• Tidak ada hasil yang ditemukan

getdocb64d. 125KB Jun 04 2011 12:04:52 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdocb64d. 125KB Jun 04 2011 12:04:52 AM"

Copied!
8
0
0

Teks penuh

(1)

in PROBABILITY

A NOTE ON ERGODIC TRANSFORMATIONS OF

SELF-SIMILAR VOLTERRA GAUSSIAN PROCESSES

C´ELINE JOST

Department of Mathematics and Statistics, P.O. Box 68 (Gustaf H¨allstr¨omin katu 2b), 00014 University of Helsinki, Finland

email: celine.jost@iki.fi

Submitted February 14, 2007, accepted in final form July 30, 2007 AMS 2000 Subject classification: 60G15; 60G18; 37A25

Keywords: Volterra Gaussian process; Self-similar process; Ergodic transformation; Fractional Brownian motion

Abstract

We derive a class of ergodic transformations of self-similar Gaussian processes that are Volterra, i.e. of typeXt =

Rt

0zX(t, s)dWs, t ∈ [0,∞), where zX is a deterministic kernel andW is a

standard Brownian motion.

1

Introduction

Let (Xt)t∈[0,∞) be a continuous Volterra Gaussian process on a complete probability space

(Ω,F,P). This means that

Xt = Z t

0

zX(t, s)dWs, a.s., t∈[0,∞), (1.1)

where the kernelzX ∈L2loc [0,∞)2

is Volterra, i.e. zX(t, s) = 0,s≥t, and (Wt)t∈[0,∞) is a

standard Brownian motion. Clearly,X is centered and

RX(s, t) := CovP(Xs, Xt) = Z s

0

zX(s, u)zX(t, u)du, 0≤s≤t <∞.

We assume thatX isβ-self-similar for someβ >0, i.e.

(Xat)t[0,) d

= aβXtt[0,), a >0, (1.2)

where= denotes equality of finite-dimensional distributions. Furthermore, we assume thatd zX

is non-degenerate in the sense that the family {zX(t,·)|t ∈ (0,∞)} is linearly independent

and generates a dense subspace ofL2([0,)). Then

Γt(X) := span{Xs|s∈[0, t]} = Γt(W), t∈(0,∞), (1.3)

(2)

where the closure is in L2(P), or equivalently, FX = FW, where FX:=

FX t

t∈[0,∞)denotes the completed natural filtration ofX.

We assume implicitly that (Ω,F,P) is the coordinate space of X, which means that Ω =

{ω : [0,) R|ωis continuous}, F = FX

∞ := σ(Xt|t ∈ [0,∞)) and P is the probability

measure with respect to which the coordinate process Xt(ω) = ω(t), ω ∈Ω, t ∈ [0,∞), is a

centered Gaussian process with covariance function RX. Recall that a measurable map

Z : (Ω,F,P) (Ω,F,P) X(ω) 7→ Z(X(ω))

is a measure-preserving transformation, or endomorphism, on (Ω,F,P) if PZ = P, or equi-valently, ifZ(X)=d X. IfZis also bijective andZ−1is measurable, then it is anautomorphism.

Processes of the above type are a natural generalization of the nowadays in connection with finance and telecommunications extensively studied fractional Brownian motion with Hurst index H (0,1), orH-fBm. TheH-fBm, denoted by BH

t

t∈[0,∞), is the continuous, centered

Gaussian process with covariance function

RBH(s, t) = 1 2 s

2H

+ t2H − |st|2H, s, t[0,∞).

For H = 1

2, fBm is standard Brownian motion. H-fBm is H-self-similar and has stationary

increments. The non-degenerate Volterra kernel is given by

zBH(t, s) = c(H)(t−s)H−

1 2 ·

2F1

1

2 −H, H− 1 2, H+

1 2,1−

t s

, 0< s < t <,

where c(H) :=

2HΓ(3 2−H)

Γ(H+1

2)Γ(2−2H)

1 2

with Γ denoting the Gamma function, and 2F1 is the

Gauss hypergeometric function. In 2003, Molchan (see [8]) showed that the transformation

Zt BH := BtH − 2H Z t

0

BH s

s ds, t∈[0,∞), (1.4) is measure-preserving and satisfies

ΓT Z BH = ΓT YH, T >0, (1.5)

where

YtH := M H

t −

t Tξ

H

T, t∈[0, T]. (1.6)

Here, MH t :=

22HRt

0s

1

2−HdWs, t ∈ [0,∞), is the fundamental martingale of BH and

ξH T := 2H

RT

0

s T

2H−1

dMH s .

(3)

2

Ergodic transformations

First, we introduce the class of measure-preserving transformations: Theorem 2.1. Let α > −21. Then the transformation

is an automorphism on the coordinate space ofX. The inverse is given by

Ztα,−1(X) = Xt − (2α+ 1)tα+β+

The integrals on the right-hand sides areL2(P)-limits of Riemann sums. Proof. First, note thatRX

is continuous. Furthermore, by combining H¨older’s inequality and (1.2), we have that

RX(s, t)

≤ EP(X1)2sβtβ, s, t∈(0,∞).

Hence, the double Riemann integrals

Z t

are finite. Thus, the integrals in (2.1) and (2.2) are well-defined (see [5], section 1). Second, we show thatZαis a measure-preserving transformation. LetY

t:= exp(−βt)Xexp(t)

and Yα

t := exp(−βt)Zexp(α t)(X), t ∈ R, denote the Lamperti transforms of X and Zα(X),

respectively. Hence, the process (Yt)t∈R is stationary. By substitutingv := ln(s), we obtain

that

Thus,Yα is a linear, non-anticipative, time-invariant transformation ofY. The spectral

dis-tribution function ofYα is given by (see [13], p. 151)

(4)

where Hα(λ) := R

Rexp(−iλx)h

α(x)dx denotes the Fourier transform of

hα and F is the spectral distribution function ofY. We have that (see [3], p. 14 and p. 72)

Third, by splitting integrals and using Fubini’s theorem, we obtain that

Ztα,−1(Z

α(X)) =

Xt = Ztα Z

α,−1(X)

, a.s., t[0,).

Remark 2.2. Theorem 2.1 generalizes (1.4). In fact,ZH−1

2 BH=Z BH,H ∈(0,1).

Remark 2.3. Theorem 2.1 holds true for general continuous centeredβ-self-similar Gaussian processes.

Next, we present two auxiliary lemmas concerning the structure of zX:

Lemma 2.4. Let (Xt)t∈[0,∞) be a Volterra Gaussian process with a non-degenerate Volterra

kernel zX. Then the following are equivalent:

1. X isβ-self-similar, i.e.

2. It holds that

(5)

Proof. From Lemma 2.4, it follows that the Volterra kernel ofX can be written as

The next lemma is the key result for deriving the ergodicity of the measure-preserving trans-formations:

Proof. By combining (1.1) and the stochastic Fubini theorem, using Lemma 2.5, again the stochastic Fubini theorem, and finally using partial integration, we obtain that

-self-similarFX-martingale. From Lemma 2.6, it follows that

(6)

The next lemma is an auxiliary result, which was obtained in [7], section 3.2 and Theorem 5.2. (The automorphismZα on the coordinate space of

Nαhere corresponds to the (ergodic) automorphismT(1) on the coordinate space of the martingaleM withM :=Nα in [7].)

Lemma 2.7. Let α > −1

2 andT >0.

1. It holds that

ΓT(Zα(Nα)) = ΓT Nα,T,

where Ntα,T := N α t −

t T

2α+1

NTα, t ∈ [0, T], is a bridge of N

α, i.e. a process satisfying

LawP Nα,T= LawP(Nα|NTα= 0), andΓT Nα,T:= spanNtα,T|t∈[0, T] .

2. We have that

ΓT(Nα) = ⊥n∈N0span

ZTα,n Nα (2.4)

and

Γ∞(Nα) =

⊥n∈ZspanZTα,n Nα . (2.5)

Here, denotes the orthogonal direct sum.

By combining (2.3) and part 1 of Lemma 2.7, we obtain the following: Lemma 2.8. Let α > −21 andT >0. Then

ΓT(Zα(X)) = ΓT Nα,T

.

Remark 2.9. Lemma 2.8 is a generalization of identity (1.5). Indeed, we have that YH

t =

22HRt

0s

1−2HdNH−12,T

s , a.s.,t∈[0, T], whereYHis the process defined in (1.6). YH is a

bridge (of some process) if and only ifH = 12. The following generalizes part 2 of Lemma 2.7: Lemma 2.10. Let α > −1

2 andT >0. Then we have that

ΓT(X) = ⊕n∈N0span{Z

α,n T (X)}

and

Γ∞(X) = ⊕n∈Zspan{Z α,n T (X)}.

Proof. We assume thatX 6=Nα. By iterating (2.3) and (2.4), we obtain that

ZTα,n(X) ∈ ΓT(Zα,n(X)) = ΓT Zα,n Nα = ⊥i≥nspan n

ZTα,i Nα o

, nZ.

Moreover,XT 6⊥NTα, henceZ α,n

T (X)6⊥ Z α,n

T (N

α),n

∈Z, and therefore,

ZTα,n(X) 6∈ ⊥i≥n+1span

n

ZTα,i(Nα) o

, nZ.

From (2.4) and (2.5), it follows that the systems{ZTα,n(X)}n∈N0 and{Z

α,n

T (X)}n∈Z are free

and complete in ΓT(X) and Γ∞(X), respectively.

Remark 2.11. The processX is anFX-Markov process if and only if there exists α > −1 2

and a constantc(X), such that

Xt = c(X)·tβ−

1 2−α

Z t

0

sαdWs, a.s., t∈(0,∞). (2.6)

(7)

From Lemma 2.10, we obtain the following: Corollary 2.12. Let α > −21 andT >0. Then

FX

T =

_

n∈N0

σ ZTα,n(X)

.

Furthermore,

F = FX

∞ =

_

n∈Z

σ ZTα,n(X)

.

Recall that an automorphism Z is a Kolmogorov automorphism, if there exists a σ-algebra

A ⊆ F, such thatZ−1A ⊆ A,

m∈ZZmA=F and ∩m∈N0Z

−m

A ={Ω,∅}. A Kolmogorov automorphism is strongly mixing and hence ergodic (see [11], Propositions 5.11 and 5.9 on p. 63 and p. 62). The ergodicity ofZαis hence a consequence of the following:

Theorem 2.13. Letα > −1

2 andT >0. The automorphisms Z

α and

Zα,−1 are Kolmogorov

automorphisms withA=∨n∈−Nσ Z α,n T (X)

andA=FX

T , respectively.

Proof. Zαis a Kolmogorov automorphism with

A=n∈−Nσ ZTα,n(X):

First,Zα,−1A=

n∈−Nσ Z α,n−1

T (X)

⊆ A.

Second,m∈ZZα,mA=∨m∈Z∨n∈−Nσ ZTα,m+n(X)=F.

Third, let {Yn}n∈−N denote the Hilbert basis of ⊕n∈−Nspan{Z α,n

T (X)} which is obtained

from {ZTα,n(X)}n∈−N via Gram-Schmidt orthonormalization. By using Kolmogorov’s

zero-one law (see [12], p. 381), we obtain thatm∈N0Z

α,−m

A=m∈N0 ∨n≤−m−1σ Z

α,n T (X)

=

∩m∈N0 ∨n≤−m−1σ Yn

={Ω,∅}.

Similarly, one shows thatZα,−1is a Kolmogorov automorphism with

A=FX T .

Acknowledgements. Thanks are due to my supervisor Esko Valkeila and to Ilkka Norros for helpful comments. I am indebted to the Finnish Graduate School in Stochastics (FGSS) and the Finnish Academy of Science and Letters, Vilho, Yrj¨o and Kalle V¨ais¨ala Foundation for financial support.

References

[1] Deheuvels, P., Invariance of Wiener processes and of Brownian bridges by integral trans-forms and applications. Stochastic Processes and their Applications 13, 311-318, 1982. MR0671040

[2] Embrechts, P., Maejima, M., Selfsimilar Processes. Princeton University Press, 2002. MR1920153

[3] Erd´elyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G., Tables of integral transforms, Volume 1. McGraw-Hill Book Company, Inc., 1954.

[4] Hida, T., Hitsuda, M., Gaussian Processes. Translations of Mathematical Monographs 120, American Mathematical Society, 1993. MR1216518

(8)

[6] Jeulin, T., Yor, M., Filtration des ponts browniens et ´equations diff´erentielles stochas-tiques lin´eaires. S´eminaire de probabilit´es de Strasbourg 24, 227-265, 1990. MR1071543 [7] Jost, C., Measure-preserving transformations of Volterra Gaussian processes and related

bridges. Available fromhttp://www.arxiv.org/pdf/math.PR/0701888.

[8] Molchan, G.M., Linear problems for a fractional Brownian motion: group approach. Theory of Probability and its Applications, 47(1), 69-78, 2003. MR1978695

[9] Norros, I., Valkeila, E., Virtamo, J., An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5(4), 571-587, 1999. MR1704556

[10] Peccati, G., Explicit formulae for time-space Brownian chaos. Bernoulli 9(1), 25-48, 2003. MR1963671

[11] Petersen, K., Ergodic theory. Cambridge University Press, 1983. MR0833286 [12] Shiryaev, A.N., Probability, Second Edition. Springer, 1989. MR1024077

Referensi

Dokumen terkait

Kondisi tersebut akan berdampak secara langsung terhadap tingkat kepercayaan investor yang tidak akan percaya lagi kepada perusahaan karena melihat kondisi keuangan

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Penelitian Pambekti (2014) menyimpulkan bahwa model Zmijewski adalah model prediksi financial distress yang paling tepat digunakan untuk memprediksi financial

Tujuan yang ingin dicapai oleh penelitian ini adalah menguji secara komprehensif hubungan dari variabel individual (tingkat pendidikan, usia, gender, dan filosofi

Selama pelaksanaan kerja praktek, penulis menerima pekerjaan dari pembimbing tempat pelaksanaan kerja praktek, untuk membuat sebuah creative map yang akan ditempatkan

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

hanya 10% kaset dan CD orsinil yang beredar di pasaran, sementara 90% adalah bajakan. Industri musik fisik perlahan-lahan tergantikan dengan munculnya era musik digital seperti

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD