• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:GMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:GMJ:"

Copied!
9
0
0

Teks penuh

(1)

1(94), No. 4, 395-403

ON THE BOUNDEDNESS OF CAUCHY SINGULAR OPERATOR FROM

THE SPACE Lp TO Lq, p > q≥1

G. KHUSKIVADZE AND V. PAATASHVILI

Abstract. It is proved that for a Cauchy type singular operator,

given by equality (1), to be bounded from the Lebesgue spaceLp(Γ)

toLq(Γ), as Γ =

n=1Γn, Γn={z:|z|=rn}, it is necessary and sufficient that either condition (4) or (5) be fulfilled.

1. Let Γ be a plane rectifiable Jordan curve, Lp(Γ), p ≥ 1, a class of

functions summable to the p-th degree on Γ, and SΓ a Cauchy singular

operator

SΓ(f)(t) =

1 πi

Z

Γ

f(τ)dτ

τ−t , f ∈Lp(Γ), t∈Γ. (1) Numerous studies have been devoted to problems of the existence of SΓ(f)(t) and boundedness of the operator SΓ : f → SΓ(f) in the space

Lp(Γ) (see, e.g., [1–3]). The final solution of these problems is given in [4,5].

It was proved by G.David that for the operatorSΓ to be bounded inLp(Γ),

it is necessary and sufficient that the condition

l(t, r)≤Cr (2)

be fulfilled, wherel(t, r) is a length of the part of Γ contained in the circle with center att∈Γ and radius r, andC is a constant.1

The present paper is devoted to the problem of boundedness of the op-eratorSΓ from Lp(Γ) toLq(Γ),p > q≥1 (see also [6–9]).

2. Throughout the rest of this paper by {rn}∞n=1 is meant a strictly

decreasing sequence of positive numbers satisfying the conditionPn

k=1rk< ∞, and by Γ, the family of concentric circumferences on a complex plane Γn ={z:|z|=rn},n= 1,2, . . ..

1991Mathematics Subject Classification. 47B38.

1Following [7,8], the necessity of condition (2) is shown also in [6]. In the same work

its sufficiency is proved for special classes of curves.

395

(2)

It has been shown in [10,11] that for the operator SΓ to be bounded in

Lp(Γ),p >1, it is necessary and sufficient that the conditions ∞

X

k=n

rk≤Crn, n= 1,2, . . . , (3)

be fulfilled, whereC is an absolute constant. We shall prove

Theorem. Let p > q ≥ 1 and σ = pq/(p−q). Then the following statements are equivalent:

(A)operatoris bounded fromLp(Γ)toLq(Γ);

(B)

X

n=1

’ P∞

k=nrk

rn

“σ

rn<∞; (4)

(C)

X

n=1

nσrn <∞. (5)

Remark. A family of concentric circumferences the sum of whose lengths is finite, as a set of integration, principally, “simulates” rectifiable curves with isolated singularities. Analogy of conditions (2) and (3) also indicates this fact. Taking into account the above, we assume that the following statement (an analogue of the theorem from Subsection 2) is valid: for the operator SΓ to be bounded from Lp(Γ) to Lq(Γ), where Γ is an arbitrary

rectifiable curve,p > q≥1, it is necessary and sufficient that the condition Z

Γ

[χ(t)]pq/(p−q)|dt|<

be fulfilled, where

χ(t) = sup

r

l(t, τ)

r , t∈Γ.

3. In proving this theorem, use will often be made of the well-known Abel equality (see, e.g., [12], p.307)

X

n=1

Xn

k=1

uk

‘ vn=

X

n=1

un

X

k=n

vk

‘

, (6)

where{un}and{vn}are sequences of positive numbers andP∞k=1vk < ∞,

as well as of its particular case

X

n=1

nvn = ∞

X

n=1

X

k=n

vk. (7)

(3)

Lemma. Let p >0. Iff is a function analytic in the circle|z|<1, then forr < R <1,

Z

|z|=r

|f(z)|p|dz| ≤ r

R Z

|z|=R

|f(z)|p|dz|. (8)

If f is a function analytic in the domain |z|>1 andf(∞) = 0then for

1< R < r

Z

|z|=r

|f(z)|p|dz| ≤R

r

‘p−1 Z

|z|=R

|f(z)|p|dz|. (9)

If, in addition,f belongs to the Hardy classHpin the domains|z|<1or |z|> 1, i.e., supρ

R2π

0 |f(ρeiϑ)|pdϑ <∞ (in particular, if f is represented by a Cauchy type integral), then we can takeR= 1 in inequalities (8)and

(9).

Proof. Since|dz|=|dρeiϑ|=ρdϑ, inequality (8) follows from the fact that

the mean value 21πR2π

0 |f(ρe

)|pof|f(ρe)|pis a nondecreasing function

ofρ(see, e.g., [13], p.9).

Under the conditions of the lemma, if|z|>1, then the function g(ζ) =

1

ζf(

1

ζ) is analytic in the circle|ζ|<1. Using inequality (8) forg, we get

Z

|ζ|=1 r

Œ Œf

€1 ζ

Œ Œ

p

|dζ| ≤R

r

‘p+1 Z

|ζ|=1 R

Œ Œf

€1 ζ

Œ Œ

p |dζ|.

Applying the transformation ofζ= 1z, the latter inequality reduces to (9). Iff ∈Hp, then by the Riesz theorem

lim

ρ→1 2π

Z

0

|f(ρeiϑ)|pdϑ=

Z

0

|f(eiϑ)|pdϑ

(see, e.g., [13], p.21), which enables us to suppose thatR= 1. „

4. Let us prove the equivalence of conditions (B) and (C). This follows from equality (7) forσ= 1 and therefore we shall assume thatσ >1.

(C) follows from (B). We use Abel–Dini’s theorem (see, e.g., [12], p. 292): if a series with positive termsP∞

n=1an diverges andSn means itsn-th

par-tial sum, then the seriesP∞

n=1anSn also diverges, while the series

P∞

n=1San1+ε n

(ε >0) converges. Assume that the series P∞

n=1nσrn diverges. Then,

set-tingan=nσrn andωn = 1Ž Pnk=1kσrk, we shall see by this theorem that

the seriesP∞

n=1ωnnσrn diverges while the seriesP∞n=1ωσ

nrnnσ converges,

(4)

Using equality (6) and the H¨older inequality, we obtain

X

n=1

ωnnσrn ≤2 ∞

X

n=1

ωn

Xn

k=1

kσ−1‘r

n≤2 ∞

X

n=1

Xn

k=1

ωkkσ−1

‘ rn =

= 2

X

n=1

ωnnσ−1

’ P∞

k=nrk

rn

“ rn≤

≤2 "∞

X

n=1

’ P∞

k=nrk

rn

“σ rn

#1/σ X∞

n=1

ωnσ′nσrn

‘1/σ′ <∞.

The obtained contradiction shows that (C) follows from (B). Let us now show that (B) follows from (C). Ifm≤n, then

Am=

P∞

k=mrk

rm

=rm+rm+1+· · ·+rn−1 rm

+ +

P∞

k=nrk

rm ≤(n−m) +An. (10)

Let 1≤s≤σ. Using equality (6) and inequality (10), we get

X

n=1

ns−1Aσ−s+1

n rn= ∞

X

n=1

ns−1Aσ−s n

X

k=n

rk=

=

X

n=1

Xn

k=1

ks−1Aσ−sk

‘ rn ≤

X

n=1

 ks−1‚

An+ (n−k)ƒ σ−s

rn

‘

≤2σ

X

n=1

Xn

k=1

ks−1‚

Aσ−sn + (n−k)σ−s

ƒ‘ rn≤

≤2σ

X

n=1

Aσ−sn

Xn

k=1

ks−1‘rn+ 2σ ∞

X

n=1

Xn

k=1

ks−1(n−k)σ−s‘rn≤

≤2σ

X

n=1

Aσ−sn nsrn+ 2σ ∞

X

n=1

nσrn. (11)

Let [σ] be the integer part ofσ and α=σ−[σ]. Using inequality (11) successively [σ] times fors= 1,2, . . . ,[σ], we arrive at the inequality

X

n=1

Aσnrn≤C1

X

n=1

Aαnn[σ]rn+C2, (12)

(5)

Ifσ is an integer, thenα= 0, and consequently the proof is completed. Letα >0. Then making use of the H¨older inequality and equality (7), we obtain

X

n=1

Aαnn[σ]rn= ∞

X

n=1

Aαnnα(σ−1)nσ(1−α)rn ≤

≤ ∞

X

n=1

Annσ−1rn

‘αX∞

n=1

nσrn

‘1−α =

X

n=1

nσrn

‘1−αX

n=1

nσ−1

X

k=n

rk

‘α

≤ ∞

X

n=1

r n

‘1−αX

n=1

X

k=n

kσ−1r

k

‘α =

X

n=1

nσrn

‘1−αX∞

n=1

n(nσ−1r

n)

‘α =

X

n=1

r n<∞,

which completes the proof.

5. Let us show that (A) follows from (B) or (C). Consider first the case when q = 1 and show that if p > 1 and σ = p′ = p/(p1), then S

Γ is

bounded fromSp(Γ) to L1(Γ).

Let φi

n and φln be the functions determined respectively in Int Γn and

Ext Γn by the Cauchy type integral

1 2πi

Z

Γn

ϕn(t)dt

t−z , ϕn∈Lp(Γn), p≥1, z6∈Γn. (13)

Using the Sokhotsky–Plemelj formula

φin(t)−φen(t) =ϕn(t), φin(t) +φen(t) =SΓ(ϕn)(t)

and the Cauchy formula 1

2πi Z

Γn

ϕn(t)dt

t−z = 1 2πi

Z

Γn

φi

n(t)−φen(t)

t−z dt= (

φi

n(z), z∈Int Γn,

φe

n(z), z∈Ext Γn,

we obtain by direct calculations

SΓ(ϕ)(t) = 2

n−1

X

k=1

φik(t) + [φin(t) +φen(t)] + 2 ∞

X

k=n+1

φek(t) (14)

(6)

Let us evaluate the integrals of the sums

S1(t) = 2

n−1

X

k=1

φik(t) +φin(t), S2(t) =φen(t) + 2 ∞

X

k=n+1

φek(t).

Using the lemma from Subsection 3 and the H¨older inequality, we can write

Z

Γn

|S1(t)|ds≤2

n

X

k=1

Z

Γn

|φik(t)|ds≤2 n

X

k=1

rn

rk

Z

Γk

|φik(t)|ds≤

≤2(2π)1/p′

n

X

k=1

rk

rk1/p Z

Γk

|φik(t)|pds

‘1/p ,

where φi

k is a limiting function of the Cauchy type integral (13) on Γk,

k= 1,2, . . . , n.

Next, changing the order of summation and using the Riesz’s inequality for the Cauchy singular operator in the case of the circle as well as the H¨older inequality, we get

Z

Γ

|S1(t)|ds=

X

n=1

Z

Γn

|S1(t)|ds≤

≤2(2π)1/p′

X

n=1

n

X

k=1

rn

rk1/p

Z

Γk

|φik(t)|pds

‘1/p =

= 2(2π)1/p′

X

n=1

P∞

k=nrk

r1n/p

Z

Γn

|φin(t)|pds

‘1/p

≤2(2π)1/p′Cp ∞

X

n=1

P∞

k=nrk

rn1/p

Z

Γn

|ϕin(t)|pds

‘1/p

≤2(2π)1/p′Cp

"∞

X

n=1

’ P∞

k=nrk

rn

“p′ rn

#1/p′ Z

Γ

|ϕ(t)|pds‘1/p, (15)

where Cp is the constant from the Riesz inequality (which depends on p

only).

The integral ofS2(t) can be evaluated analogously. Using inequality (9),

as well as the H¨older and Riesz inequalities, we obtain Z

Γn

|S2(t)|dt≤2

X

k=n

Z

Γn |φe

k(t)|ds≤2(2π)1/p

X

k=n

Z

Γn

|φek(t)|pds

(7)

≤2(2π)1/p′

X

k=n

rk rn

‘p−

1 p Z

Γk

|φek(t)|pds

‘1/p rn1/p′ ≤

≤2(2π)1/p′Cp ∞

X

k=n

rk1/p′ Z

Γk

|ϕk(t)|pds

‘1/p .

Next, changing the order of summation and using the H¨older inequality, we can write

Z

Γ

|S2(t)|dt=

X

n=1

Z

Γn

|S2(t)|ds≤2(2π)1/p ′

Cp ∞

X

n=1

X

k=n

rk1/p′×

א

Z

Γk

|ϕk(t)|pds

‘1/p

= 2(2π)1/p′

Cp ∞

X

n=1

nr1/p′

n

Z

Γn

|ϕn(t)|pds

‘1/p

≤2(2π)1/p′Cp

X∞

n=1

np′rn

‘1/p′hX∞

n=1

Z

Γn

|ϕn(t)|pds

‘1p·pi1p

=

= 2(2π)1/p′Cp

X∞

n=1

np′rn

‘1/p′Z

Γ

|ϕ(t)|pds‘1/p. (16)

It follows from (14),(15) and (16) that if conditions (B) and (C) are fulfilled forσ=p′, then the operatorS

Γ is bounded fromLp(Γ) toL1(Γ).

Let us now consider the general case. Let conditions (B) and (C) be fulfilled for p > q ≥1 and σ= pq/(p−q). Then, by virtue of the above arguments, SΓ is continuous from Lσ′(Γ), σ′ = σ−σ1, to L1(Γ). But then

SΓ is also continuous fromL∞(Γ) toLσ(Γ) (L∞(Γ) is a class of functions

essentially bounded on Γ). This statement can be proved by the well-known method using the Riesz equality

Z

Γ

ϕSΓψ dt=−

Z

Γ

ψSΓϕ dt, ϕ∈Lσ′(Γ), ψ∈L∞(Γ),

whose validity in our case can be immediately verified.

Further, sinceSΓis bounded fromLσ′(Γ) andL∞(Γ) toL1(Γ) andLσ(Γ),

respectively, according to Riesz–Torin’s theorem on interpolation of linear operators (see, e.g., [14], p.144), it follows thatSΓ is bounded fromLα(Γ),

σ′ α≤ ∞, to L

ασ/(α+σ)(Γ). Letting α=p, we get thatSΓ is bounded

fromLp(Γ) to Lq(Γ).

6. Let us now show that (C) and consequently (B) follow from (A). Let for a pair pand q, p > q ≥1, σ =pq/(p−q), the series P∞

(8)

diverge. Then, according to the above-mentioned Abel–Dini’s theorem, if ωn = (Pnk=1kσrk)−1/q, then

X

n=1

ωnpnσrn= ∞

X

n=1

r n

Sp/qn

<∞, Sn= n

X

k=1

kσrk,

X

n=1

ωq

nnσrn= ∞

X

n=1

r n

Sn

=∞.

Consider, on Γ, the function ϕ(t) = ωnnσ/p for t ∈ Γn, n = 1,2, . . ..

Then Z

Γ

|ϕ(t)|p|dt|=

X

n=1

Z

Γn

|ϕ(t)|pds= 2π

X

n=1

ωnpnσrn<∞. (17)

Next, by equality (14) we have

SΓ(ϕ)(t) = 2

n−1

X

k=1

ωkkσ/p+ωnnσ/p> n

X

k=1

ωkkσ/p

fort∈Γn. Consequently,

Z

Γ

|SΓ(ϕ)(t)|q|dt|=

X

n=1

Z

Γn

|SΓ(ϕ)(t)|q|dt|>2π

X

n=1

Xn

k=1

ωkkσ/p

‘q rn>

>2π

X

n=1

ωq n

Xn

k=1

kσ/p‘qr n≥2π

X

n=1

ωq nn

(σ p+1)qr

n =

= 2π

X

n=1

ωqnnσrn =∞. (18)

It follows from (17) and (18) that if condition (C) is not fulfilled for p > q≥1, then there exists a functionϕ∈Lp(Γ) for whichSΓ(ϕ)6∈Lq(Γ).

Consequently, for condition (A) to be fulfilled, it is necessary that condition (C) (and hence (B)) be fulfilled.

References

1. B.V. Khvedelidze, Method of Cauchy type integrals in discontinuous boundary value problems of the theory of holomorphic functions of one com-plex variable. (Russian)Current problems of mathematics, v. 7 (Russian),

5-162. Itogi nauki i tekhniki. Akad. Nauk SSSR, Vsesoyuzn. Inst. Nauchn. i Tekhn. Inform. Moscow,1975.

(9)

mathematics. Fundamental directions, v.15 (Russian)197-292, Itogi nauki i tekhniki. Akad. Nauk SSSR, Vsesoyuzn. Inst. Nauchn. i Tekhn. Inform. Moscow,1987.

3. ”—-”, Methods of the theory of singular integrals, II. Littlewood– Paley theory and its applications. (Russian) Current problems of math-ematics. Fundamental directions, v.42 (Russian), 105-198, Itogi nauki i tekhniki. Akad. Nauk SSSR, Vsesoyuzn. Inst. Nauchn. i Tekhn. Inform. Moscow,1989.

4. A.P. Calderon, Cauchy integrals on Lipschitz curves and related op-erators. Proc. Nat. Acad. Sci. USA,1977, 4, 1324-1327.

5. G. David, L’integrale de Cauchy sur le courbes rectifiables. Prepubli-cations Univ. Paris–Sud; Dept. Math. 82 T 05(1982).

6. V.A. Paatashvili and G.A. Khuskivadze, On boundedness of Cauchy operator in Lebesgue spaces in the case of non-smooth contours. Trudy Tbiliss. Mat. Inst. Razmadze,69(1982), 93-107.

7. V.P. Havin, Boundary properties of Cauchy type integrals and har-monically conjugate functions in domains with rectifiable boundary. (Rus-sian)Mat. Sbornik68(110)(1965), No. 4, 499-517.

8. G.A. Khuskivadze, On singular Cauchy integral and on Cauchy type integral. (Russian)Trudy Tbiliss. Mat. Inst. Razmadze,53(1976), 75-86.

9. T.S. Salimov, Singular Cauchy integral in spacesLp,p≥1. (Russian)

Dokl. Akad. Nauk Azerbaijan SSR,XI(1985), No. 3, 3-5.

10. A.V. Aizen˘stat, On singular integral equations on a countable set of closed curves imbedded in one another. (Russian)Dokl. Akad. Nauk SSSR,

232(1977), No. 5, 985-988.

11. V.A. Paatashvili and G.A. Khuskivadze, On singular Cauchy opera-tor on a countable set of concentric circles. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze,69(1982), 80-92.

12. G.M. Fichtenholz, A course of differential and integral calculus, v.II. (Russian)Fizmatgiz, Moscow,1959.

13. P.L. Duren, Theory ofHp spaces. Academic Press, New York and

London,1970.

14. A. Zygmund, Trigonometric series, v.2. (Translated into Russian)

Mir, Moscow,1965; English original: Cambridge,1989. (Received 28.04.1993) Authors’ address:

Referensi

Dokumen terkait

04/SPVS.RMS.PNTN.BLKNG/DNG.MRK-17 tanggal 25 April 2017 terdapat 7 (tujuh) penyedia yang telah mendaftar/mengunduh Dokumen Pemilihan maka, dengan ini Panitia mengumumkan bahwa

Evaluasi harga dilakukan kepada penawaran yang memenuhi persyaratan administrasi dan persyaratan teknis. Evalusi dilakukan dengan koreksi aritmatik dengan hasil evaluasi

Ternate Utara Kota Ternate Provinsi Maluku Utara, dengan ini mengumumkan peringkat teknis seleksi umum “JASA KONSULTANSI TINJSU ULANG RTT BANDARA KUABANG KAO ”

Sehingga penerapan teori semiotika khususnya semiotika Roland Barthes akan sangat berguna dalam penelitian terhadap iklan televisi Gulaku versi lemon ini, karena pengkajian

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Paket Pekerjaan Konstruksi Pembangunan Pos Jaga dan Pagar Keliling LPKS ABH di Kab.Nganjuk, Provinsi Jawa Timur

atas penghasilan tersebut di bawah ini dengan nama dan dalam bentuk apa pun yang dibayarkan, disediakan untuk dibayarkan, atau telah jatuh tempo pembayarannya oleh

[r]

[r]