• Tidak ada hasil yang ditemukan

andrica_piticari1. 87KB Jun 04 2011 12:08:21 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "andrica_piticari1. 87KB Jun 04 2011 12:08:21 AM"

Copied!
5
0
0

Teks penuh

(1)

Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

ON A CLASS OF SEQUENCES DEFINED BY USING RIEMANN INTEGRAL

Dorin Andrica and Mihari Piticari

Abstract.The main result shows that if f : [1,+)Ris a continuous

function such that lim

x→∞xf(x) exists and it is finite, then lim

n→∞n Z a

1

f(xn)dx= Z +

1

f(x) x dx, for any a >1. Two applications are given.

2000 Mathematical Subject Classification. 26A42, 42A16.

1.Introduction

There are many important classes of sequences defined by using Riemann integral. We mention here only one which is called the Riemann-Lebesgue Lemma: Let f : [a, b] R be a continuous function, where 0 a < b. Suppose the function g : [0,)R to be continuous and T-periodic. Then

lim

n→∞ Z b

a f(x)g(nx)dx=

1 T

Z T

0 g(x)dx

Z b

a f(x)dx. (1)

For the proof we refer to [4] (in special case a= 0, b =T) and [5]. In the paper [1] we proved that a similar relation as (1) holds for all continuous and bounded functionsg : [0,)R of finite Cesaro mean.

In this note we investigate another class of such sequences, i.e. defined by nRa

1 f(xn)dx, where f : [1,+∞)→R is a continuous function and a > 1 is a

fixed real number.

2.The main result

Our main result is the following.

Theorem.Letf : [1,+)Rbe a continuous function such that lim

x→∞xf(x) exists and it is finite. Then, the improper integral R

1

f(x)

(2)

lim

n→∞n Z a

1 f(x

n)dx=Z ∞

1

f(x)

x dx, (2)

for any a >1.

Proof. Consider lim

x→∞xf(x) = l, where l ∈ R. Then, we can find a real number x0 >1 such that for any x≥x0 we have

l1 x2 ≤

f(x) x ≤

l+ 1 x2 .

Let us choose a real number m >0 satisfying the inequality l1 +m 0. Then, for any xx0 we have

0 l−1 +m x2 ≤

f(x) x +

m x2 ≤

l+ 1 +m

x2 (3)

Define the function J : [1,+)R by

J(t) = Z t

1

f(x) x +

m x2

! dx.

The function J is differentiable and we have J′(t) = f(t)

t + m t2 ≥0

for any t x0. Therefore J is an increasing function on interval [x0,+∞).

Moreover, by using the last inequality in (3) we get by integration

J(t) =Rx0

1

f(x)

x + m x2

dx+Rt

x0

f(x)

x + m x2

dx

≤Rx0

1

f(x)

x + m x2

dx+ (l+ 1 +m)Rt

x0

dx x2

≤Rx0

1

f(x)

x + m x2

dx+ l+1+x0m,

for any tx0. It follows that lim

t→∞J(t) is finite. But, we have J(t) =

Z t

1

f(x)

x dx+m

11 t

(3)

hence

lim

t→∞ Z t

1

f(x)

x dx= limt→∞J(t)−m, which is finite.

For a fixed real number a >1, denote J(t) =t

Z a

1

f(xt)dxandU(t) = Z at

1

f(x) x dx.

Because function g : [1,+) R, g(x) = xf(x), is continuous and lim

x→∞g(x) is finite, it follows that g is bounded, i.e. we can find M > 0 with the property

|g(x)| ≤M, x[1,) (4)

Changing the variable x by x=ut, we getdx =tut−1du, hence

U(t) = t Z a

1

f(ut)

u du (5)

From (4) and (5) we obtain

|J(t)U(t)|=t

Ra

1 f(xt)dx−

Ra

1

f(xt

)

x dx

= =t

Ra

1

f(xt) f(xt

)

x

dx

≤t Ra

1 |f(xt)|x−x1dx=

=tRa

1 xt|f(xt)|xxt+1−1dx≤tM

Ra

1 xxt+1−1dx=

=M th11 −t(a−

t+11)1

t(1−a− t)i

, t >0

(6)

Because

lim

t→∞ 1

1t(a

−t+11) 1 t(1−a

−t)

= 0, from (6) it follows that

lim

t→∞J(t) = limt→∞U(t), i.e. we have

lim

t→∞ Z t

1

f(x)

x dx= limt→∞ Z a

1 f(x

t)dt

and the desired result follows.

Remark. The relation (2) is a natural reformulation of the first part of

(4)

3.Two applications

Application 1. Let us evaluate

lim

n→∞n Z a

1

dx

xn+k, (7)

where k >0, a >1 are fixed real numbers.

Using the result in Theorem for function f(x) = 1

x+k, x≥1, we obtain

lim

n→∞n Z a

1

dx xn+k =

Z

1

dx x(x+k) =

1 kln

x x+k

1 =

1

kln(k+ 1). Note that for k= 1 we get

lim

n→∞n Z a

1

dx

xn+ 1 = ln 2,

i.e. the second part of Problem 5.183 in [3].

Application 2. Let us evaluate

lim

n→∞n Z 1

0

xn−2

x2n+xn+ 1dx, (8)

which is a problem proposed by D. Popa to Mathematical Regional Contest ”Grigore Moisil”, 2002 (see [2] for details).

Fix a(0,1) and we can write

n Z 1

0

xn−2

x2n+xn+ 1dx=n

Z a

0

xn−2

x2n+xn+ 1dx+n

Z 1

a

xn−2

x2n+xn+ 1dx.

For the first term in the right side we have 0n

Z a

0

xn−2

x2n+xn+ 1dx ≤n

Z a

0

xn−2dx= na

n−1

n1 →0. For the second term we obtain

n Z 1

a

xn−2

x2n+xn+ 1dx=n

Z 1

a

xndx

x2(x2n+xn+ 1) =n

Z 1/a

1

tn

(5)

The function f(t) = t

t2+t+1 satisfies lim

t→∞tf(t) = 1 and we have Z

1

f(t)

t dt = limt→∞ Z

1

dt t2+t+ 1 =

2

3arctg t+12

3 2

1 =

π 3√3 Applying the result in Theorem it follows that

lim

n→∞n Z 1

0

xn−2

x2n+xn+ 1dx=

π 3√3.

References

[1] Andrica, D., Piticari, M.,An extension of the Riemann-Lebesgue lemma and some applications, Proc. International Conf. on Theory and Applications of Mathematics and Informatics (ICTAMI 2004), Thessaloniki, Acta Univer-sitatis Apulensis, No.8(2004), 26-39.

[2] Andrica, D., Berinde, V., a.o.,Mathematical Regional Contest ”Grigore Moisil” (Romanian), Cub Press 22, 2006.

[3] B˘atinet¸u-Giurgiu, D.M., a.o.,Romanian National Mathematical Olympiads for High Schools 1954-2003 (Romanian), Editura Enciclopedic˘a, Bucure¸sti, 2004.

[4] Dumitrel, F., Problems in Mathematical Analysis (Romanian), Editura Scribul, 2002.

[5] Siret¸chi, Gh., Mathematical Analysis II. Advanced Problems in Differ-ential and Integral Calculus, (Romanian), University of Bucharest, 1982.

Dorin Andrica

”Babe¸s-Bolyai” University

Faculty of Mathematics and Computer Science Cluj-Napoca, Romania

E-mail address: dandrica@math.ubbcluj.ro

Mihai Piticari

Referensi

Dokumen terkait

Setelah diumumkannya Pemenang pengadaan ini, maka kepada Peserta/Penyedia barang/jasa berkeberatan atas pengumuman ini dapat menyampaikan sanggahan secara

Berdasarkan Hasil Penetapan Pemenang Nomor : PL.105/ 2 / 11 /DNG.Trk-2017 tanggal 03 April 2017 tersebut diatas, Pelelangan Pekerjaan Konsruksi pekerjaan Fasilitas Penunjang

Pokja Pemilihan Penyedia Barang/ Jasa Pekerjaan pada Satker Peningkatan Keselamatan Lalu Lintas Angkutan Laut Pusat akan melaksanakan Pelelangan Sederhana

Pengontrol proposional memiliki keluaran yang sebanding atau proposional dengan besarnya sinyal kesalahan (selisih antara besaran yang di inginkan dengan harga aktualnya)..

Pengujian hipotesis terakhir, hasil penelitian menunjukkan bahwa ketidakramahan lingkungan merupakan variabel yang memoderasi pengaruh strategi kepemimpinan

tembusan secara offline yang ditujukan kepada Pejabat Pembuat Komitmen, Kuasa Pengguna Anggaran Satuan Kerja Perhubungan Darat Provinsi Daerah Istimewa Yogyakarta

Apabila pada saat pembuktian kualifikasi ditemukan pemalsuan data, maka perusahaan tersebut akan diberi sanksi dengan ketentuan hukum yang berlaku dan jika tidak

Table 38 shows that majority of the participants who believe that the images posted on Facebook influenced their presiden- tial preference also believed that the social media is