang digunakan

- Frekuensi material charging

3. Kualitas kokas, elektroda karbon dan oksigen yang digunakan.

4. Kualitas parameter kelistrikan (power factor, voltage unbalance, load unbalance).

5. Perbandingan kapasitas terpasang furnace dan kapasitas operasi.

6. Kondisi dinding furnace (temperatur dinding) dan sumber-sumber kebocoran panas pada dinding.

(20)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-20

PT. Energy Management Indonesia (Persero) 2011

8. Lama proses peleburan (tap to tap time) dan faktor-faktor yang mempengaruhinya.

- Waktu alloying.

- Waktu pengambilan sample material untuk analisa struktur mikro dan komposisi.

- Intrusi udara dari luar yang masuk ke dalam proses peleburan baja.

- Persentase oksigen untuk fasilitas tungku konvensional.

- Persentase karbon pada proses peleburan

9. Proses mixing & pouring dan faktor-faktor yang mempengaruhinya. - Waktu preheating ladle pouring paling optimum

- Cycle time tapping dan pouring

- Jarak antara ladle pouring dengan molding

- Jenis material refraktori dan konstruksi penutup ladle pouring

10.Sistem penyaringan debu off gas (dedusting system) dan pemanfaatan panas buang off gas.

11.Laju air pendingin dan sistem pengaturannya.

12.Kondisi peralatan listrik (motor auxiliaries) mencakup kualitas parameter kelistrikan, kapasitas terpasang dan kapasitas operasi, pola operasi dan kondisi mekanikal motor.

Berdasarkan hasil evaluasi kondisi industri baja yang ada dan hasil audit RC, beberapa identifikasi peluang konservasi energi di EAF adalah sebagai berikut:

1. Pengaturan temperatur Tapping Metal pada T = 1530 – 1550OC.

2. Perbaikan kebocoran radiasi panas pada EAF untuk mengurangi laju

radiasi panas.

3. Mengurangi frekwensi charging melalui penggunaan scrap pressing.

4. Pemanfaatan panas buang off gas untuk pemanasan umpan scrap

(scrap preheating).

5. Penggunaan variable speed drive control pada pompa air pendingin

sehingga laju aliran dapat disesuaikan dengan tingkat pembebanan di EAF.

6. Pemeriksaan dan perbaikan terminal kelistrikan EAF.

7. Pemeriksaan tahanan kabel distribusi dan detail analisis untuk

penggantian.

8. Pemasangan kapasitor bank/static variable compensator pada panel

EAF.

Faktor-faktor yang sama juga terjadi pada tungku induksi (IF) dengan tambahan beberapa faktor:

(21)

2. Sistem tutup tungku dan penyaringan debu off gas (dedusting system) dan pemanfaatan panas buang off gas.

3. Waktu proses mixing komposisi yang secara langsung berdampak pada penurunan temperatur molten steel.

B. Pembentukan Baja (Forming)

Beberapa industri yang menjadi obyek kegiatan ini memiliki fasilitas proses pembentukan baja (foundry, rolling mill, wire drawing). Terdapat beberapa industri yang hanya melakukan proses forming (rolling dan wire drawing). Potret penggunaan energi kelompok industri tersebut dapat dilihat pada Tabel berikut.

Tabel 3.6. Potret penggunaan energi kelompok industri

No Nama Industri

Produksi Konsumsi

Energi IKE Keterangan

Ton/tahun GJ/tahun GJ/Ton

1 PT. Ispat Bukit Baja (IBB)

(Rolling) 49.332 196.835 3,99

Energi listrik dan energi primer

2 PT. Krakatau Wajatama

(KW) (Rolling) 190.214 824.007 4,33

Steel (GDJS) 272.265 547.253 2,01 Hanya energi listrik plant

5 PT. Surabaya Wire (SW)

(Wire Drawing) 3.410 8.593 2,52 Hanya energi listrik plant

6 PT. Liyang Ying (LY) (Wire

Drawing) 4.620 20.282 4,39

Energi listrik dan energi primer

7 PT. Bumisaka Steelindo

(BS) (Wire Drawing) 420 1.134 2,70 Hanya energi listrik plant

8 PT. Surya Steel (SS) (Wire

Drawing) 4.172 5.215 1,25 Hanya energi listrik plant

9 PT. Putra Baja Deli (PBD)

(Rolling) 60.000 140.400 2,34 Hanya energi listrik plant

10 PT. Surya Buana Mandiri

(SBM) (Galvanizing) 17.178 16.319 0,95

Energi listrik dan energi primer

TOTAL 602.001 1.762.241

(22)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-22

PT. Energy Management Indonesia (Persero) 2011

tahap awal sebelum material di deformasi plastis seperti pada proses rolling, forging, dan piercing. Sesuai dengan fungsinya, sumber energi yang digunakan di proses reheating furnace (RF) adalah bahan bakar (BBM, natural gas, gasifikasi batubara). Penggunaan energi listrik digunakan untuk peralatan utilitas (pompa air pendingin, fan udara pembakaran, mesin pendorong dan conveyor slab/billet). Neraca energi pada RF (kondisi bahan baku dingin) dapat dilihat pada gambar berikut.

Gambar 3.14. Neraca energi di reheating furnace (world best practice). Sumber: Energy recovery in Mini Mills, Hyundai Steel, 2010

(23)

Gamba

Gambar 3.15. Neraca energi di reheating furnace obje

F berada pada range 15 – 18% yang relatif rendah ji ondisi RF best world practice (~46%). Berdasarkan ukan, rendahnya efisiensi RF disebabkan oleh bebera

gginya kandungan oksigen pada saluran gas ngontrolan pembakaran hanya menggunakan sensor t

pasitas operasi 50-60% dari kapasitas terpasang.

tem dan kondisi pemasukan slab/billetyang kurang ba

ndisi dinding furnace (temperatur dinding) dan bocoran panas pada dinding dan pintu masuk keluar

gginya persentase idle running yang disebabkan st ll dan beberapa penyebab lainnya.

manfaatan panas gas buang dan performa peralatan

heater kurang efektif (pada umumnya menggunakan

tem pengaturan air pendingin kurang optimal (manu nace objek

rendah jika dibandingkan dasarkan hasil identifikasi h beberapa faktor, antara

(24)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-24

PT. Energy Management Indonesia (Persero) 2011

8. Kondisi peralatan listrik (motor auxiliaries) mencakup kualitas parameter kelistrikan, kapasitas terpasang dan kapasitas operasi, pola operasi dan kondisi mekanikal motor kurang baik.

Berdasarkan hasil evaluasi kondisi industri baja yang ada dan hasil audit RC, beberapa identifikasi peluang konservasi energi di RF/HTF adalah sebagai berikut:

1. Pengontrolan udara pembakaran melalui pemasangan oxygen sensor, minimasi lubang udara masuk dan setting pressure damper. Target kandungan oksigen pada gas buang adalah 4%-6% tergantung pada jenis bahan bakar yang digunakan.

2. Perawatan dan repair recuperator untuk meningkatkan efektivitas perpindahan panas.

3. Perbaikan isolasi RF/HTF

4. Mengurangi idle running RF melalui peningkatan performa rolling mill dengan mengganti motor-motor AC menjadi motor DC.

5. Mengupayakan secara terus menerus by pass line billet dari CCM langsung ke rolling mill (direct rolling) yang diselaraskan dengan pencarian material mould CCM yang handal pada temperatur yang lebih tinggi.

6. Minimasi celah opening gate (input & output billet).

C. Proses Pengerolan dan Wire Drawing

Sesuai dengan fungsinya, sumber energi yang digunakan di proses pengerolan (rolling mill) adalah energi listrik untuk menggerakkan motor-motor rolling mill, pompa air pendingin, mesin potong, hoist & crane dan motor lainnya. Neraca energi pada RF (kondisi bahan baku dingin) dapat dilihat pada gambar berikut.

(25)

Beberapa hal yang menjadi faktor utama penggunaan energi di proses pengerolan baja (steel rolling mill) antara lain adalah:

1. Kondisi slab/billet ke roughing mill.

- Temperatur Billet keluar dari reheating furnace

- Distribusi ketidakhomogenan temperatur benda kerja/billet

- Komposisi kimia benda kerja/billet.

- Kandungan scale. Proses descaling yang kurang baik akan mempengaruhi besaran konsumsi energi dan yield production.

2. Jenis dan dimensi produk yang dihasilkan.

3. Jenis, tipe dan kapasitas motor yang digunakan untuk masing-masing tahapan pengerolan.

4. Laju pengerolan.

5. Kualitas parameter kelistrikan (power factor, voltage unbalance, load unbalance).

6. Laju air pendingin, sensor temperatur dan sistem pengendaliannya. 7. Frekwensi stagnasi dan idle running time yang terjadi dalam kurun

waktu tertentu (perhari).

8. Kondisi peralatan listrik (motor auxiliaries) mencakup kualitas parameter kelistrikan, kapasitas terpasang dan kapasitas operasi, pola operasi dan kondisi mekanikal motor.

9. Sistem monitoring dan pengendalian operasi yang dipergunakan.

Berdasarkan hasil evaluasi kondisi industri baja yang ada dan hasil audit RC, beberapa identifikasi peluang konservasi energi di RF/HTF adalah sebagai berikut:

1. Perbaikan performa rolling mill melalui penggantian motor-motor AC dengan motor DC.

2. Pemasangan peralatan voltage stabilizer dan kapasitor bank (package) untuk menjaga stabilitas tegangan dan menaikkan faktor daya di rolling machine.

3. Pemisahan jalur distribusi listrik rolling mill.

4. Secara terus-menerus melakukan analisis kualitas dan pengaturan laju air pendingin rolling mill untuk mendapatkan gradien penurunan temperatur material selama proses rolling (Aplikasi VSD control).

(26)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian Republik Indonesia 3-26

PT. Energy Management Indonesia (Persero) 2011

3.1.4 Potret Produksi Emisi

Potret produksi emisi pada kegiatan ini lebih difokuskan pada produksi emisi yang dihasilkan dari penggunaan energi. Namun beberapa industri tidak memiliki database penggunaan energi terutama data penggunaan energi primer. Oleh karena itu produksi dibeberapa industri adalah hasil perhitungan konversi produksi emisi yang dihasilkan oleh penggunaan energi listrik. Potret produksi dan faktor emisi dari masing-masing industri baja (35 industri) dapat dilihat pada Tabel berikut.

(27)

Log Yard Debarking Chipping Chip Screening Chip Storage Log

3.2 SEKTOR INDUSTRI PULP DAN KERTAS 3.2.1 Deskripsi Proses

3.2.1.1 Proses Pembuatan Pulp dan Kertas A.Persiapan Kayu (wood preparation)

Kayu merupakan bahan baku utama untuk pembuatan pulp. Persiapan bahan baku bisa didapat dari hutan berupa batang kayu (log) atau berupa serpihan kayu yang diperoleh dari pengerjaan dari industri kayu yang berbeda. Kayu biasanya dipersiapkan dalam bentuk serpih kayu.

Persiapan kayu melibatkan proses pemotongan kayu di slasher untuk dipotong sesuai dengan ukuran yang diinginkan untuk proses selanjutnya dalam pembuatan pulp. Proses utama dari persiapan kayu adalah debarking (pelepasan kulit kayu) dan chipping. Konsumsi energi pada kedua proses tersebut relatif kecil. Proses persiapan kayu secara lengkap diberikan pada di bawah.

Gambar.1.16. Proses persiapan kayu

B.Pulping

Selama proses pembuatan pulp, serpih kayu dipisahkan menjadi serat individu untuk menghilangkan lignin. Ada lima jenis pembuatan pulp, yaitu kimia, mekanis, semi-kimia, daur ulang dan lainnya (misalnya dissolving). Proses pembuatan pulp yang paling umum adalah proses kimia (yaitu kraft, soda dan sulfit).

(28)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian 3-28

PT. Energy Management Indonesia (Persero) 2011

Kedua jenis metode pemasakan dengan batch digester dan continues digester

memiliki keuntungan yang berbeda. Batch digester memiliki biaya kapital yang rendah dan fleksibilitas produk yang lebih bervariasi sedangkan continuous digester lebih hemat tempat, lebih mudah dikontrol, tidak memerlukan banyak operator dan lebih energi-efficient.

Gambar 3.17. Proses pemasakan dengan continuous digester

C.Bleaching

Bleaching merupakan proses untuk meningkatkan tingkat kecerahan kertas untuk keperluan menulis, printing atau kertas dekoratif. Proses ini memisahkan lignin yang melekat pada serat kayu. Pemutihan pulp dari proses kimia dilakukan dengan menggunakan oxidizing agent dan larutan alkali. Proses Kraft menghasilkan kertas dengan kualitas warna yang lebih gelap sehingga memerlukan proses pemutihan (bleaching). Pulp yang dibuat dari proses mekanik diputihkan dengan menggunakan hydrogen peroksida atau sodium hydrosulfite untuk mengurangi tingkat absorpsi lignin.

D.Pemulihan Bahan Kimia (Chemical Recovery)

Sistem pemulihan bahan kimia di proses kraft pulping memiliki tiga fungsi, yaitu:

1. Pemulihan bahan kimia anorganik

2. Pemulihan energi dari black liquor yang dapat digunakan untuk membangkitkan listrik dan steam

3. Pemulihan bahan organik (by-product) yang bernilai (misalnya tall oil)

Nilai kalori atau energi yang terkandung dalam black liquor biasanya dapat memenuhi seluruh kebutuhan energi listrik dan steam di industri pulp dan kertas. Proses utama di chemicalrecovery adalah proses evaporasi black liquor, insinerasi

(29)

E. Pengeringan Pulp (Pulp Drying)

Setelah proses pembuatan pulp dan pemutihan, pulp diolah menjadi stok yang dapat digunakan untuk pembuatan kertas. Pada pabrik non-integrasi, pulp yang akan dijual dikeringkan, dikemas dan kemudian dikirim ke pabrik kertas. Pada pabrik terintegrasi, pabrik kertas langsung menggunakan pulp yang diproduksi oleh pabrik pulp.

Proses pengeringan pulp termasuk salah satu proses dengan konsumsi energi thermal, yang cukup besar. Dengan adanya proses pulp drying pada non-integrated pulp mill, maka konsumsi atau intensitas energi untuk menghasilkan pulp akan lebih besar dari integrated pulp and paper mills yang tidak perlu melewati proses pengeringan pulp.

3.2.1.2 Proses Pembuatan Kertas (Papermaking)

Kertas terbuat dari serat selulosa dengan tambahan substansi lainnya untuk meningkatkan kualitas kertas yang diproduksi sesuai dengan grade yang diinginkan. Pulp untuk pembuatan kertas dapat dibuat dari virgin fiber dengan proses mekanik atau kimia atau dengan menggunakan kertas bekas (re-pulping of recovered paper). Pada proses pembuatan pulp, material selulosa dipecah menjadi serat-serat. Kayu merupakan bahan baku pembuatan kertas utama, tetapi bahan baku lain seperti jerami, rumput, kapas dan material lainnya yang mengandung material selulosa dapat juga digunakan sebagai bahan baku pembuatan kertas. Komposisi bahan baku akan sangat bergantung pada jenis dan spesies kayu atau material, terutama untuk kandungan cellulose, ligin, dan hemicellulose.

Kertas yang diproduksi dengan menggunakan kertas bekas akan melibatkan proses pembersihan kontaminan akibat pemakaian sebelumnya dan dapat melibatkan proses de-inking yang bergantung pada kualitas material dan kualitas produk yang diinginkan. Produk kertas biasanya terdiri dari hingga 45% dari beratnya terdiri dari filler,coating dan aditif lainnya.

Setiap jenis kertas yang diproduksi membutuhkan spesifikasi dan properti tertentu, sehingga untuk tiap jenis kertas dapat berbeda dalam hal proses manufakturnya.Dalam hal ini, jenis produk yang dihasilkan juga sangat mempengaruhi penggunaan bahan baku dan konsumsi energi yang diperlukan untuk memproduksi pulp dan kertas. Proses pembuatan pulp dan kertas dapat dibedakan berdasarkan bahan baku dan metode yang digunakan pada pengolahan bahan baku.

(30)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian 3-30

PT. Energy Management Indonesia (Persero) 2011

menggunakan energi adalah tahapan persiapan dan pengeringan (drying). Selama proses persiapan, pulp dibuat menjadi lebih fleksibel melalui proses

beating, mechanical pounding dan squeezing. Penambahan pigmen, warna dan material filler dilakukan pada tahap ini.Forming dilakukan dengan menyebarkan pulp pada screen. Air dipisahkan melalui tahapan proses yang kontinu yaitu melalui proses penekanan (pressing) dan pengeringan. Keseluruhan tahapan pembuatan kertas diberikan di bawah.

Gambar 1.18. Mesin pembuat lembaran kertas

3.2.1.3 Gambaran Umum Penggunaan Energy di Industri Pulp dan Kertas

A. Overview

Industri pulp dan kertas merupakan salah satu sektor industri dengan intensitas energi yang tinggi. Karakteristik teknologi yang digunakan untuk industri pulp dan kertas bergantung dari jenis bahan baku, proses pembuatan pulp dan jenis produk akhirnya. Setiap proses pada pembuatan pulp dan kertas memerlukan energi yang berasal dari bahan bakar seperti batubara, gas,minyak, listrik, black liquor dan biomassa. Energi input tersebut digunakan untuk membangkitkan

steam atau listrik yang sebagian besar digunakan di proses pembuatan pulp dan kertas.

(31)

B. Gambaran umum distribusi energi di industri pulp dan kertas

Ada berbagai sistem layanan energi dan utilitas untuk menyediakan energi sekunder yang dibutuhkan seperti uap, kompresi udara, air dingin dan untuk fasilitas produksi di pabrik. Sumber energi tersebut bisa didapatkan dari pembangkit energi yang dimiliki oleh industri itu sendiri atau melalui pembelian energi.

Energi yang dihasilkan merupakan energi listrik dan steam. Listrik digunakan untuk menggerakkan mesin – mesin produksi dan steam sebagai energi utama dalam proses pengeringan dan sebagai pendukung pada proses kimia. Gambar di bawah memberikan alur distribusi energi listrik, bahan bakar dan distribusi steam

yang digunakan pada proses pembuatan pulp dan kertas. Dari alur distribusi energi tersebut, energi listrik dan steam merupakan jenis energi yang paling signifikan penggunaannya. Dalam hal ini, distribusi kuantitas konsumsi tiap jenis energi akan sangat dipengaruhi oleh jenis proses dan peralatan yang digunakan.

(32)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian 3-32

PT. Energy Management Indonesia (Persero) 2011

B. Penggunaan energi di proses utama

Sumber energi utama dalam pembuatan pulp dan kertas meliputi energi panas dalam bentuk steam dan energi mekanik yang berasal dari listrik. Dari keseluruhan proses, penggunaan energi panas mencapai 70-80% dari total energi yang dikonsumsi, dimana sebagian besar energi digunakan di proses pulping dan pengeringan (drying). Steam dapat dibangkitkan dari black liquor dan tambahan bahan bakar lainnya seperti batubara, minyak, gas dan biomassa. Untuk

integrated pulp and paper mill, biasanya energi listrik yang dapat dibangkitkan sendiri (self-generated energy) mencapai 0-60% dari total konsumsi energi.

3.2.2 Gambaran Umum Distribusi Energy di Industri Pulp dan Kertas A. Distribusi energi total pada proses pulp making

Distribusi energi pada pembuatan pulping terdiri dari wood preparation, cooking, grinding, screening, evaporation, chemical preparation dan bleaching. Secara garis besar, persentase konsumsi energi pada masing-masing area dipresentasikan pada di bawah, dengan konsumsi energi terbesar terdapat pada proses evaporasi black liquor dengan konsumsi energi sekitar 30% dari total penggunaan energi di pulp mill.

Gambar 3.20. Distribusi konsumsi energi di proses pembuatan pulp

(33)

B. Distribusi Energi Total pada Papermaking

Proses papermaking diindustri pulp dan kertas dilakukan dengan menggunakan mesin – mesin untuk proses pengepresan dan pengeringan. Gambar di bawah ini memberikan gambaran distribusi energi di proses pembuatan kertas. Proses pengeringan merupakan proses yang mengkomsumsi energi terbesar dengan persentase konsumsi energisekitar 61,9% (AIche,2006).

Gambar 3.21. Distribusi konsumsi energi di proses pembuatan kertas

Sumber: AicHE, Pulp and Paper Industri: Energi Bandwith Study,2006

C. Distribusi energi listrik dan thermal pada di Industri Pulp dan Kertas Distribusi Energi Listrik

(34)

LAPORAN AKHIR

of Energy Conservation and CO2 Emission Reduction In Industrial Sect ndustrian

ent Indonesia (Persero)

Piechart distribusi energi listrik pada pembuatan bahan baku kayu

Sumber: SEPA report 4712

3.23. Piechart distribusi energi listrik pada industri p dengan bahan baku kertas bekas

Sumber: SEPA report 4712

Steam

i listrik, energi utama yang digunakan di proses pemb energi thermal dalam bentuk steam. Distribusi perse al pada industri kertas dengan bahan baku kay

angkan distribusi pemakaian steam pada industr kertas bekas diberikan di gambar 3.25. Pada proses

Deinking

Persentase Energi Listrik Pada Industri Kertas Berba

Baku Kertas Bekas

strial Sector (Phase 1)

3-34

2011 embuatan kertas dengan

industri pulp dan kertas

(35)

dan kertas, konsumsi e

onsumsi energi thermal terbesar digunakan pada pros hap pengeringan kertas (drying) dengan persentase kayu dan kertas bekas masing-masing sebesar 41% da

Piechart distribusi steam pada pembuatan kertas baku kayu

Sumber: SEPA report 4712

Piechart distribusi steam pada pembuatan kertas baku kertas bekas

Sumber: SEPA report 4712 Deinking

(36)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian 3-36

PT. Energy Management Indonesia (Persero) 2011

3.2.2 Potret Penggunaan Energi

Menurut Direktori APKI tahun 2009, terdapat sekitar 81 industri pulp dan kertas yang terdiri dari 3 industri pulp dan kertas terpadu, 2 industri pulp, dan 76 industri kertas. Pada kegiatan Konservasi Energi dan Reduksi Emisi CO2 di Sektor Industri Pulp dan Kertas oleh Kementerian Perindustrian, telah dilakukan audit energi dan evaluasi di 15 industri obyek, yang terdiri dari 3 industri pulp dan kertas terpadu, 2 industri pulp dan 10 industri kertas.

Industri pulp dan kertas merupakan salah satu industri lahap energi. Berdasarkan data pada 2010, diperoleh gambaran konsumsi energi di industri pulp dan kertas seperti yang berikan pada tabel Total konsumsi energi dari 15 industri obyek sebesar 5.261.865 TOE (2010).

Table 3.9. Konsumsi Energi di Industri Pulp dan Kertas (2010)

Industri Pulp (ton) Kertas (ton)

Produksi

IPK13 2.304.343 726.350 3.030.693 1.466.184 20,25

IPK14 696.789 63.220 760.009 560.849 30,90

IPK15 2.070.000 833.444 2.903.444 1.601.609 23,10

Total 5.630.038 5.773.705 11.403.743 5.261.865 278

Rata-rata 1.126.008 444.131 760.250 261.447 19

Sumber: Hasil Audit Energi (2010)

(37)

Jenis bahan bakar utama yang digunakan di industri pulp dan kertas terdiri dari bahan bakar fosil dan biomassa seperti yang ditunjukkan pada Gambar 3.2. Secara keseluruhan, sumber energi terbesar berasal dari limbah pulping (biomassa dan black liquor) dengan total konsumsi energi sebesar 3,06 juta TOE (58 %), diikuti oleh bahan bakar fosil sebesar 2,15 juta TOE (40,9 %). Pembelian listrik dari PLN hanya berkontribusi sebesar 43.342TOE (0,8 %) karena sebagian industri pulp dan kertas tersebut telah memiliki pembangkit listrik sendiri untuk memenuhi kebutuhan energinya. Dari 15 industri pulp dan kertas obyek, terdapat 9 industri pulp dan kertas yang memiliki pembangkit sendiri, baik dengan menggunakan teknologi steam turbine maupun CHP.

Gambar.3.26. Distribusi konsumsi energy per jenis energi di Industri Pulp dan Kertas Sumber: Data audit energy di industri pulp dan kertas (2010)

Tabel 3.10 memberikan perbandingan penggunaan energy di 3 kluster industri pulp dan kertas yaitu industry pulp, industry kertas dan industry pulp dan kertas terintegrasi.Untuk industri pulp dan industri pulp dan kertas terpadu, hampir seluruh kebutuhan energy (sekitar 90%) berasal dari limbah (by product) yang dihasilkan dari proses pulping yaitu biomassa dan black liquor yang tergolong sebagai renewable energy. Sedangkan untuk industri kertas, seluruh sumber

Electricity (PLN)

0.8%

BBM 1.6%

Gas Alam 7.4%

Batubara 31.8%

Gambut 0.2% Biomass

12.2% Black Liquor

46.0%

(38)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian 3-38

PT. Energy Management Indonesia (Persero) 2011

energy masih bergantung pada bahan bakar fosil yang didominasi oleh batubara (59,8%) dan gas alam (36,2%).

Table 3.10. Persentase Penggunaan Energy di 12 Industry Pulp Dan Kertas Nasional

Industri Produksi

Industri Pulp (2 industri) 558.906 511.099 5%

Industri Kertas (8 industri) 4.150.692 1.122.124 100%

Industri Pulp dan Kertas Terpadu (3 industri)

6.694.145 3.628.642

29% Sumber: Data audit energi (2010)

*Dihitung berdasarkan persentase konsumsi energi untuk masing-masing klaster industry (dari 15 industri obyek)

A. Intensitas Energi di Industri Pulp dan Kertas Indonesia

Intensitas energi di industri pulp dan kertas ditentukan oleh beberapa faktor antara lain: teknologi, bahan baku, product mix, dan tingkat kapasitas produksi. Dibandingkan industri kertas, industri pulp dapat menggunakan hampir seluruh byproduct-nya (black liquor dan biomassa) untuk memenuhi kebutuhan energi bagi seluruh mill. Hal ini menyebabkan biaya energi per ton produk akan lebih rendah dibandingkan dengan industri kertas yang masih memiliki ketergantungan yang tinggi terhadap bahan bakar fosil. Tabel 3.3 memberikan gambaran intensitas energi di industri pulp dan kertas berdasarkan jenis kertas pada 2010.

Table 3.11. Intensitas Konsumsi Energi di Industei Pulp dan Kertas (2010)

Industri Jenis Produk IKE Steam (GJ/ton) IKE Listrik (kWh/ton)

Pulp Market Pulp 18,5 680,0

Kertas Corrugated 21,9 731,0

(39)

B. Intensitas Energi di Proses Pulping

Sumber energi utama dalam pembuatan pulp meliputi energi panas dalam bentuk

steam dan energi mekanik yang berasal dari listrik. Dari keseluruhan proses, penggunaan energi panas (steam) mencapai 70-80% dari total energi yang dikonsumsi. Dari data tahun 2010, intensitas energi di industri pulp berdasarkan penggunaan bahan bakar atau total energi input di industri pulp berada pada kisaran 45-56 GJ/ton pulp (lihat Tabel 3.3). Sedangkan nilai IKE untuk pemakaian listrik dan steam untuk energi listrik dan steam yang digunakan masing-masingsebesar 788 kWh/ton dan 13,5 GJ/ton. Gambar 3.2 memberikan perbandingan nilai intensitas energi di tiap proses utama proses pulping. Dari perbandingan intensitas energy, ternyata pada proses – proses tertentu, industry pulp dan industry pulp dan kertas terintegrasi sudah ada yang mencapai intensitas untuk level best available technology (BAT). Dalam hal ini, upaya konservasi energy dapat difokuskan pada proses yang masih memiliki intensitas energy yang lebih tinggi dibandingkan level BAT.

(40)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian 3-40

PT. Energy Management Indonesia (Persero) 2011

C. Intensitas Energi di Papermaking

Berdasarkan data tahun 2010, intensitas konsumsi energi rata-rata untuk industri kertas berada pada kisaran 8- 22 GJ/ton kertas. Nilai intensitas konsumsi energi (IKE) ini diperoleh dari total energi dari bahan bakar input yang digunakan, baik untuk membangkitkan listrik atau steam. Nilai IKE untuk masing-masing industri bervariasi yang antara lain bergantung pada jenis kertas, tingkat efisiensi proses dan jenis teknologi.

Untuk konsumsi per jenis energi, IKE listrik berada pada kisaran 500 dan 1750 kWh/ton kertas dan IKE steam berada pada kisaran 4,5 dan 13,5 GJ/ton kertas. Nilai IKE untuk listrik dan steam pada industri kertas beragam dan dipengaruhi oleh jenis kertas yang diproduksi. Tabel 3.4 memberikan perbandingan antara nilai konsumsi listrik (kWh/ton kertas) dan steam (ton steam/ton kertas) untuk tiap jenis kertas dari hasil audit BPPK dan Kemenperin (2010). Dari data tersebut terlihat bahwa tidak terdapat perbedaan yang signifikan untuk IKE hasil audit dan data dari BPPK, kecuali untuk konsumsi steam pada jenis kertas Koran, dimana terdapat perbedaan nilai konsumsi steam yang cukup jauh.

Table 3.12. Perbandingan konsumsi steam dan listrik untuk tiap jenis kertas

No Jenis Kertas

BBPK Audit Energi (2010)

Konsumsi

Sumber: Data BPPK dan Audit energi 2010

3.2.3 Potret Produksi Emisi di Industri Pulp dan Kertas

(41)

Gambar 3.28. Persentase emisi berdasarkan jenis bahan bakar

Sumber : Data audit energy 2010

Table 1.13. Produksi Emisi CO2 eq di masing-masing industri pulp dan kertas

Industri Pulp Paper Produksi

(ton)

Rata-rata 1.126.008 444.131 760.250 567.879 1,02

Tabel 3.13 menggambarkan besar emisi CO2 dari 15 industri pulp dan kertas obyek.Berdasarkan data audit energi pada 2010, diperkirakan produksi emisi dari industri pulp dan kertas mencapai 8,3juta ton CO2 eq. Produksi emisi untuk masing-masing klaster diberikan pada tabel 3.14.

(42)

LAPORAN AKHIR

Implementation of Energy Conservation and CO2 Emission Reduction In Industrial Sector (Phase 1)

Kementerian Perindustrian 3-42

PT. Energy Management Indonesia (Persero) 2011

Table 3.14 Produksi dan Intensitas Emisi di Industri Pulp dan Kertas

Industri Produksi

(MT)

CO2 Emission (Ton CO2 eq)*

Range Intensitas Emisi (ton CO2

eq/ton)

Industri Pulp (2 industri) 558.906 189.300 0,16 -0,7

Industri Kertas (8 industri) 4.150.692 3.863.596 0,4-2,4

Industri Pulp dan Kertas Terpadu (3 industri)

6.694.145 4.258.103

0,13 - 1,04

Sumber : Audit Energi (2010)

* Emisi dihitung berdasarkan metode IPCC Tier 1

Gambar

Gambar 3.1. Layout proses blast furnace
Gambar 3.2 Proses reduksi mengubah besi oksida (Fe2O3)  menjadi besi (Fe)
Gambar 3.8.   Diagram alir proses pembuatan batang kawat
Tabel 3.1. Daftar Industri baja yang telah dilakukan audit energi
+7

Referensi

Dokumen terkait

Sementara, Robustness diagram adalah gambar objek dari suatu use case , yang tujuannya untuk menyempurnakan teks use case dan model objek, sedangkan Sequence diagram

Dalam program I’M SMART SUPERCAMP ini, banyak hal yang didapat oleh peserta didik, baik aspek akademik,aspek mental psikologi,dan juga aspek spiritual, peserta tidak hanya

Dalam bidang jasa konstruksi, tender dilakukan oleh pemberi tugas atau pemilik proyek dengan mengundang beberapa perusahaan jasa konstruksi atau kontraktor untuk

Berikut kami sampaikan surat pengantar Anda untuk mengikuti kegiatan Pretest PPG sebagai Peserta. Informasi detail berkaitan dengan kegiatan Pretest PPG Anda adalah

Aspek-aspek pembelajaran yang diamati yang termuat pada lembar observasi aktivitas guru selama mengikuti pembelajaran di antaranya: (1) Guru membuka pembelajaran

Selain itu mengalami kekurangan SDM khususnya satu Apoteker dikarenakan hanya terdapat satu Asisten Apoteker di Apotik Puskesmas, ternyata dirasa mengganggu kinerja

metode yang digunakan dalam penelitian ini adalah deskriptif analitik yaitu penelitian ini dilakukan dengan cara menggabungkan konsep HAM yang terdapat dalan

- frasa “anjuran” dalam Pasal 23 ayat (2) huruf a Undang-Undang Nomor 2 Tahun 2004 tentang Penyelesaian Perselisihan Hubungan Industrial (Lembaran Negara Republik Indonesia