• Tidak ada hasil yang ditemukan

EIGENVALUES VARIATION OF THE P-LAPLACIAN UNDER THE RICCI FLOW ON SM | Azami | Journal of the Indonesian Mathematical Society 215 858 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "EIGENVALUES VARIATION OF THE P-LAPLACIAN UNDER THE RICCI FLOW ON SM | Azami | Journal of the Indonesian Mathematical Society 215 858 1 PB"

Copied!
20
0
0

Teks penuh

(1)

Vol. 22, No. 2 (2016), pp. 157–176.

EIGENVALUES VARIATION OF THE P-LAPLACIAN

UNDER THE RICCI FLOW ON SM

Shahroud Azami

1

and Asadollah Razavi

2

1Department of Mathematics, Faculty of Science, Imam khomeini

international university, Qazvin, Iran azami@sci.ikiu.ac.ir

2Department of Mathematics and Computer Science, Amirkabir university

of technology,Tehran,Iran

arazavi@aut.ac.ir

Abstract.Let (M, F) be a compact Finsler manifold. Studying the eigenvalues and eigenfunctions for the linear and nonlinear geometric operators is a known problem. In this paper we will consider the eigenvalue problem for thep-laplace operator for Sasakian metric acting on the space of functions onSM. We find the first variation formula for the eigenvalues ofp-Laplacian onSMevolving by the Ricci flow onM and give some examples.

Key words and Phrases: Ricci flow, Finsler manifold,p-Laplace operator

Abstrak.Misalkan (M, F) adalah suatu manifold Finsler kompak. Sejauh ini telah dipelajari fungsi eigen dan nilai eigen untuk operator-operator geometri linier dan non linier. Dalam paper ini kami akan memperhatikan masalah nilai eigen untuk operatorp-Laplace untuk metrik Sasakian yang berlaku pada ruang fungsi diSM. Kami memperoleh rumus variasi pertama dan memberikan beberapa contoh untuk nilai eigen darip-Laplacian padaSMyang melibatkan aliran Ricci padaM.

Kata kunci: aliran Ricci, manifold Finsler, operatorp-Laplace

1. Introduction

For a compact Finsler manifold (M, F), studying the eigenvalues of geometric operators plays a powerful role in geometric analysis. In the classical theory of the Laplace or p-Laplace equation several main parts of mathematics are joined in a fruitful way: Calculus of Variation, Partial Differential Equation, Potential Theory,

2000 Mathematics Subject Classification: Primary 58C40; Secondary 53C44. Received: 22-09-2015, revised: 14-11-2016, accepted: 14-11-2016.

(2)

158

Analytic Function. Recently, there are many mathematicians who have investigated properties of the eigenvalues ofp-Laplacian on Finsler manifolds and Riemannian manifolds to estimate the spectrum in terms of the other geometric quantities of the manifold. (see [3, 4, 9, 11, 18, 20]).

Also, geometric flows have been a topic of active research interest in math-ematics and other sciences (see [5, 8, 10, 12, 13, 15, 16]). Hamilton’s Ricci flow ( [6]) is the best known example of a geometric evolution equation. The Ricci flow is related to dynamical systems in the infinite-dimensional space of all metrics on a given manifold. One of the aims of such flows is to obtain metrics with special properties. Special cases arise when the metric is invariant under a group of trans-formations and this property is preserved by the flow.

Let M be a manifold with a Finsler metricg0 (or F0), the family g(t) (or Ft) of

Finsler metrics on M is called an un-normalized Ricci flow when it satisfies the equations

∂logF

∂t =−Ric, (1)

with the initial condition

F(0) =F0

or equivalently satisfies the equations

∂gij

∂t =−2Ricij, g(0) =g0 (2) whereRicis the Ricci tensor of g(t),Ricij = (21F2Ric)yiyj. In fact Ricci flow is a system of partial differential equations of parabolic type which was introduced by Hamilton on Riemannian manifolds for the first time in 1982 and Bao (see [2, 17]) studied Ricci flow equation in Finsler manifold. The Ricci flow has been proved to be a very useful tool to improve metrics in Finsler geometry, whenM is compact. One often considers the normalized Ricci flow

∂logF

∂t =−Ric+ 1 vol(SM)

Z

SM

Ric dv, F(0) =F0. (3)

or

∂gij

∂t =−2Ricij+ 2 vol(SM)

Z

SM

Ric dvgij, g(0) =g0 (4)

(3)

2. Preliminaries

Let M be an n-dimensional C∞ manifold. For a point

x ∈ M, denote by TxM the tangent space atx∈M,and byT M =∪x∈MTxM the tangent bundle of

M. Any element ofT M has the form (x, y), wherex∈M andy∈TxM.

Definition 2.1. A Finsler metric on a manifoldM is a functionF :T M0→[0,∞)

which has the following properties:

(i): F(x, αy) =αF(x, y), ∀α >0; (ii): F(x, y)isC∞ on

T M0 ;

(iii): For any non-zero tangent vectory∈TxM, the associated quadratic form

gy :TxM ×TxM →Ron T M is an inner product, where

gy(u, v) :=

1 2

∂2 ∂s∂r

F2(x, y+su+rv)

s=r=0 .

The pair(M, F)is called a Finsler manifold.

Let us denote bySxM the set consisting of all rays [y] :={λy|λ >0}, where

y∈TxM0. The Sphere bundle ofM, i.e. SM, is the union of SxM’s :

SM=∪

xSxM

SMhas a natural (2n−1)-dimensional manifold structure. We denote the elements ofSM by (x,[y]) wherey∈TxM0. If there is not any confusion we write (x, y) for

(x,[y]). In a local coordinate system xi, yiwe haveg

ij(x, y) =12

∂2F2

∂yi∂yj(x, y) and (gij) := (g

ij)−1. The geodesics ofF are characterized locally by

d2xi

dt2 + 2G

i(x,dx

dt) = 0 where

Gi= 1 4g

il

2∂gjl

∂xk −

∂gjk

∂xl

yjyk. (5)

Definition 2.2. The coefficients of the Riemann curvature Ry=Rikdxi⊗ ∂ ∂xi are

given by

Rik:= 2∂G

i

∂xk −

∂2Gi ∂xj∂yky

j+ 2Gj ∂2Gi

∂yj∂yk −

∂Gi ∂yj

∂Gj

∂yk (6)

andRijk:=1 3

∂Ri j

∂yk −

∂Ri k

∂yj

,Rj kli :=1 3

2Ri k

∂yj∂yl−

∂2Ri l

∂yj∂yk

.

The Ricci scalar function ofF is given byRic:= 1

F2Rii. A companion of the

Ricci scalar is the Ricci tensor

Ricij :=

1

2F 2Ric

yiyj

(4)

160

Definition 2.3. A Finsler metric is said to be an Einstain metric if the Ricci scalar function is a function of xalone,equivalently Ricij =R(x)gij (see [14, 19]).

Definition 2.4. Let (M, F)be a Finsler manifold, the Sasakian metriceg of g on

T M0 is defined as

Remark. The Levi-Civita connection e on T M0 with respect to the Sasakian metricegis locally expressed as follows:

e define the divergencedivX˜ as follows:

(5)

Definition 2.6. According to the above definition, the gradient of a functionf is

˜

∇f =gijδf δxi

δ δxj +F

2 gij∂f

∂yi

∂yj (11)

therefore, the norm of ˜∇f with respect to the Riemannian metriceg is given by

|∇˜f|2=eg(∇ef,∇ef) =gij δf δxi

δf δxj +F

2 gij∂f

∂yi

∂f

∂yj. (12)

Definition 2.7. Let M be a compact Finsler manifold. The Laplace operator of f

on T M is defined as follows:

∆f = gij( ∂ 2f ∂xi∂xj −

∂Grj ∂xi

∂f ∂yr −G

r j

∂2f ∂xi∂yr −G

s i

∂2f ∂ys∂xj +G

r jGsi

∂2f ∂ys∂yr)

+ gijF2 ∂ 2f ∂yi∂yj +g

ij(Ck i j+

1 2R

k ij)

δf δxk −F g

ijFk i j

δf

δxk (13)

− F gijCi jk ∂f ∂yk −F

2gijg

ih(Gj lh −Fj lh)glk

δf δyk.

Definition 2.8. Let M be a compact Finsler manifold. Thep-Laplace operator of

f :SM→R,f ∈W1,p(SM) for1< p < is defined as follows:

△pf = div(|∇ef|p

−2ef) (14)

= |∇ef|p−2f+ (p2)|ef|p−4(Hessf)(ef,ef)

where

(Hessf)(X, Y) =∇e(∇ef)(X, Y) =Y.(X.f)−(∇eYX).f, X, Y ∈ X(SM)

and in local coordinate, we have:

(Hessf)(∂i, ∂j) =∂i∂jf −Γekij∂kf.

Note. Iff is a function of xalone, or suppose that is the lifting of f : M R then

∆f =gij

∂2f ∂xi∂xj −Γe

k ij

∂f ∂xk

(15)

whereΓek

ij is christoffel symbol of ∇e.

2.1. Eigenvalues of the p-Laplacian.

Definition 2.9. Let(Mn, F)be a compact Finsler manifold andf :SM R. We

say thatλis an eigenvalue of thep-Laplace operator whenever

e

g

pf+λ|f|p−2f = 0 (16)

then f is said to be the eigenfunction associated to λ, or equivalently they satisfy in

Z

SM

|∇ef|p−2<ef,eϕ > dv=λZ

SM

|f|p−2f ϕdv ϕW1,2

(6)

162

whereW01,p(SM)is closure of C∞

0 (SM)in SobolevW1,p(SM).

By substitutionϕ=f in (17) we have:

λ= R

SM|∇ef| pdv

R

SM|f|pdv

. (18)

Normalized eigenfunctions are defined as follows: Z

SM

f|f|p−2dv= 0,Z

SM

|f|pdv= 1. (19)

Suppose that (Mn, F

t) is a solution of the Ricci flow on the smooth manifold

(Mn, F0) in the interval [0, T) and

λ(t) = Z

SM

|∇ef(x, y)|pdv

t (20)

defines the evolution of an eigenvalue of P-Laplacian under the variation of Ft

whose eigenfunction associated to λ(t) is normalized.Suppose that for any metric g(t) onMn

Specp(eg) ={0 =λ0(g)≤λ1(g)≤λ2(g)≤...≤λk(g)≤...}

is the spectrum of ∆p =eg∆p. In what follows we assume the existence and C1

-differentiability of the elementsλ(t) and f(t), under a Ricci flow deformationg(t) of a given initial metric. We prove some propositions about the problem of the spectrum variation under a deformation of the metric given by a Ricci flow equation.

3. Variation of λ(t)

In this part, we will give some useful evolution formulas forλ(t) under the Ricci flow. Let (Mn, F

t),t∈[0, T),be a deformation of Finsler metricF0. Assume

that λ(t) is the eigenvalue of ∆p,f =f(x, y, t) satisfies

∆pf+λ|f|p−2f = 0

andRSM|f|pdv= 1, using (12), we have:

d dt|∇ef|

2 =

∂t(g

ij)δf

δxi

δf δxj +g

ij ∂

∂t( δf δxi)

δf δxj

+ gijδf δxi

∂ ∂t(

δf δxj) +

∂(F2) ∂t g

ij∂f

∂yi

∂f

∂yj (21)

+ F2∂ ∂t(g

ij)∂f

∂yi

∂f ∂yj + 2F

2gij∂f ′

∂yi

∂f ∂yj.

where

∂ ∂t(g

ij) =gilgjk ∂

(7)

and

therefore, a substitution of (22) and (23) in (21), implies that:

Proposition 3.1. Let (Mn, F

On the other hand we have

d

Now, we get the following two integrability conditions:

(8)

164

(9)

From the un-normalized Ricci flow, we can then write

Using (26) we obtain

p

We have thus proved the following proposition:

Proposition 3.2. Let (Mn, F

t)) be a solution of the un-normalized Ricci flow on the

smooth Finsler manifold (Mn, F0). Ifλ(t) denotes the evolution of an eigenvalue

under the Ricci flow, then

(10)

166

Note. Letf :SMRbe a lifting off :M R. We have:

dt = p Z

SM

Ric(∇ef,∇ef)|∇ef|p−2 dv

+ Z

SM

(λ|f|p− |ef|p)2gijRic

ij+nRic dv

and in this case, if−2gijRicij+nRicis a constant, then

dλ dt =p

Z

SM

Ric(∇ef,∇ef)|∇ef|p−2 dv.

Corollary 3.3. Let (Mn, F

t)be a solution of the un-normalized Ricci flow on the

smooth Riemannian manifold(Mn, F0), i.e. F

t,F0are Riemannian metric. Ifλ(t)

denotes the evolution of an eigenvalue under Ricci flow, then:

dt = p Z

SM

Ric(∇ef,∇ef)|∇ef|p−2 dv+

Z

SM

R(λ|f|p− |ef|p)dv

−p Z

SM

gij ∂ ∂t(G

i r)

∂f ∂yr

δf δxj|∇ef|

p−2dv (31)

−p

n Z

SM

RF2gij∂f ∂yi

∂f ∂yj|∇ef|

p−2dv

whereR is the scalar curvature of M.

Proof:

IfFtis the Riemannian metric, then

Ric= 1

nR, (32)

and

2gijRicij−nRic=R, (33)

therefore (31) is obtained by replacing (32) and (33) in (29). ✷

Corollary 3.4. Let (M2, F

t)be a solution of the un-normalized Ricci flow on the

smooth Riemannian surface(M2, F0). Ifλ(t)denotes the evolution of an eigenvalue

under the Ricci flow, then:

dλ dt =

p 2 Z

SM

R|∇ef|pdv+

Z

SM

R(λ|f|p− |ef|p)dv

−p Z

SM

gij ∂ ∂t(G

i r)

∂f ∂yr

δf δxj|∇ef|

p−2dv

−p

n Z

SM

RF2gij ∂f ∂yi

∂f ∂yj|∇ef|

p−2dv

whereR is the scalar curvature of M.

Proof: In dimensionn= 2, for a Riemannian manifold, we have:

Ric= 1

(11)

hence the corollary is obtained by replacing (34) in (29). ✷

Corollary 3.5. Let (Mn, F

t)be a solution of the un-normalized Ricci flow on the

smooth homogenous Riemannian manifold (Mn, F0). Ifλ(t) denotes the evolution

of an eigenvalue under the Ricci flow, then:

dt = p Z

SM

Ric(∇ef,∇ef)|∇ef|p−2dv

−p Z

SM

gij ∂ ∂t(G

i r)

∂f ∂yr

δf δxj|∇ef|

p−2dv

−Rp n

Z

SM

F2gij∂f ∂yi

∂f ∂yj|∇ef|

p−2dv

whereR is the scalar curvature of M.

Proof:

Since the evolving metric remains homogenous and a Riemannian homoge-nous manifold has constant scalar curvature, so the corollary is obtained by (29).✷ Now, we give a variation of λ(t) under the normalized Ricci flow which is similar to the pervious proposition.

Proposition 3.6. Let (Mn, F

t) be a solution of the normalized Ricci flow on the

smooth Finsler manifold (Mn, F0). Ifλ(t) denotes the evolution of an eigenvalue

under Ricci flow, then:

dt = (n−p)rλ+p Z

SM

Ric(∇ef,∇ef)|∇ef|p−2 dv

+ Z

SM

(λ|f|p− |ef|p)2gijRic

ij−nRic dv (35)

−p Z

SM

gij ∂ ∂t(G

s i)

∂f ∂ys

δf δxj|∇ef|

p−2 dv

−p Z

SM

F2(Ric−r)gij∂f ∂yi

∂f ∂yj|∇ef|

p−2 dv

where f is the associated normalized evolving eigenfunction,r=

R

SMRic dv

vol(SM) .

Proof: In the normalized case, the integrability conditions read as follows

p Z

SM

f′f|f|p−2 dv=

Z

SM

|f|p2gijRic

ij−nr−nRic dv. (36)

Since

d dt(dv) =

(12)

168

using (24), (27) and the above equation, we can then write

i) is obtained by replacing F ′

and g′

ij from (3) and (4), respectively, in

(27). Thus the proposition is obtained by replacing (39) in (38).✷ Similar to un-normalized case we have the following corollaries:

Corollary 3.7. Let (Mn, F

t) be a solution of the normalized Ricci flow on the

smooth Riemannian manifold (Mn, F0). If λ(t)denotes the evolution of an eigen-value under Ricci flow, then:

whereR is the scalar curvature of M.

Corollary 3.8. Let (M2, Ft) be a solution of the normalized Ricci flow on the

(13)

under Ricci flow, then:

dt = (2−p)rλ+ p 2 Z

SM

R|∇ef|pdv

+ Z

SM

R(λ|f|p− |∇ef|p)dv−p Z

SM

gij ∂ ∂t(G

s i)

∂f ∂ys

δf δxj|∇ef|

p−2dv

−p Z

SM

(R 2 −r)F

2gij ∂f

∂yi

∂f ∂yj|∇ef|

p−2dv

whereR is the scalar curvature of M. Corollary 3.9. Let (Mn, F

t) be a solution of the normalized Ricci flow on the

smooth homogenous Riemannian manifold (Mn, F0). Ifλ(t) denotes the evolution

of an eigenvalue under Ricci flow, then:

dt = (n−p)rλ+p Z

SM

Ric(∇ef,∇ef)|∇ef|p−2dv

−p Z

SM

gij ∂ ∂t(G

s i)

∂f ∂ys

δf δxj|∇ef|

p−2 dv

−p Z

SM

(1

nR−r)F 2

gij∂f ∂yi

∂f ∂yj|∇ef|

p−2 dv

whereR is the scalar curvature of M.

4. Examples

In this section, we will find the variational formula for some of Finsler mani-folds.

Example 4.1. Let (Mn, F0) be an Einstein manifold i.e. there exists a constant

a such that Ric(F0) = aF2

0. Therefore Ricij(g0) = agij(0). Assume we have a

solution to the Ricci flow which is of the form

g(t) =u(t)g0, u(0) = 1

whereu(t)is a positive function. Now (2) implies that

u(t) =−2at+ 1,

so that we have

g(t) = (1−2at)g0

which says that g(t)is an Einstein metric. On the other hand it is easily seen that

Ric(g(t)) = Ric(g0) =ag0= a 1−2atg(t),

Ric(gt) =

1

1−2atRic(g0) = a 1−2at, Ft2 = (1−2at)F02

therefore

2gijRicij−nRic=

(14)

170

and

Ric(∇ef,∇ef) = a

1−2ateg(∇ef,∇ef) = a

1−2at|∇ef| 2.

Also

Gi(t) = 1 4g

il{2∂gjl

∂xk −

∂gjk

∂xl }y jyk

= 1 4(g0)

il{2∂(g0)jl

∂xk −

∂(g0)jk

∂xl }y

jyk =Gi(0)

therefore

∂ ∂t(G

i r) = 0.

Using the un-normalized Ricci flow equation (2) and (29) ,we obtain the following relation:

dt = p Z

M

a

1−2at|∇ef|

pdv+λ

Z

M

|f|p an

1−2atdv

Z

M

an 1−2at|∇ef|

pdvp

Z

SM

a 1−2atF

2 gij ∂f

∂yi

∂f ∂yj|∇ef|

p−2 dv

= pa

1−2at

λ−

Z

SM

F2gij ∂f ∂yi

∂f ∂yj|∇ef|

p−2dv

Now, If we suppose that gt=u(t)g0,u(0) = 1is a solution of the normalized Ricci

flow and r= V ol(1SM)RSMRicdv, then from (3) we have

u′g0=−2ag0+ 2rug0.

It implies that

u(t) = a r(1−e

2rt) +e2rt.

So that we have:

g(t) =na r(1−e

2rt) +e2rto

and

Ric(g(t)) =a a r(1−e

2rt) +e2rt

−1 g0

Ric(g(t)) =a

a r(1−e

2rt) +e2rt

−1

2gijRicij− Ricij =an

a r(1−e

2rt) +e2rt

−1 ,

also

Gi(t) =Gi(0),

therefore

∂Gr i

(15)

Using (35), we obtain the following:

dt = (n−p)rλ+paλ

a r(1−e

2rt) +e2rt

−1

− p Z

SM

a

a r(1−e

2rt) +e2rt

−1

−r

(yi∂f ∂yi

)2|∇ef|p−2 dv

=

(n−p)r+pa

a r(1−e

2rt) +e2rt

−1

λ

− p

a

a r(1−e

2rt) +e2rt

−1

−r Z

SM

F2gij ∂f ∂yi

∂f ∂yj|∇ef|

p−2dv.

Remark. Let (Mn, F0) be a Finsler manifold of dimensionn3. Suppose that the

flag curvaturek=k(x) is isotropic and a function ofx∈M alone thenk=constant and therefore (Mn, F0) is Einstein and the variation of its eigenvalues is similar to example (4.1).

Definition 4.2. A Finsler metric on an n-dimensional manifold is called a weak Einstein metric if

Ric= (n−1){3η

F +σ}F 2

whereη is a1-form and σ=σ(x)is scalar function.

Example 4.3. If we suppose that Ft=u(t)F0,u(0) = 1is a solution of the Ricci

flow, then:

Ric(Ft) =

Ric(Ft)

F2

t

= Ric(F0) (u(t))2F2

0

=(n−1){ 3η0

F0 +σ0}F

2 0 (u(t))2F2

0

= (n−1){ 3η0

F0 +σ0}

(u(t))2

Now the Ricci flow (1) implies that

−(n−1){

3η0 F0 +σ0}

(u(t))2 =−Ric= ∂logF

∂t = F′

t

Ft

= u

(

t) u(t)

or equivalently

uu′

= (n−1){3η0

F0 +σ0}

By integration we have:

u2(t) =−2(n−1){3η0

F0 +σ0}t+c

with condition u(0) = 1 we have:

u2(t) = 1−2(n−1){3η0

F0 +σ0}t

therefore

Ft2=

1−2(n−1){3η0

F0 +σ0}t

(16)

172

and

Ric(∇ef,∇ef) = 1

2(n−1)g

ilgjs(3η0F0)

ylys+ 2σ0(g0)ls e∇if∇ejf. (42)

Also we have

2gijRicij−nRic= (n−1)gij(3η0F0)yiyj+ 2σ0(g0)ij −n

(n−1){3η0 F0 +σ0}

1−2(n−1){3η0 F0 +σ0}t

.

(43)

Note that

gij(t) = (1−2(n−1)σ0t)(g0)ij−6(n−1)t

∂η ∂yi

∂F

∂yj. (44)

By replacing (42),(43) and (44) in (29) we obtain the variation of an eigenvalue. Now, if we suppose thatFt=u(t)F0,u(0) = 1is a solution of the normalized Ricci

flow and r= V ol(1SM)RSMRic dv, then from (3), we have:

r−(n−1)

3η0 F0 +σ0

u2(t) =r− Ric= ∂logF

∂t = u′(

t) u(t)

. It implies that

uu′−u2r=−(n−1)3η0

F0 +σ0, u(0) = 1

which is an ordinary differential equation and has a solution as follow:

u2(t) =n−1 r

3η0

F0 +σ0(1−e

2rt) +e2rt

therefore

Ft2=

n−1 r

3η0

F0 +σ0(1−e

2rt) +e2rt

F02

and dλ

dt is obtained from (35).

Example 4.4. In this example we determine the behavior of the evolving spectrum on the Ricci solitons.

LetFtis a solution of the Ricci flow ∂logF∂t =−Ric. Ifϕia a time-independent

isometry such that

F(x, y) =ϕ∗

Ft(x, y)

is a solution of the un-normalized Ricci flow, because of ∂t∂logFt(x, y) =−Ric(x, y), F(0) =

F0,

∂tlogF(x, y) = ∂ ∂tϕ

logFt(x, y) =

∂tlogFt(ϕ(x), ϕ∗(y))

since ϕis a isometry we have

∂tlogF(x, y) = ∂

∂tlogFt(x, y) =−Ric(x, y) =−Ric(ϕ(x), ϕ∗(y)) =−Ric(F)

Definition 4.5. Let (M, Ft) is a solution of the Ricci flow and ϕt is a family of

diffeomorphisms. We says F(t)is Ricci soliton, when satisfies in

(17)

Let(M, F)and(M , F)be two closed Finsler manifolds and

ϕ: (M, g)→(M , F)

an isometry, then for p= 2 we have

e

g

p◦ϕ∗=ϕ∗◦eg∆p.

Therefore given a diffeomorphism ϕ:M →M we have that

ϕ: (SM, ϕ∗eg)→(SM,eg)

is an isometry, hence we conclude that (SM, ϕ∗

e

g), and (SM,eg) have the same spectrum

Specp(eg) =Specp(ϕ∗eg)

with eigenfunction fk andϕ∗fk respectively. If g(t)is a Ricci soliton on (Mn, g0)

then

Specp(eg(t)) =

1

u(t)Specp(g0e)

so that λ(t)satisfies

λ(t) = 1 u(t),

dλ dt =−

u′(

t) (u(t))2.

Example 4.6. Suppose that

Rn+=

(x1, x2, ..., xn)∈Rn|xi>0, i= 1, ..., n

has the metric

gij(x, y) =

  

φt(y) (xi)

2(p+1)

p

if i=j

0 if i6=j

(46)

where it is a solution for the un-normalized Ricci flow andφt(y)is a strictly positive

C∞

homogeneous function of degree zero andp >0. We use the formula

gij =   

(xi)2(pp+1)

φt(y) if i=j 0 if i6=j

(47)

fori= 1, ..., n, we have

Gi=−p+ 1

2p (yi)2

xi

and

F2Ric(g(t)) = 0

thereforeRic(g(t)) = 0and the un-normalized Ricci flow equation implies that

∂g(t) ∂t = 0

(18)

174

Example 4.7. Suppose that R2 has the metric

gij(x, y) =φt(y)

4(x1)2+ 1 2x2

−2x1 1

(48)

which is a solution for the the un-normalized Ricci flow, where φt(y) is a strictly

positiveC∞ homogeneous function of degree zero. We obtain

G1= 0, G2=−(y1)2

and

F2Ric(g(t)) = 0

thereforeRic(g(t)) = 0and the un-normalized Ricci flow equation implies that

∂g(t) ∂t = 0

hence, g(t) =g0 andλ(t) =λ(0).

References

[1] Azami, S., Razavi, A., ”Existence and uniqueness for solution of Ricci flow on Finsler mani-folds”,International Journal of Geometric Methods in Modern Physics,10, (2013). [2] Bao, D., ” On two curvature-driven problems in Riemann-Finsler geometry”,Advanced

Stud-ies in Pure Mathematics 48(2007), 19-71.

[3] Bartheleme, T., ”A natural Finsler-Laplace operator”,Israel J. Math.196(2013), 375-412. [4] Cheng, Q. M., Yang, H. C., ” Estimates on eigenvalues of Laplacian”,Math. Ann.331(2005),

445-460.

[5] Chow, B., Knopf, D.,The Ricci flow: An Introduction, Mathematical Surveys and Mono-graphs, AMS, 2004.

[6] Chow, B., Lu, P., Ni, L.,Hamilton’s Ricci flow, Vol. 77, AMS, 2006.

[7] DeTurck, D.M., ” Deforming metrics in the direction of their Ricci tensors”,J. Differential Geometry,18(1983), 157-162.

[8] Friedan, D.,Nonlinear Models in2 +ǫDimensions, PhD, University of California, Berkeley, USA, 1980.

[9] Harrell, E. M., Michel, P. L., ”Commutator bounds for eigenvalues with applications to spectral geometry”,Comm. Partial Differential Equations,19(1994), 2037-2055.

[10] Headrick, M., Wiseman, T., ”Ricci Flow and Black Holes”,Class. Quantum Grav.23(2006), 6683-6707.

[11] Leung, P. F., ”On the consecutive eigenvalues of the Laplacian of a compact minimal sub-manifold in a sphere”,J. Aust. Math. Soc.50(1991), 409-426.

[12] Miron, R., Anastasiei, M.,Vector Bundles and Lagrange Spaces with Applications to Rela-tivity, Geometry Balkan Press, Bukharest, 1997.

[13] Miron, R., Anastasiei, M.,The Geometry of Lagrange paces: Theory and Applications, FTPH 59 (Kluwer Academic Publishers, Dordrecht, Boston, London, 1994).

[14] Mo, X.,An introduction to finsler geometry, World Scientific Publishing Co. Pte. Ltd., 2006. [15] Nitta, M., ”Conformal Sigma Models with Anomalous Dimensions and Ricci Solitons”,Mod.

Phys. Lett.,20(2005), 577-584.

(19)

[17] Sadeghzadeh, N., Razavi, A., ”Ricci flow equation on C-reducible metrics”, International Journal of Geometric Methods in Modern Physics,8(2011), 773-781.

[18] Shen, Z., ”The non-linear Laplacian for Finsler manifold,The theory of Finslerian Laplacians and applications”,Math. Appl.,459(1998), 187-198.

[19] Shen, Z.,Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.

(20)

Referensi

Dokumen terkait

Panitia Pengadaan Kantor Unit Penyelenggara Pelabuhan Malili Sulawesi Selatan akan mengadakan pelelangan umum untuk pekerjaan Pembangunan Fasilitas Pelabuhan Laut Malili

Hasil penelitian ini menyiratkan bahwa dampak dari kebijakan pemekaran wilayah propinsi Gorontalo dari propinsi Sulawesi Utara dalam jangka pendek relatif belum menunjukkan

Penyusunan dokumen pengadaan Nomor : 007/RS-ULP/LSPBM-BBRVBD/04/2016 tanggal 26 April 2016 yang didalamnya memuat pengumuman pelengalangan sederhana dengan

[r]

PENGADAAN BAHAN PERMAKANAN PENERIMA MANFAAT PANTI SOSIAL KARYA WANITA MULYA JAYA JAKARTA:. TAHUN

Dari uraian diatas, tidak disebutkan sanksi khusus bagi pelaku pemerkosa anak, namun pada dasarnya pelaku pemerkosa anak dapat dijatuhi sanksi pidana yang serupa dengan yang

Hasil wawancara dengan Dede Soepandi, Pemilik Industri Tahu, Tanggal 28 Mei 2013, pukul 13.05.. dibiarkan air limbah akan berubah warnanya menjadi coklat kehitaman dan

[r]