• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:GMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:GMJ:"

Copied!
6
0
0

Teks penuh

(1)

BOUNDS FOR THE CHARACTERISTIC FUNCTIONS OF THE SYSTEM OF MONOMIALS IN RANDOM

VARIABLES AND OF ITS TRIGONOMETRIC ANALOGUE

T. SHERVASHIDZE

Abstract. Using a multidimensional analogue of Vinogradov’s

in-equality for a trigonometric integral, the upper bounds are constructed for the moduli of the characteristic functions both of the system of monomials in components of a random vector with an absolutely con-tinuous distribution inRs

and of the system

(cosj1πξ1· · ·cosjsπξs, 0≤j1, . . . , js≤k, j1+· · ·+js≥1), where (ξ1, . . . , ξs) is uniformly distributed in [0,1]

s .

Introduction. This note continues the series of studies [1–3] carried out on the initiative of Yu. V. Prokhorov and dealing with estimates of the characteristic functions (c.f.) of degenerate multidimensional distributions of the form

Œ Œ Œ Œ Z

Rs

exp{i(t, ϕ(x))}p(x)dx

Œ Œ Œ

Œ≤C|t|−α for |t|> t0, (1)

where ϕ : Rs Rk, s < k, t Rk; p(x) is the distribution density; C, α, andt0 are positive constants. In what follows we shall use the notation

I(t;ϕ(x), p(x)) for the integral from (1) and omit the condition|t|> t0.

When s = 1, Sadikova has shown in [1] that for ϕ(x) = ϕ0(x) =

(x, x2, . . . , xk) one can takeα= (1 + 1/k)−(k−1)/k! if the integrals of|p(x)|

and|x|k−1p(x) are finite. Her method is based on van der Corput’s lemma

whose generalization allowed Yurinskii to assert that “for decreasing of the c.f. like a negative power of the argument modulus it is, roughly speaking, sufficient that the surface carrying the distribution have no tangencies of an

1991Mathematics Subject Classification. 60E10.

Key words and phrases. Degenerate multidimensional distributions, bounds for char-acteristic functions, multidimensional analogue of Vinogradov’s inequality.

579

(2)

infinitely high order with (k−1)-dimensional hyperplanes, and that the sur-face density of the distribution be bounded, satisfy the Lipschitz condition inL1-norm, and have several moments” (see [2]).

The author’s paper [3] deals with the cases= 1, whereϕ(x) =ϕ1(x) =

(cosπx, . . . ,coskπx), p(x) = 11[0,1](x), where 11A(x) is the indicator of the

set A. Using Vinogradov’s famous inequality for a trigonometric integral [4], it is shown in [3] that in that case α = 1/2k (for k = 1 it can be deduced from [2] as well). An order with respect to |t| turned out to be exact (because of the exactness of Vinogradov’s inequality), i.e., in some directions ofRk the c.f. behaves like|t|−1/2k for|t| → ∞. Concomitantly,

we obtained bounds withα= 1/kfor the caseϕ(x) =ϕ0(x) assuming that

R

R1max(1,|x|)|p′(x)|dx < ∞ for the density p(x); for analogous estimates

see [5].

ϕ0(x) arises in problems connected with behavior of the joint distribution

of sample moments. Forϕ1(x) the inequality from [3] turns out important

in proving the fact that the deviation of the distribution function ofω2-test

statistic from the limiting one has order n−1 (see [6], cf. [7]).

1. Multidimensional Analogue of Vinogradov’s Inequality. The Results. Letx= (x1, . . . , xs)∈Rsand the the multiindexj= (j1, . . . , js)6= 0= (0, . . . ,0)∈Rs vary inJ

k,s={0,1, . . . , k}s\ {0}. Consider the system

of monomials insreal variablesϕ(s)0 (x) =

€

xj1

1 · · ·xjss,j∈Jk,s



and also the corresponding system of cosines products

ϕ(s)1 (x) =

€

cosj1πx1· · ·cosjsπxs, j∈Jk,s



.

Denoteτ =τ(t) = maxˆ|tj|:j∈Jk,s

‰

, t= (tj,j∈Jk,s)∈R(k+1)

s1

. Forϕ(sj (x),j= 0,1, inequalities of form (1), which can be used to study distributions of a system of mixed sample moments and other multivariate statistics, can be derived by the following multidimensional analogue of Vinogradov’s inequality [8, p. 39] written for our convenience in the form

Œ

ŒI(t;ϕ(s)0 (x),11[0,1]s(x)

Œ

Œ32s(2π)1/kτ−1/klns−1(2 +τ /2π); (2)

note that by [8, p. 41] we have forγ >1 that Œ

Œ Œ Œ Z

[0,1]s

exp{iγxk

1· · ·xks}dx

Œ Œ Œ

Œ≥[2πks(s−1)!]−1(2π)1/kγ−1/klns−1

γ

2π.

By virtue of the fact that the inequality τ(et) ≥ Qsj=1

‚

min(1,|yj|)ƒ k

τ

holds fory = (y1, . . . , ys)∈Rs and foret = (y1j1· · ·ysjstj, j∈Jk,s) and the

function on the right-hand side of (2) decreases with respect toτ, we have

|Iy(t)| ≤ s

Y

j=1

(3)

for

Iy(t) =

Z y1

0 · · ·

Z ys

0

exp{i(t, ϕ(s)0 (x))}dx.

LetD= [a1, b1]×· · ·×[as, bs] with positivehj =bj−aj,j= 1, . . . , s;

de-noteD(j1, . . . , jr) = [aj1, bj1]×· · ·×[ajr, bjr] andDc(j1. . . jr) =

Q

{[aj, bj] :

j= 1, . . . , s,j6=j1, . . . , jr}for 1≤j1<· · ·< jr≤s, 1< r < s. The

nota-tionx(j1, . . . , js) andxc(j1. . . jr) forx∈Rs is evident. Denote further by

V,Vc(j1. . . jr) the sets of vertices of the parallelepipedsD,Dc(j1. . . jr),

re-spectively, and Π(y) =

r

Q

j=1

max(1,|yj|) fory= (y1, . . . , yr)∈Rr, 1≤r≤s.

Proposition 1. If a random vectorξ has the density

uD(x) = (h1· · ·hs) −111

D(x),

then for the c.f. ofϕ(s)0 (ξ) the inequality

Œ

ŒI(t;ϕ(s)0 (x), uD(x))

Œ

ŒΠ(h−11, . . . , hs−1)32s(2π)1/kτ−1/kln s−1

(2 +τ /2π)

holds.

To proceed to the general case with densityp(x) concentrated onD one should use

Proposition 2. If forx∈Da functionp(x)≥0is continuous inDand has, in D, continuous partial derivatives pi =pxi, pij =pxixj, . . . , p1···s= px1...xs, then the estimate

Œ

ŒI(t;ϕ(s)0 (x),11D(x)p(x))

Œ

ŒC32s(2π)1/kτ−1/klns−1(2 +τ /2π)

holds, whereC=C0+· · ·+Cswith

Cr=

X

1≤j1<···<jr≤s

X

xc(j1...jr)∈Vc(j1...jr)

Π(xc(j1. . . jr))×

× Z

D(j1...jr)

Π(x(j1. . . jr))pj1...jr(x)dx(j1. . . jr), 1≤r < s,

C0=

X

x∈V

Π(x)p(x), Cs=

Z

D

Π(x)p1...s(x)dx.

If the above functions are unbounded or discontinuous in D or D is unbounded, then the estimate will demand obvious changes (conditions of the existence of some limits and integrals).

Since|t| ≤[(k+ 1)s1]1/2τ fortR(k+1)s1

, Propositions 1–2 can be expressed in terms of|t|.

Let now Tr(x) = r

P

j=0

arjxj, x ∈ R1, be a Chebyshev polynomial of

the first kind andAk be the matrix with rows (ar0, . . . , arr,0, . . . ,0), r=

(4)

For a matrix B = (bpq)p,q=0,...,k denote ρ(B) = max{P q |

bpq| : p =

0, . . . , k}andρk=ρ((A−k1)′) (′means transposition). Letλk=λmin(AkA′k)

be the least eigenvalue of the matrixAkA′k.

Proposition 3. The following inequalities hold:

(a)|I(t;ϕ(s)1 (x),11[0,1]s(x))| ≤2 9ks+1 k(s+1)π

2ks−1 k(s+1)ss+11 ×

×ρ s k(s+1)

k τ

− 1

k(s+1)ln s−1

s+1(2 +τ /2πρs

k);

(b)|I(t;ϕ(s)1 (x),11[0,1]s(x))| ≤2 9ks+1 k(s+1)π−

2ks−1

k(s+1)ss+11 [(k+ 1)s−1] 1 2k(s+1)×

×λ− 1 2k(s+1)

k |t|

− 1

k(s+1)ln s−1 s+1



2 + |t|λ

s/2 k

2π[(k+1)s1]1/2

‘

.

2. Proofs. Proposition 1 is evident.

Proof of Proposition 2. If the functions u : Rs C and v : Rs C

are continuous in D along with the partial derivatives uxi, vxi, uxixj, vxixj, . . . , ux1...xs,vx1...xs, then

Z

D

uvx1...xsdx= ∆

b a(uv)−

X

1≤i≤s

∆bc(i)

ac(i)

Z

D(i)

vuxidx(i) +

+ X

1≤i<j≤s

∆bc(ij)

ac(ij)

Z

D(ij)

vuxixjdx(ij)− · · ·+ (−1)

sZ

D

vux1...xsdx.

Substituting hereu=p(x) andv =Ix(t), passing to moduli, and applying

(3), we complete the proof.

Proof of Proposition 3. By the change of variables xj = arccosπyj, j =

1, . . . , s, we obtain

I(t;ϕ(s)1 (x),11(0,1)s(x)) =I(t;ϕe(s)0 (y), q(y)), (4)

where

q(y) =π−s

s

Y

j=1

(1−yj2)−1/211(−1,1)s(y),

e

ϕ(s)0 (y) = (Tj1(y1)· · ·Tjs(ys), j∈Jk,s).

Apply Proposition 2 for a cube [−(1−ε),1−ε]s with 0< ε <1. Since

(1−(1−ε)2)1/2< ε−1/2 and 1R−ε 0

x(1−x2)−3/2dx < ε−1/2, we have

Cr<(2/π)s

’

s r

“

(5)

The remaining part of|I(t;ϕ(s)0 (y), q(y)|is less than 1−(1−z)s< szwith

z= 2 π(

π

2 −arcsin(1−ε))≤ 4 π

ε. Finally, we have

|I(t;ϕ(y)0 (s), q(y))| ≤

4

π

‘s

32s(2π)1/kτ−1/klns−1(2 +τ /2π)ε−s/2+4s

π

ε,

whence, minimizing with respect toε, we get

|I(t;ϕ(s)0 (y), q(y))| ≤2k9ks(s+1)+1π− 2ks−1 k(s+1)ss+11 τ−

1 k(s+1)ln

s−1

s+1(2 +τ /2π). (5)

Further,

(t,ϕe(s)0 (y)) =

X

j∈Jk,s

tjTj1(y1)· · ·Tjs(ys) = (t

0)A(s) k (1, ϕ

(s) 0 (y))

with A(s)k = Ak⊗ · · · ⊗Ak

| {z }

stimes

, A(1)k = Ak, where ⊗ denotes the Kronecker

product, t0 = (0, t) and ϕ(s)0 (y) and t are understood as row vectors with

lexicographically arranged components. From (4) we now obtain

I(t;ϕ(s)1 (x),11(0,1)s(x)) =I(A(s) ′

k t

0; (1, ϕ(s)

0 (y)), q(y)). (6)

Sinceρ(B1⊗B2) =ρ(B1)ρ(B2) for matricesB1 andB2, according to [9,

Theorem 6.5.1], τ((A(s)k )′t0) τ /ρ((A(s)′

k )−1) ≥τ /ρsk, which by virtue of

(5) and (6) leads to (a).

To prove (b), note that since A(s)k (A(s)k )′ = (A

kA′k)(s) (see [10]) and for

two positive definite matricesλmin(B1⊗B2) =λmin(B1)λmin(B2) (see, e.g.,

Supplement to [11]), we obtain|A(s)k ′t0|= ((t0)A(s) k (A

(s)

k )′(t0))1/2≥λ s/2 k |t|

andτ(A(s)k ′t0)[(k+ 1)s1]−1/2λs/2 k |t|.

Other applications of (2) to obtain bounds for c.f. can be found in [12]. Inequalities similar to the general ones from [2] can be found in [13].

Based on the theory of singularities and asymptotic expansions of oscil-lating integrals [14] one can study the exactness properties of bounds (a) and (b) with respect to|t|andτ for the case s >1, too.

Acknowledgements

The results presented here were reported at the Japan–Russia Sympo-sium on Probability Theory and Mathematical Statistics (Tokyo, 1995). Having received the invitation from the Japanese and Russian Organizing Committees, the author expresses his thanks to both, the first of which funded his travel and participation.

(6)

References

1. S. M. Sadikova, Some inequalities for characteristic functions. (Rus-sian)Teor. Veroyatnost. i Primenen. XI(1966), No. 3, 500–506.

2. V. V. Yurinskii, Bounds for characteristic functions of certain de-generate multidimensional distributions. (Russian) Teor. Veroyatnost. i

Primenen. XVII(1972), No. 1, 99–110.

3. T. L. Shervashidze, Inequality for the characteristic function of one degenerate multivariate distribution. (Russian)Bull. Acad. Sci. Georgian SSR84(1976), No. 2, 277–280.

4. I. M. Vinogradov, The method of trigonometric sums in number the-ory. (Russian)Nauka, Moscow,1971.

5. I. S. Borisov, Bounds for characteristic functions of additive function-als of order statistics. Siberian Adv. Math. 5(1995), 1–15.

6 Yu. V. Borovskikh, Asymptotics for ω2 statistics. (Russian) Dokl.

Akad. Nauk SSSR264(1982), 14–18.

7. V. V. Sazonov, Onω2 criterion. Sankhya, Ser. A30(1968), 205–210.

8. G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, The theory of multiple trigonometric sums. (Russian)Nauka, Moscow,1987.

9. P. Lancaster, Theory of matrices. Academic Press, New York–London,

1969.

10. B. L. van der Waerden, Algebra 2. Springer-Verlag, Berlin,1967. 11. T. W. Anderson, An introduction to multivariate statistical analysis.

Chapman&Hall, New York etc., 1958.

12. F. G¨otze, Yu. V. Prokhorov, and V. V. Ulyanov, Bounds for charac-teristic functions of polynomials in asymptotically normal variables. (Rus-sian)Uspekhi Mat. Nauk51(1996), No. 2(308), 3–26.

13. A. N. Varchenko and S. A. Molchanov, Application of the stationary phase method in limit theorems for Markov chains. (Russian)Dokl. Akad.

Nauk SSSR233(1977), No. 1, 11–14.

14. V. I. Arnold, A. N. Varchenko, and S. M. Gussein-Zadeh, Singu-larities of differentiable mappings. 2. Monodromy and asymptotics of the integrals. (Russian)Nauka, Moscow,1984.

(Received 09.06.1995; revised 10.04.1996)

Authors address:

Referensi

Dokumen terkait

Bukti-bukti empiris yang diperoleh maka dapat disimpulkan bahwa: 1) Pada pengujian asumsi klasik dapat disimpulkan bahwa model regresi telah bebas dari

POKJA PEKERJAAN SUPERVISI FASILITAS PELABUHAN BATANG TA.2017 pada Unit Layanan Pengadaan (ULP) Kantor KSOP Kelas I Tanjung Emas telah melaksanakan Evaluasi Penawaran File I

[r]

Paket pengadaan ini terbuka untuk penyedia barang/jasa yang teregistrasi pada Layanan Pengadaan Secara Elektronik (LPSE) dan memenuhi persyaratan yang tercantum

Pada hari ini Kamis tanggal Dua belas bulan Mei tahun Dua ribu enam belas, kami Pokja Pengadaan Barang BBRVBD Cibinong ULP Kementerian Sosial RI sehubungan

100 Perbandingan Tingkat Kecemasan Primigravida dan Multigravida Dalam Menghadapi Persalinan Di Wilayah Kerja Puskesmas Wirobrajan.. Comparison of Anxiety Level Primigravida

Penelitian menggunakan tikus putih jantan berumur 3 bulan, berat 170-214 gram, dibagi 6 kelompok yaitu kelompok I kontrol, kelompok II (induksi dan dosis kombinasi ekstrak daun

Tikus yang diberi pakan tinggi lemak kadar IL-6 dalam serum lebih tinggi dibandingkan dengan kelompok yang diberi pakan normal.. Tikus yang diberi pakan tinggi lemak