• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:VMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:VMJ:"

Copied!
12
0
0

Teks penuh

(1)

“„Š338.24.01

Ž„ŽŽ„“Š’Ž‚€Ÿ „ˆ€Œˆ—…‘Š€ŸŒŽ„…‹œ‡€Œ…™…ˆŸ

Žˆ‡‚Ž„‘’‚…›•ŒŽ™Ž‘’…‰

‹. €. ¥ª« àï­, ‘. ‚. ®à¨á®¢ 

ޝ¨á ­ ®¤­®¯à®¤ãªâ®¢ ï¤¨­ ¬¨ç¥áª ï¬®¤¥«ìíª®­®¬¨ª¨,¯®§¢®«ïîé ï¨áá«¥¤®¢ âìå à ªâ¥à

®¯â¨¬ «ì­ëåáப®¢ä㭪樮­¨à®¢ ­¨ï¯à®¨§¢®¤á⢥­­ë嬮魮á⥩. ‘ä®à¬ã«¨à®¢ ­

¯à¨­-樯¤¨ää¥à¥­æ¨ «ì­®©®¯â¨¬¨§ æ¨¨,­ ®á­®¢ ­¨¨ª®â®à®£®¢ë¡¨à ¥âáﮯ⨬ «ì­ ï¯®«¨â¨ª 

¢ë¢®¤ áâ àë娢¢®¤ ­®¢ëå,¡®«¥¥á®¢¥à襭­ëå ä®­¤®¢. ޝ¨á ­ë¢á¥¢®§¬®¦­ë¥¢ à¨ ­âë

à §¢¨â¨ïá¨á⥬ë.

‚¢¥¤¥­¨¥

à®¨§¢®¤á⢥­­ ï áâàãªâãà  «î¡®©íª®­®¬¨ç¥áª®© á¨áâ¥¬ë ¯®¤¢¥à¦¥­ 

¨§¬¥­¥-­¨ï¬ ¢® ¢à¥¬¥­¨, ®¡ãá«®¢«¥­­ë¬ à §«¨ç­ë¬¨ ¯à¨ç¨­ ¬¨, ¢ ⮬ ç¨á«¥ à §¢¨â¨¥¬

­ ãç­®-â¥å­¨ç¥áª®£® ¯à®£à¥áá  ¨ à®á⮬ ä®­¤®¢®®à㦥­­®áâ¨. ‚ á¢ï§¨ á í⨬

¢áâ -îâ á«®¦­ë¥ § ¤ ç¨ ¬®¤¥«¨à®¢ ­¨ï ¨­â¥­á¨¢­®£® à §¢¨â¨ï íª®­®¬¨ç¥áª¨å ¨

­ ãç­®-â¥å­¨ç¥áª¨åá¨á⥬¨ã¯à ¢«¥­¨ïí⨬ࠧ¢¨â¨¥¬[1{4]. ®«ì讥§­ ç¥­¨¥¢í⮬

á«ã-ç ¥¯à¨®¡à¥â ¥âã«ãç襭¨¥¨á¯®«ì§®¢ ­¨ï®á­®¢­ëåä®­¤®¢¨¯à®¨§¢®¤á⢥­­ëå

¬®é-­®á⥩. ‚¥«¨ç¨­ ¯à®¨§¢®¤á⢥­­®©¬®é­®áâ¨ä®à¬¨àã¥âáﯮ¤¢«¨ï­¨¥¬¬­®¦¥á⢠

¯à®¨§¢®¤á⢥­­®-â¥å­¨ç¥áª¨å ¨ ®à£ ­¨§ æ¨®­­®-íª®­®¬¨ç¥áª¨å ä ªâ®à®¢.

 ¨¡®«ì-襥 ¦¥ ¢«¨ï­¨¥ ­  ¢¥«¨ç¨­ã ¯à®¨§¢®¤á⢥­­®© ¬®é­®á⨠®ª §ë¢ ¥â ¨á¯®«ì§ã¥¬®¥ ¢

¯à®¨§¢®¤á⢥ ®¡®à㤮¢ ­¨¥,¥£®ª®«¨ç¥á⢥­­ë©¨ª ç¥á⢥­­ë©á®áâ ¢. ‡ ¬¥­ 

ãáâ -ॢ襣® ®¡®à㤮¢ ­¨ï­  ­®¢®¥, ¡®«¥¥á®¢¥à襭­®¥ (®¡« ¤ î饥 ¡®«ì襩

¯à®¨§¢®¤¨-⥫쭮áâìî ¨/¨«¨âà㤮¥¬ª®áâìî) ¯à¨¢®¤¨âª ­ à é¨¢ ­¨î¯à®¨§¢®¤á⢥­­®©

¬®é-­®áâ¨. ‚í⮬á«ãç ¥®¤­®©¨§¢ ¦­¥©è¨å¯à¨ª« ¤­ëå§ ¤ çï¥âáאַ¤¥«¨à®¢ ­¨¥

¨ ®¯â¨¬¨§ æ¨ï áப®¢ ä㭪樮­¨à®¢ ­¨ï ¯à®¨§¢®¤á⢥­­ëå ¬®é­®á⥩

íª®­®¬¨ç¥á-ª¨åá¨á⥬.

’ ª¨¥¬®¤¥«¨¨¬¥îâ¯à¨«®¦¥­¨ï­  à §«¨ç­ëåã஢­ïåã¯à ¢«¥­¨ïíª®­®¬¨ª®©

(íª®­®¬¨ª  áâà ­ë, ॣ¨®­ , ®âà á«¨, ®â¤¥«ì­®£® ¯à¥¤¯à¨ïâ¨ï ¨ â. ¯.).   ¢ë᮪¨å

ã஢­ïå ã¯à ¢«¥­¨ïâ ª¨¥ ¬®¤¥«¨®¯â¨¬¨§¨àãî⪠ª à á¯à¥¤¥«¥­¨¥ à¥áãàᮢ ¬¥¦¤ã

®âà á«ï¬¨,â ª¨â¥å­¨ç¥áªã«¨â¨ªã.  ¡®«¥¥­¨§ª¨åã஢­ïå(®âà á«ì,

¯à¥¤¯à¨-ï⨥)®­¨ ®¯¨á뢠îâ ¯à®æ¥ááë § ¬¥­ë, ®¡­®¢«¥­¨ï ¨ à á¯à¥¤¥«¥­¨ï¬ è¨­ ¨

®¡®àã-¤®¢ ­¨ï ¢ íª®­®¬¨ç¥áª®© á¨á⥬¥ ¨ ¬®£ãâ ¡ëâì ¨á¯®«ì§®¢ ­ë ¤«ï â ª¨å ª®­ªà¥â­ëå

§ ¤ çª ª à áç¥â(¨ ®¯â¨¬¨§ æ¨ï)¬ â¥à¨ «ì­®-â¥å­¨ç¥áª®£®á­ ¡¦¥­¨ï,®¯à¥¤¥«¥­¨ï

¯®âॡ­®á⥩¢¬ è¨­ å¨®¡®à㤮¢ ­¨¨¨¤à.  ¨¡®«¥¥¯¥àᯥªâ¨¢­ë¬ï¢«ï¥âáï

¯à¨-¬¥­¥­¨¥¤ ­­®£®ª« áá ¬®¤¥«¥©¤«ï§ ¤ ç¯à®£­®§¨à®¢ ­¨ï¨¤®«£®áà®ç­®£®

¯« ­¨à®-¢ ­¨ï ¢¬ áèâ ¡ å ­ à®¤­®£®å®§ï©á⢠ ¨«¨¢ ä®­¤®¥¬ª¨å®âà á«ï娯ந§¢®¤á⢠å

á ¨­â¥­á¨¢­ë¬â¥å­¨ç¥áª¨¬ ¯à®£à¥áᮬ.

 ¨¡®«¥¥ ¨§¢¥áâ­ë¬ ¯à¨¬¥à®¬ ¬ ªà®íª®­®¬¨ç¥áª®© ¬®¤¥«¨ á ®¢¥é¥á⢫¥­­ë¬

â¥å­¨ç¥áª¨¬ ¯à®£à¥áᮬ ï¥âáï ¬®¤¥«ì ‘®«®ã [6]. ‘®£« á­® ¬®¤¥«¨ ‘®«®ã

â¥å­¨-ç¥áª¨© ¯à®£à¥áá ¢®¯«®é¥­ ¢ ®á­®¢­ëå ¯à®¨§¢®¤á⢥­­ëå ä®­¤ å: ä®­¤ë, á®§¤ ­­ë¥

c

(2)

­¥¤ ¢­®, ¡®«¥¥ íä䥪⨢­ë ¯® áà ¢­¥­¨î á ¢ë¯ã饭­ë¬¨ ¢ ¡®«¥¥ à ­­¨¥ ¬®¬¥­âë

¢à¥¬¥­¨,  ä®­¤ë,á®§¤ ­­ë¥ ¢ ®¤­®¬ £®¤ã, ¨¬¥î⮤¨­ ª®¢ãîíä䥪⨢­®áâì.

‚¬®¤¥«¨‘®«®ã ®¯¨á뢠¥âáï⮫쪮á«ãç ©à ¢­®¬¥à­ëå⥬¯®¢¨§­®á  ¨®­  ­¥

ãç¨â뢠¥â¤¥©á⢨⥫쭮 ¤¨­ ¬¨ç¥áª®¥,­¥à ¢­®¬¥à­®¥à §¢¨â¨¥ íª®­®¬¨ª¨.

®¢ë¬ íâ ¯®¬ ¢ à §¢¨â¨¨ â ª¨å ¬®¤¥«¥© áâ «¨ ¤¨­ ¬¨ç¥áª¨¥ ¬®¤¥«¨,

¯®§¢®«ï-î騥 ã¯à ¢«ïâì ¤¨­ ¬¨ª®© ᢮à ç¨¢ ­¨ï ãáâ à¥¢è¨å ®á­®¢­ëå ä®­¤®¢ [7, 8]. …᫨

à ­ì襢६ïá«ã¦¡ëä®­¤®¢¢®á­®¢­®¬®¯à¥¤¥«ï«®áì⮫쪮«¨èìáâ®çª¨§à¥­¨ï¨å

䨧¨ç¥áª®£® ¨§­®á , ¨ íâ® ¢à¥¬ï §­ ç¨â¥«ì­®¯à¥¢ëè «® áப á«ã¦¡ë «î¡®©

¥¤¨­¨-æë âà㤮¢ëå à¥áãàᮢ, ⮠⥯¥àì ¢ á¢ï§¨á à §¢¨â¨¥¬ ­ ãç­®-â¥å­¨ç¥áª®£® ¯à®£à¥áá 

áப á«ã¦¡ë ä®­¤®¢ ¢ ¡®«ì襩 á⥯¥­¨ ®¯à¥¤¥«ï¥âáï ¨å ¬®à «ì­ë¬ ¨§­®á®¬.

®-¥­¨¥ ­®¢ëå, ¡®«¥¥ ᮢ¥à襭­ëå â¥å­®«®£¨© ¬­®£®ªà â­® ᮪à é ¥âáப á«ã¦¡ë

ä®­¤®¢,   ¢ ®â¤¥«ì­ëå ®âà á«ïå íâ® ¢à¥¬ï á®áâ ¢«ï¥â «¨èì ­¥áª®«ìª® «¥â

(­ ¯à¨-¬¥à, ¢ ®¡« áâ¨ í«¥ªâà®­­®© ¯à®¬ëè«¥­­®áâ¨,ª®¬¯ìîâ¥à­ëå â¥å­®«®£¨©). ®í⮬ã,

¥á«¨¢¯¥à¢®¬á«ãç ¥¯à®¨á室¨â¢á¥£®«¨èì§ ¬¥­ áâ à®£®®¡®à㤮¢ ­¨ï­ ­®¢®¥,â®

¢® ¢â®à®¬ | ¯®«­ ï ४®­áâàãªæ¨ï ä®­¤®¢, â. ¥. ­ ¨¬¥­¥¥ íä䥪⨢­ë¥ ¢ë¢®¤ïâáï

¨§ ¯à®¨§¢®¤á⢠ (¨ ¢ ¤ «ì­¥©è¥¬ ­¥ ¨á¯®«ì§ãîâáï),   ¢ë᢮¡®¦¤ î騥áï âà㤮¢ë¥

à¥áãàáë ­ ¯à ¢«ïîâáï­  ¢­®¢ìá®§¤ ¢ ¥¬ë¥ ä®­¤ë.

’ ª¨¥ ¬®¤¥«¨ ¢¯¥à¢ë¥ ¡ë«¨ ¢¢¥¤¥­ë ‹. ‚. Š ­â®à®¢¨ç¥¬ ¢ 1959 £. ޤ­ ª® ¨å

¤ «ì­¥©è¥¥ ¨áá«¥¤®¢ ­¨¥ ­¥ ¯à®¢®¤¨«®áì, ¨ ⮫쪮 ¢ 1973 £. ¯®ï¢«ï¥âáï à ¡®â , ¢

ª®â®à®©¯à¨¢¥¤¥­ ®¤­®¯à®¤ãªâ®¢ ï ¬ ªà®íª®­®¬¨ç¥áª ï ¤¨­ ¬¨ç¥áª ï¬®¤¥«ì.

à¨­æ¨¯¨ «ì­® ­®¢ë¬ ¢ ¬®¤¥«¨ Š ­â®à®¢¨ç  ï¥âáï ¢¢¥¤¥­¨¥ ­®¢®©

äã­ª-樨 |

m

(

t

) | ¢à¥¬¥­­®© £à ­¨æë ¨á¯®«ì§®¢ ­¨ï ä®­¤®¢: ¢á¥ ä®­¤ë, á®§¤ ­­ë¥ à ­­¥¥¬®¬¥­â 

m

(

t

), ¢¬®¬¥­â

t

®ª §ë¢ îâáï¢ë¢¥¤¥­­ë¬¨ ¨§¯à®¨§¢®¤á⢠.

‹. ‚. Š ­â®à®¢¨ç¥¬ ¡ë« ¯à¥¤«®¦¥­ ¯à¨­æ¨¯ ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨.

‘®£« á­®í⮬ã¯à¨­æ¨¯ãᯮᮡ¢ë¢®¤ ãáâ à¥¢è¨å¨áâàãªâãà ¢­®¢ìá®§¤ ­­ëå

®á-­®¢­ëåä®­¤®¢ ïîâáﮯ⨬ «ì­ë¬¨,¥á«¨®­¨ ®¡¥á¯¥ç¨¢ î⬠ªá¨¬ «ì­ë©â¥¬¯

à®áâ  ­ æ¨®­ «ì­®£®¤®å®¤  ¢ ⥪ã騩¬®¬¥­â¢à¥¬¥­¨.

¥§ ¢¨á¨¬® ®â à ¡®âë [9] ‚. Œ. ƒ«ã誮¢ ¯à¥¤«®¦¨« ¢ 1977 £.

¤¢ãå¯à®¤ãªâ®-¢ãªà®íª®­®¬¨ç¥áªã¤¥«ì[8],¤®¯®«­ïîéã¤¥«ìŠ ­â®à®¢¨ç . â ¬®¤¥«ì

®¯¨á뢠¥â ¤¢¥ £àã¯¯ë ¯à®¨§¢®¤á⢠: €| ¯à®¨§¢®¤á⢮ á।á⢠¯à®¨§¢®¤á⢠ ¨ |

¯à®¨§¢®¤á⢮ ¯à¥¤¬¥â®¢ ¯®âॡ«¥­¨ï.

‚ ¬®¤¥«ïå Š ­â®à®¢¨ç  ¨ ƒ«ã誮¢ , ¢ ®â«¨ç¨¥ ®â ¬®¤¥«¨ ‘®«®ã, ­ àï¤ã á

®¢¥-é¥á⢫¥­­ë¬ã஢­¥¬ ®¯¨á ­¨ï ­ ãç­®-â¥å­¨ç¥áª®£® ¯à®£à¥áá , ᮤ¥à¦¨âáï

¢®§¬®¦-­®áâì ã¯à ¢«¥­¨ï ¨ ®¯â¨¬¨§ æ¨¨à §¢¨â¨ï íª®­®¬¨ç¥áª¨å á¨á⥬ §  áç¥â ¨§¬¥­¥­¨ï

¯®«¨â¨ª¨®¡­®¢«¥­¨ï ®á­®¢­ëåä®­¤®¢.

 ãç­®-â¥å­¨ç¥áª¨© ¯à®£à¥áá ¢¥¤¥â ª ¢ë᮪¨¬ ⥬¯ ¬ ®¡­®¢«¥­¨ï â¥å­®«®£¨©

¨ ᮯãâáâ¢ãîé¨å ¨¬ à áè¨à¥­¨î, ४®­áâàãªæ¨¨ ¨ â¥å­¨ç¥áª®¬ã ¯¥à¥¢®®à㦥­¨î

¤¥©áâ¢ãîé¨å ¯à¥¤¯à¨ï⨩. ‚ á¢ï§¨ á í⨬ ¢á⠥⠢®¯à®á ­¥ ⮫쪮 ® ¯®¨áª¥

®¯â¨-¬ «ì­ëå áப®¢ á«ã¦¡ë ä®­¤®¢, ­® ¨ ०¨¬®¢ ¢¢®¤  ­®¢ëå ä®­¤®¢. ¥è¥­¨¥

¤ ­-­®© ¯à®¡«¥¬ë ¯®§¢®«ï¥â ®¡¥á¯¥ç¨âì ­ ãç­® ®¡®á­®¢ ­­ë© ¢ë¡®à ¯®«¨â¨ª¨ à §¢¨â¨ï

¯à®¨§¢®¤á⢠¢ãá«®¢¨ïå­ ãç­®-â¥å­¨ç¥áª®£®¯à®£à¥áá ¨à®áâ ä®­¤®¢®®à㦥­­®áâ¨

¯à®¨§¢®¤á⢠.

„ ­­ ïà ¡®â ¯®á¢ï饭 ¯à®¡«¥¬¥¯®¨áª ®¯â¨¬ «ì­®©¯®«¨â¨ª¨¢ë¢®¤  ¨§

¯à®-¨§¢®¤á⢠ãáâ à¥¢è¨åä®­¤®¢¨¢¢®¤  ­®¢ëå(¡®«¥¥á®¢¥à襭­ëå)¢à ¬ª å

¯®áâ஥­-­®© ®¤­®¯à®¤ãªâ®¢®© ¬®¤¥«¨. „«ï¤®á⨦¥­¨ï í⮩ 楫¨ ¢ ª ç¥á⢥ ªà¨â¥à¨ï

®¯â¨-¬ «ì­®á⨠¨á¯®«ì§ã¥âáï ý¯à¨­æ¨¯ ¤¨ää¥à¥­æ¨ «ì­®©®¯â¨¬¨§ æ¨¨þ, ¯à¥¤«®¦¥­­ë©

(3)

1. ޝ¨á ­¨¥ å à ªâ¥à¨á⨪ ¬®¤¥«¨

ã¤¥¬ à áᬠâਢ âìá¨á⥬ã,¯à®¨§¢®¤ïéãî ®¤¨­¯à®¤ãªâ¨®¡« ¤ îéãî

¢ëá®-ª¨¬¨â¥¬¯ ¬¨®¡­®¢«¥­¨ï â¥å­®«®£¨©,á ¤¢ã¬ï £« ¢­ë¬¨¯à®¨§¢®¤á⢥­­ë¬¨

ä ªâ®-à ¬¨ | ¯à®¨§¢®¤á⢥­­ë¥ ä®­¤ë (®¢¥é¥á⢫¥­­ë© ª ¯¨â «), ¤¨ää¥à¥­æ¨à®¢ ­­ë¥

¯® ¬®¬¥­â ¬ ¨å á®§¤ ­¨ï ¨ ¨§¬¥àï¥¬ë¥ ¢ ¥¤¨­¨æ å ¯à®¤ãªâ ,   â ª¦¥ âà㤮¢ë¥

à¥-áãàáë,¨§¬¥àï¥¬ë¥ ª®«¨ç¥á⢮¬ âà㤮¢ë奤¨­¨æ.

ãáâìíä䥪⨢­®áâì ¯à®¨§¢®¤á⢠¢«î¡®©¬®¬¥­â¢à¥¬¥­¨

t

®¯à¥¤¥«ï¥âáï ¯à®-¨§¢®¤á⢥­­®©ä㭪樥©

U

(

x;y;

),¢ëà ¦ î饩ª®«¨ç¥á⢮ ç¨á⮣®¯à®¤ãªâ , á®§¤ -¢ ¥¬®£® âà㤮¬

y

(¢ ¥¤¨­¨æã¢à¥¬¥­¨) ¯à¨¨á¯®«ì§®¢ ­¨¨ ¯à®¨§¢®¤á⢥­­ëå ä®­¤®¢ ®¡ê¥¬ 

x

(á®§¤ ­­ëå¢ ¬®¬¥­â

(

< t

)). à¥¤¯®« £ ¥âáï, çâ®äã­ªæ¨ï

U

¬®­®â®­­® ¢®§à á⠥⠯®

, çâ® ®âà ¦ ¥â 㢥«¨ç¥­¨¥ íä䥪⨢­®á⨠¡®«¥¥ ­®¢ëå ä®­¤®¢ ¯®¤ ¤¥©á⢨¥¬â¥å­¨ç¥áª®£® ¯à®£à¥áá . Šà®¬¥ ⮣®, ¯à¥¤¯®« £ ¥âáï, ç⮯® ¯¥à¢ë¬¤¢ã¬

 à£ã¬¥­â ¬äã­ªæ¨ï

U

ï¥âáï ®¤­®à®¤­®©(íâ® ®âà ¦ ¥â®âáãâá⢨¥ íää¥ªâ  ¬ á-èâ ¡ ¯à®¨§¢®¤á⢠)¨¢®£­ã⮩(â.¥. äã­ªæ¨ï

U

¡ §¨àã¥âáï­ ®¯â¨¬ «ì­ëåᯮᮡ å ¯à®¨§¢®¤á⢠).

—¥à¥§

(

t

) ®¡®§­ ç¨¬ ¨­â¥­á¨¢­®áâì ¢¢®¤  ª ¯¨â «®¢«®¦¥­¨©, ¨¤ãé¨å­  㢥«¨-祭¨¥ ä®­¤®¢ ¨ § ¬¥­ã ¢ë¡ë¢ îé¨å ¨§ ¯à®¨§¢®¤á⢠ ä®­¤®¢, â. ¥. ®¡ê¥¬ ä®­¤®¢,

¢¢¥¤¥­­ëå ¢ ¯à®¨§¢®¤á⢮ ¢® ¢à¥¬¥­­®¬ ¨­â¥à¢ «¥ [

t;t

+

dt

], à ¢¥­

(

t

)

dt

. ”ã­ªæ¨ï

(

t

) ¯à¥¤¯®« £ ¥âáï «¨¡® íª§®£¥­­®© ¯¥à¥¬¥­­®© ¬®¤¥«¨, â. ¥. § ¤ ­­®© ¨§­ ç «ì­®, «¨¡® ¯à¥¤¯®« £ ¥âáï, çâ® ®­  á®áâ ¢«ï¥â ¯®áâ®ï­­ãî ç áâì ¯à®¨§¢®¤¨¬®£® ¢ ¬®¬¥­â

¢à¥¬¥­¨

t

ç¨á⮣® ¯à®¤ãªâ  (í­¤®£¥­­ ï ¯¥à¥¬¥­­ ï). ‚ á«ãç ¥ íª§®£¥­­® § ¤ ­­®© ä㭪樨

(

t

) ¡ã¤¥¬¯à¥¤¯®« £ âì,çâ®®­ ï¢«ï¥âá᮫îâ­®­¥¯à¥à뢭®©,á ¯à®¨§-¢®¤­®©­¥¯à¥à뢭®©á¯à ¢ .

Š®«¨ç¥á⢮ âà㤮¢ëå à¥áãàᮢ, § ­ïâëå ­  á®§¤ ¢ ¥¬ëå ä®­¤ å, ®¯à¥¤¥«ï¥âáï

¨­â¥­á¨¢­®áâìî ¨å ¢¢®¤ 

'

(

t

), â. ¥. ¯à¥¤¯®« £ ¥âáï, çâ® âà㤮¢ë¥ à¥áãàáë, ¢¢¥¤¥­-­ë¥ ¢® ¢à¥¬¥­­®¬ ¨­â¥à¢ «¥ [

t;t

+

dt

], à ¢­ïîâáï

'

(

t

)

dt

¥¤¨­¨æ ¬. ”ã­ªæ¨î

'

(

t

) ­¥®¡å®¤¨¬® ­ ©â¨. à¥¤¯®« £ ¥âáï, çâ®

'

(

t

) | ­¥®âà¨æ â¥«ì­ ï äã­ªæ¨ï ªãá®ç­®-­¥¯à¥à뢭 ï á¯à ¢ .

‚¬®¤¥«¨¯à¥¤¯®« £ ¥âáï, çâ®â¥å­¨ç¥áª¨©¯à®£à¥áá ¨ à®áâä®­¤®¢®®à㦥­­®áâ¨

¯à¨¢®¤ïâ ªã᪮७¨î⥬¯®¢ ᬥ­ï¥¬®áâ¨â¥å­®«®£¨©¯à®¨§¢®¤á⢠, ¨ª ª á«¥¤á⢨¥

ª ­¥®¡å®¤¨¬®á⨠§ ¬¥­ë ãáâ à¥¢è¨å ä®­¤®¢. ‚ १ã«ìâ â¥ ­ ¨¬¥­¥¥ íä䥪⨢­ë¥

ä®­¤ë ­¥¯à¥à뢭® ¢ë¢®¤ïâáï ¨§ ¯à®¨§¢®¤á⢠ (¨ ¢ ¤ «ì­¥©è¥¬ ­¥ ¨á¯®«ì§ãîâáï),

  ¢ë᢮¡®¦¤ î騥áï âà㤮¢ë¥ à¥áãàáë ­ ¯à ¢«ïîâáï ­  ¢­®¢ì á®§¤ ¢ ¥¬ë¥ ä®­¤ë.

 ¨¡®«¥¥áâ àë¥ ä®­¤ë (¨¬¥îé¨¥á ¬ë© à ­­¨©¯¥à¨®¤ á®§¤ ­¨ï á।¨ ä®­¤®¢,

§ -­ïâëå¢¯à®æ¥áᥠ¯à®¨§¢®¤á⢠­ ¬®¬¥­â

t

) ¡ã¤ãâ¢ë¢®¤¨âìá¥à¢ãî®ç¥à¥¤ì. ®-«¨â¨ª  ¢ë¢®¤  ¨§ ¯à®¨§¢®¤á⢠ ãáâ à¥¢è¨å ä®­¤®¢ å à ªâ¥à¨§ã¥âáï ä㭪樥©

m

(

t

), ®¯à¥¤¥«ïî饩 ¬®¬¥­â á®§¤ ­¨ï ä®­¤®¢, ¢ë¢®¤¨¬ëå ¨§ ¯à®¨§¢®¤á⢠ ¢ ¬®¬¥­â

¢à¥-¬¥­¨

t

(

m

(

t

)

< t

). ”ã­ªæ¨î

m

(

t

) ­¥®¡å®¤¨¬® ­ ©â¨. à¥¤¯®« £ ¥âáï, çâ®

m

(

t

) |  ¡á®«îâ­® ­¥¯à¥à뢭 ï äã­ªæ¨ï, á ¯à®¨§¢®¤­®© ­¥¯à¥à뢭®© á¯à ¢ . Šà®¬¥ ⮣®,

¯à¨¢ë¢®¤¥ áâ àëåä®­¤®¢áãé¥áâ¢ãî⮣࠭¨ç¥­¨ï,ª®â®à륢ëà ¦ îâáï¢áª®à®áâ¨

§ ¬¥é¥­¨ï ãáâ à¥¢è¨å ä®­¤®¢ ¢® ¢à¥¬¥­¨, â. ¥. áãé¥áâ¢ã¥â ª®­áâ ­â 

M

(

M

1) â ª ï, çâ®

m

0

(

t

) 6

M

(â. ¥. ãáâ à¥¢è¨¥ ª ¬®¬¥­â㠢६¥­¨

t

ä®­¤ë ­¥ ¬®£ãâ ¡ëâì ¢ë¢¥¤¥­ë ¢á¥ ®¤­®¢à¥¬¥­­®). Šà®¬¥ ⮣®, ¨§ á¬ëá« 

m

(

t

) á«¥¤ã¥â, çâ®

m

0

(

t

) > 0 ¨

m

(

t

)

< t

.

ã¤¥¬ ¯à¥¤¯®« £ âì, çâ® ¢® ¢à¥¬¥­¨ áãé¥áâ¢ã¥â ­¥ª¨© àï¤ à §«¨ç­ëå

(4)

⮩¨«¨¨­®©â¥å­®«®£¨¨. ®«¨â¨ª  ¢¢®¤  ¢¯à®¨§¢®¤á⢮ ­®¢ë嬮魮á⥩

å à ªâ¥-ਧã¥âáïä㭪樥©

(

t

), ®¯à¥¤¥«ïî饩¬®¬¥­â§ ¯ã᪠­®¢®© â¥å­®«®£¨¨, ¯®«­®áâìî ®á¢ ¨¢ ¥¬®© ª ¬®¬¥­â㠢६¥­¨

t

. ”ã­ªæ¨ï

(

t

) ï¥âáï ­¥¨§¢¥áâ­®©. à¥¤¯®« £ -¥âáï, çâ®

(

t

) |  ¡á®«îâ­® ­¥¯à¥à뢭 ïäã­ªæ¨ï, á ¯à®¨§¢®¤­®©­¥¯à¥à뢭®© á¯à -¢ . ˆ§ á¬ëá«  ä㭪権

m

(

t

) ¨

(

t

) á«¥¤ã¥â, ®­¨ ¤®«¦­ë 㤮¢«¥â¢®àïâì ãá«®¢¨ï¬

m

(

t

)6

(

t

)6

t

,

0

(

t

)>0.

—¥à¥§

T

a

(

t

) ¨

T

p

(

t

)¡ã¤¥¬®¡®§­ ç âì, ᮮ⢥âá⢥­­®,  ªâ¨¢­ë¥¨¯ áᨢ­ë¥ âàã-¤®¢ë¥ à¥áãàáë ¢ ¬®¬¥­â¢à¥¬¥­¨

t

,â.¥.

T

a

(

t

) | íâ®âà㤮¢ë¥ à¥áãàáë,ãç áâ¢ãî騥 ¢ ¯à®¨§¢®¤á⢥ ­  ¤¥©áâ¢ãîé¨å ä®­¤ å ¢ ¬®¬¥­â¢à¥¬¥­¨

t

, a

T

p

(

t

) | âà㤮¢ë¥ à¥-áãàáë,ª®â®à륧 ¤¥©á⢮¢ ­ë¢¬®¬¥­â¢à¥¬¥­¨

t

­ ¢¢®¤¨¬ëåä®­¤ å(®á¢ ¨¢ ¥¬ëå ä®­¤ å). ã¤¥¬ ¯à¥¤¯®« £ âì, çâ®âà㤮¢ë¥ à¥áãàáë ª ª ªâ¨¢­ë¥, â ª ¨ ¯ áᨢ­ë¥

­¥ ã¡ë¢ îâ,â.¥.

T

0

a

(

t

)>0,

T

0

p

(

t

)>0,¨ § ¤ îâá᮫îâ­® ­¥¯à¥à뢭묨 äã­ªæ¨ï-¬¨,á ¯à®¨§¢®¤­®©ªãá®ç­®-­¥¯à¥à뢭®©á¯à ¢ .

Ž¡®§­ ç¨¬ ç¥à¥§

P

(

t

) ª®«¨ç¥á⢮ ç¨á⮣® ¯à®¤ãªâ , ¯à®¨§¢®¤¨¬®£® ­  ä®­¤ å, ãç áâ¢ãîé¨å¢¯à®¨§¢®¤á⢥ ¢¬®¬¥­â¢à¥¬¥­¨

t

.

2. ®áâ ­®¢ª  § ¤ ç¨.

à¨­æ¨¯ ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨

¥à¥©¤¥¬â¥¯¥à쪯®áâ ­®¢ª¥§ ¤ ç¨¨ä®à¬ã«¨à®¢ª¥¯à¨­æ¨¯ 

¤¨ää¥à¥­æ¨ «ì-­®© ®¯â¨¬¨§ æ¨¨.

 æ¨®­ «ì­ë©¤®å®¤¢ª ¦¤ë©¬®¬¥­â¢à¥¬¥­¨

t

¢ëç¨á«ï¥âáﯮ᫥¤ãî饩 ä®à-¬ã«¥

P

(

t

)=

(

t

) Z

m

(

t

)

U

(

(

)

;'

(

)

;

)

d:

(2

:

1)

“à ¢­¥­¨¥¡ « ­á  ªâ¨¢­ëåâà㤮¢ëåà¥áãàᮢ:

(

t

) Z

m

(

t

)

'

(

)

d

=

T

a

(

t

)

:

â® ãà ¢­¥­¨¥¬®¦¥â ¡ëâì§ ¯¨á ­® ¢ ¤¨ää¥à¥­æ¨ «ì­®©ä®à¬¥:

'

(

(

t

))

0

(

t

),

'

(

m

(

t

))

m

0

(

t

)=

T

0

a

(

t

)

:

(2

:

2)

“à ¢­¥­¨¥¡ « ­á ¯ áᨢ­ëåâà㤮¢ëåà¥áãàᮢ:

t

Z

(

t

)

'

(

)

d

=

T

p

(

t

)

:

‚¤¨ää¥à¥­æ¨ «ì­®©ä®à¬¥íâ® ãà ¢­¥­¨¥¡ã¤¥â¨¬¥â좨¤:

'

(

t

)=

'

(

(

t

))

0

(

t

)+

T

0
(5)

‘«¥¤ã¥â®â¬¥â¨âì,ç⮢ëà ¦¥­¨ï(2.2),(2.3) ¢®®¡é¥£®¢®àï,­¥íª¢¨¢ «¥­â­ë

ãà ¢­¥-­¨ï¬¡ « ­á   ªâ¨¢­ë娯 áᨢ­ëåâà㤮¢ëåà¥áãàᮢ, § ¯¨á ­­ë¬ ¢¨­â¥£à «ì­®©

ä®à¬¥ (áâ®ç­®áâì ­ ç «ì­ëå §­ ç¥­¨©).

“à ¢­¥­¨¥ ¡ « ­á  ¯® ä®­¤ ¬ ¢ á«ãç ¥, ª®£¤ 

(

t

) à ¢­  ¯®áâ®ï­­®© ç á⨠­ -樮­ «ì­®£® ¤®å®¤ , â. ¥.

(

t

) =

P

(

t

) (0

< <

1 | ¯®áâ®ï­­ ï ­®à¬  ­ ª®¯«¥­¨ï). ˆá¯®«ì§ãï ä®à¬ã«ã(2.1), ãà ¢­¥­¨¥¡ « ­á  ¯® ä®­¤ ¬¡ã¤¥â¨¬¥âì ¢¨¤

(

t

)=

(

t

) Z

m

(

t

)

U

(

(

)

;'

(

)

;

)

d;

  ¢¤¨ää¥à¥­æ¨ «ì­®©ä®à¬¥:

0

(

t

)=

U

,

(

(

t

))

;'

(

(

t

))

;

(

t

)

0 (

t

),

U

,

(

m

(

t

))

;'

(

m

(

t

))

;m

(

t

)

m

0 (

t

)

:

(2

:

4)

Ž£à ­¨ç¥­¨ï ­  ᪮à®áâì ¯à®æ¥¤ãàë § ¬¥é¥­¨ï ãáâ à¥¢è¨åä®­¤®¢ ¨ ¢¢®¤ 

­®-¢ëå:

06

m

0

(

t

)6

M;

0

(

t

)>0

:

(2

:

5)

‚¬®¤¥«¨‹.‚. Š ­â®à®¢¨ç [10] ¨­¥à樮­­®áâì¯à¨¢¢®¤¥ ­®¢ëåä®­¤®¢­¥

ãç¨-â뢠¥âáï, áç¨â ¥âáï,ç⮢¢®¤¨¬ë¥ ä®­¤ë ¨¬¥î⬣­®¢¥­­ãî®â¤ çã,â.¥.

(

t

)

t

. Šà®¬¥ ⮣®, ¢ ¬®¤¥«¨Š ­â®à®¢¨ç  ­¥â®£à ­¨ç¥­¨ï ­  ᪮à®áâì ¯à®æ¥¤ãàë

¢ë-¢®¤  ãáâ à¥¢è¨å ä®­¤®¢, â. ¥. ä®­¤ë ¬®£ãâ ¡ëâì ¢ë¢¥¤¥­ë ¨§ ¯à®¨§¢®¤á⢠ ᪮«ì

㣮¤­® ¡ëáâà®.

ãáâì ^

t

| ­ ç «ì­ë© ¬®¬¥­â ¢à¥¬¥­¨. ‚¢¥¤¥¬ ¢¥ªâ®à-ä㭪樨

() = f

m

()

;

()

;'

()g, £¤¥

m

(

t

),

(

t

) |  ¡á®«îâ­® ­¥¯à¥àë¢­ë¥ ­  [

^

t;

+1[ ä㭪樨 á ­¥¯à¥à뢭®© á¯à ¢  ¯à®¨§¢®¤­®©;

'

(

t

),

t

2 [

^

t;

+1[ | äã­ªæ¨ï ®£à ­¨ç¥­­®© ¢ -ਠ樨, ­¥¯à¥à뢭 ï á¯à ¢  (¢ á«ãç ¥, ¥á«¨

(

t

) ï¥âáï íª§®£¥­­®© ¯¥à¥¬¥­-­®©). …᫨

(

t

) § ¤ ¥âáï í­¤®£¥­­®, â® ¡ã¤¥¬ à áᬠâਢ âì ¢¥ªâ®à-äã­ªæ¨î

() = f

m

()

;

()

;

()

;'

()g , £¤¥

(

t

),

t

2 [

^

t;

+1[|  ¡á®«îâ­® ­¥¯à¥à뢭 ï äã­ªæ¨ï á ¯à®-¨§¢®¤­®©­¥¯à¥à뢭®©á¯à ¢ .

‚¥ªâ®à-ä㭪樨

() ¡ã¤¥¬ ­ §ë¢ âì âà ¥ªâ®à¨ï¬¨.

®«¨â¨ª ¢ë¡®à ®¯â¨¬ «ì­®©âà ¥ªâ®à¨¨®á­®¢ë¢ ¥âáï­ á«¥¤ãî饬¯à¨­æ¨¯¥.

à¨­æ¨¯ ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨: áâà â¥£¨ï ¢ë¡®à  ¯¥à¥¬¥­­ëå

¬®¤¥«¨¤®«¦­ ¡ëâìâ ª®¢ , ç⮡뢪 ¦¤ë©¬®¬¥­â¢à¥¬¥­¨®¡¥á¯¥ç¨âì

¬ ªá¨¬ «ì-­ë©â¥¬¯à®áâ  ­ æ¨®­ «ì­®£®¤®å®¤ .

¨¦¥ ¯à¨­æ¨¯ ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨ ¡ã¤¥â ä®à¬ «¨§®¢ ­ ¤«ï

à á-ᬠâਢ ¥¬®© § ¤ ç¨. à¨ í⮬ ¯à¨­æ¨¯ ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨ ¬®¦¥â

¡ëâì áä®à¬ã«¨à®¢ ­ ¢ ¢¨¤¥ ãà ¢­¥­¨ï ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨, ª®â®à®¬ã

¤®«¦­ë 㤮¢«¥â¢®àïâì ¯¥à¥¬¥­­ë¥ ¬®¤¥«¨; ä®à¬ «ì­®, ¢ ª ¦¤ë© ¬®¬¥­â

¢à¥¬¥-­¨

t

> ^

t

(£¤¥

t

| ­ ç «ì­ë© ¬®¬¥­â ¢à¥¬¥­¨) ¢¤®«ì âà ¥ªâ®à¨¨, 㤮¢«¥â¢®àïî饩 ¯à¨­æ¨¯ã ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨, ¯à ¢ ï ¯à®¨§¢®¤­ ï ­ æ¨®­ «ì­®£®

¤®-室 

P

(

t

) ¤®«¦­  ¯à¨­¨¬ âì ¬ ªá¨¬ «ì­® ¢®§¬®¦­®¥ §­ ç¥­¨¥,   ¨¬¥­­® ¢ ª ¦¤®© â®çª¥

t

>

^

t

ä㭪樮­ «

P

0

(

t

) ®â­®á¨â¥«ì­®

0

(

t

)

;m

0

(

t

)

;'

(

t

)¤®«¦¥­ ¯à¨­¨¬ âì ¬ ªá¨-¬ «ì­®¥ §­ ç¥­¨¥ ¢¤®«ì âà ¥ªâ®à¨¨

(

t

) = f

m

(

t

)

;

(

t

)

;'

(

t

)g ¯à¨

t

2 [

^

t;

+1[, 㤮¢«¥â-¢®àïî饩ãá«®¢¨ï¬(2.2),(2.3),(2.5) (¢á«ãç ¥íª§®£¥­­®§ ¤ ­­®©ä㭪樨

ª ¯¨â «ì-­ëå ¢«®¦¥­¨©

(

t

); ¤«ï í­¤®£¥­­® ®¯à¥¤¥«ï¥¬®©ä㭪樨

(

t

) | ¢¤®«ì âà ¥ªâ®à¨¨

(

t

)=f

m

(

t

)

;

(

t

)

;

(

t

)

;'

(

t

)g ¯à¨

t

2[ ^
(6)

3. ‘«ãç © íª§®£¥­­® § ¤ ­­®© ä㭪樨 ª ¯¨â «®¢«®¦¥­¨©

‚ á«ãç ¥, ª®£¤  ¨­â¥­á¨¢­®áâì ¢¢®¤  ª ¯¨â «®¢«®¦¥­¨©

(

t

) § ¤ ¥âáï  ¯à¨®à¨,

¬®¤¥«ì ®¯¨á뢠¥âáï á«¥¤ãî騬¨ ãà ¢­¥­¨ï¬¨:

­ æ¨®­ «ì­ë© ¤®å®¤ ¢ ¬®¬¥­â ¢à¥¬¥­¨

t

:

P

(

t

) =

(

t

) Z

m

(

t

)

U

(

(

)

;'

(

)

;

)

d

;

(3

:

1)

ãà ¢­¥­¨ï ¡ « ­á   ªâ¨¢­ëå ¨ ¯ áᨢ­ëå âà㤮¢ëå à¥áãàᮢ ᮮ⢥âá⢥­­®,

§ -¯¨á ­­ë¥ ¢ ¤¨ää¥à¥­æ¨ «ì­®© ä®à¬¥:

'

(

(

t

))

0

(

t

)

,

'

(

m

(

t

))

m

0

(

t

) =

T

0

a

(

t

)

;

(3

:

2)

'

(

t

) =

'

(

(

t

))

0

(

t

) +

T

0

p

(

t

);

(3

:

3)

®£à ­¨ç¥­¨ï ­  ᪮à®áâì ¯à®æ¥¤ãàë § ¬¥é¥­¨ï ãáâ à¥¢è¨å ä®­¤®¢ ¨ ¢¢®¤ 

­®-¢ëå:

0

6

m

0

(

t

)

6

M;

0

(

t

)

>

0;

(3

:

4)

¨­ä®à¬ æ¨ï ® ­ ç «ì­®¬ á®áâ®ï­¨¨ á¨áâ¥¬ë § ¤ ­  ¢ ¢¨¤¥ á«¥¤ãîé¨å ¤ ­­ëå:

1) ­ ç «ì­ë¥ ¤ ­­ë¥ ^

t

, ^

m

=

m

(^

t

), ^

=

(^

t

), ¯à¨ç¥¬ ^

m

6

^

6

^

t

, ^

m <

^

t

;

2) ­  ¨­â¥à¢ «¥ [ ^

m;

t

^

] § ¤ ­  ¯®«®¦¨â¥«ì­ ï ­¥¯à¥à뢭 ï äã­ªæ¨ï (

t

) â ª ï,

çâ®

'

(

t

) ᮢ¯ ¤ ¥â á (

t

) ­  ¯®«ã¨­â¥à¢ «¥ [ ^

m;

^

t

];

3) ­  ¯®«ã¯àאַ© [ ^

m;

+

1

[ § ¤ ­  äã­ªæ¨ï ª ¯¨â «®¢«®¦¥­¨©

(

t

) |

¯®«®¦¨â¥«ì-­ ï, ­¥¯à¥à뢯®«®¦¨â¥«ì-­ ï, ¬®­®â®­­® ¢®§à áâ îé ï.

’¥¯¥àì ¤«ï § ¤ ç¨ (3.1){(3.4) ¤ ¤¨¬ â®ç­®¥ ®¯à¥¤¥«¥­¨¥ ¯à¨­æ¨¯ 

¤¨ää¥à¥­æ¨- «ì­®© ®¯â¨¬¨§ æ¨¨.

à ¢ ï ¯à®¨§¢®¤­ ï

P

0

(

t

) ¤«ï âà ¥ªâ®à¨¨

(

t

) =

f

m

(

t

)

;

(

t

)

;'

(

t

)

g

, ¢ ¯à®¨§¢®«ì­®©

â®çª¥

t

2

[^

t;

+

1

[ ¨¬¥¥â ¢¨¤

P

0

(

t

) =

U

,

(

(

t

))

;'

(

(

t

))

;

(

t

)

0

(

t

)

,

U

,

(

m

(

t

))

;'

(

m

(

t

))

;m

(

t

)

m

0

(

t

)

:

(3

:

5)

à¨ ª ¦¤®¬ 䨪á¨à®¢ ­­®¬ [^

t;

+

1

[ à áᬮâਬ íªáâ६ «ì­ãî § ¤ çã:

‡ ¤ ç (€).

U

,

(

(

t

))

;'

(

(

t

))

;

(

t

)

u

,

U

,

(

m

(

t

))

;'

(

m

(

t

))

;m

(

t

)

v

!

max

u;v;w

;

(3

:

6)

'

(

(

t

))

u

,

'

(

m

(

t

))

v

=

T

0

a

(

t

)

;

(3

:

7)

w

=

'

(

(

t

))

u

+

T

0

p

(

t

)

;

(3

:

8)

0

6

v

6

M; u

>

0

; w

>

0

:

(3

:

9)

(…᫨ ¢ (3.6){(3.8)

(

t

) =

t

¨«¨

m

(

t

) =

t

, â® §­ ç¥­¨¥

'

(

t

) § ¬¥­ï¥âáï ­ 

w

.)

(7)

à¨­æ¨¯ ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨. ’à ¥ªâ®à¨ï

() = f

m

()

;

(),

'

()g ¢ â®çª¥

t

2 [ ^

t;

+1[ 㤮¢«¥â¢®àï¥â ¯à¨­æ¨¯ã ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨, ¥á«¨ ¢ â®çª¥

t

2 [

^

t;

+1[ ®­  㤮¢«¥â¢®àï¥â ®£à ­¨ç¥­¨ï¬ (3

:

2){(3

:

4),   à¥è¥­¨¥ (

v

;u

;w

)íªáâ६ «ì­®©§ ¤ ç¨(3

:

6){(3

:

9) áãé¥áâ¢ã¥â¨à ¢­®

u

=

0

(

t

),

v

=

m

0

(

t

),

w

=

'

(

t

).

®«¥¥â®£®,¥á«¨áâ à륯ந§¢®¤á⢥­­ë¥ä®­¤ë®ª §ë¢ îâáïáà ¢­¨¬ë¬¨á ¢¢®-¤¨¬ë¬¨( ¨¬¥­­®,¨¬¥î⮤¨­ ª®¢ãî¯à®¨§¢®¤¨â¥«ì­®áâì),⮯।¯®ç⥭¨¥ ®â¤ ¥â-áï ­®¢ë¬ ä®­¤ ¬, ¯à¨í⮬ãáâ à¥¢è¨¥ ä®­¤ë ¢ë¢®¤ïâáï ¬ ªá¨¬ «ì­® ¡ëáâà®, â.¥.

v

=Œ. ã¤¥¬£®¢®à¨âì,çâ®âà ¥ªâ®à¨ï

()㤮¢«¥â¢®àï¥â¯à¨­æ¨¯ã¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨,¥á«¨ ®­  㤮¢«¥â¢®àï¥â ¥¬ã¢ «î¡®©â®çª¥

t

2[

^

t;

+1[.

‚ ª ç¥á⢥ ¯à®¨§¢®¤á⢥­­®© ä㭪樨 ¡ã¤¥¬ à áᬠâਢ âì å®à®è® ¨§¢¥áâ­ãî

äã­ªæ¨î Š®¡¡  | „㣫 á 

U

(

;';t

) =

f

(

t

)

(

t

)

'

(

t

),

+

= 1, ¤«ï ª®â®-ன ­¥¯à¥à뢭®-¤¨ää¥à¥­æ¨à㥬 ï äã­ªæ¨ï

f

(

t

) 㤮¢«¥â¢®àï¥â ãá«®¢¨ï¬

f

(

t

)

>

0,

f

0

(

t

)

>

0 ¨ ®âà ¦ ¥â ã஢¥­ì á®áâ®ï­¨ï ­ ãç­®-â¥å­¨ç¥áª®£® ¯à®£à¥áá  ¢ ¬®¬¥­â

t

. ”ã­ªæ¨ïŠ®¡¡  | „㣫 á ï¢«ï¥âáï ®¤­®à®¤­®©¨ ¢®£­ã⮩.

à¨­æ¨¯¤¨ää¥à¥­æ¨ «ì­®©®¯â¨¬¨§ æ¨¨¯à¨¢®¤¨âªá«®¦­®©á¨á⥬¥

ä㭪樮-­ «ì­®-¤¨ää¥à¥­æ¨ «ì­ëå ãà ¢­¥­¨© (á¨á⥬¥ ãà ¢­¥­¨© ¤¨ää¥à¥­æ¨ «ì­®©

®¯â¨-¬¨§ æ¨¨). ‚뤥«ïîâá濫  ®á­®¢­ëå ०¨¬  ¯®¢¥¤¥­¨ïá¨á⥬ë:

1. ‘«ãç © ®âáãâáâ¢¨ï ¨­¥à樮­­®á⨠¯à¨ ¢¢®¤¥ ­®¢ëå ä®­¤®¢:

(

t

) =

t

, â. ¥. ¢¢®¤¨¬ë¥ ¢ ¬®¬¥­â ¢à¥¬¥­¨

t

ä®­¤ë ­ ç¨­ îâ ¤ ¢ âì ®â¤ çã ¬£­®¢¥­­® (¯à¨ í⮬ ०¨¬¥ ®¡ê¥¬ ¯ áᨢ­ëå âà㤮¢ëå à¥áãàᮢ ­¥ ¬¥­ï¥âáï; ¥á«¨ ¦¥ ¯à¨í⮬ ०¨¬¥

¨§¬¥­ï¥âáï ®¡ê¥¬ ¯ áᨢ­ëå âà㤮¢ëå à¥áãàᮢ

T

0

p

(

t

) 6=0, â® ¯à®¨á室¨â¯¥à¥å®¤ ­  ०¨¬2);

2. “ç¥â ¨­¥à樮­­ëå᢮©á⢠¯à¨ ¢¢®¤¥ ­®¢ëå ä®­¤®¢:

(

t

)

< t

, â. ¥. ¢¢®¤¨¬ë¥ ¢ ¬®¬¥­â ¢à¥¬¥­¨

t

ä®­¤ë ­ ç¨­ îâ ¤ ¢ âì ®â¤ çã ­¥ áà §ã,   âॡãî⠢६¥­¨ ­  ¢¢®¤ ¨®á¢®¥­¨¥.

¥à¥¬¥­­ë¥ á¨á⥬ë ãà ¢­¥­¨© ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨¢ ª ¦¤ë©

¬®-¬¥­â¢à¥¬¥­¨

t

2[ ^

t;

+1[¤®«¦­ë㤮¢«¥â¢®àïâì á«¥¤ãî饩 á¨á⥬¥ ãà ¢­¥­¨©

m

0 (

t

)=

8 > > > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > > > :

0

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))6=0

;

'

max

(

t

)

'

(

m

(

t

)) ,

T

0 a

(

t

)+

T

0

p (

t

)

'

(

m

(

t

)) 60;

'

max

(

t

)

'

(

m

(

t

)) ,

T

0 a

(

t

)+

T

0

p (

t

)

'

(

m

(

t

))

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))6=0

;

0

<

'

max

(

t

)

'

(

m

(

t

)) ,

T

0 a

(

t

)+

T

0

p (

t

)

'

(

m

(

t

))

< M

;

M;

¥á«¨

(

t

)=

t; '

(

m

(

t

))6=0

;

'

max

(

t

)

'

(

m

(

t

)) ,

T

0 a

(

t

)+

T

0

p (

t

)

'

(

m

(

t

))

>

M

;

0

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))=0;

0

;

¥á«¨

(

t

)

< t; '

(

m

(

t

))6=0

;'

(

(

t

))6=0

;

F

(

(

t

))

'

(

(

t

))

<

F

(

m

(

t

))

'

(

m

(

t

)) ;

M;

¥á«¨

(

t

)

< t; '

(

m

(

t

))6=0

;'

(

(

t

))6=0

;

F

(

(

t

))

'

(

(

t

)) >

F

(

m

(

t

))

'

(

m

(

t

)) ;

0

;

¥á«¨

(

t

)

< t; '

(

m

(

t

))=0

:

(8)

0 (

t

)=

> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > : 1,

T

p

(

t

)

T

0 a

(

t

)+

T

0

p

(

t

)

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))6=0

;

'

max

(

t

)

'

(

m

(

t

))

,

T

0 a

(

t

)+

T

0

p

(

t

)

'

(

m

(

t

))

60;

1,

T

0 p

(

t

)

'

max

(

t

)

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))6=0

;

0

<

'

max

(

t

)

'

(

m

(

t

))

,

T

0 a

(

t

)+

T

0

p

(

t

)

'

(

m

(

t

))

< M

;

1,

T

0 p

(

t

)

'

(

m

(

t

))

M

+

T

0 a

(

t

)+

T

0

p

(

t

)

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))6=0

;

'

max

(

t

)

'

(

m

(

t

))

,

T

0 a

(

t

)+

T

0

p

(

t

)

'

(

m

(

t

))

>

M

;

T

0 a

(

t

)

T

0 a

(

t

)+

T

0

p

(

t

)

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))=0

;

8 > > > > < > > > > :

T

0

a

(

t

)+

T

0

p

(

t

)6=0

;

1

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))=0

;

T

0

a

(

t

)+

T

0

p

(

t

)=0;

T

0 a

(

t

)

'

(

(

t

))

;

¥á«¨

(

t

)

< t; '

(

m

(

t

))6=0

; '

(

(

t

))6=0

;

F

(

(

t

))

'

(

(

t

))

<

F

'

(

(

m

m

(

(

t

t

))

))

;

'

'

(

m

(

t

))

(

(

t

))

M

+

T

0 a

(

t

)

'

(

(

t

))

;

¥á«¨

(

t

)

< t;'

(

m

(

t

))6=0

;'

(

(

t

))6=0

;

F

(

(

t

))

'

(

(

t

))

>

F

(

m

(

t

))

'

(

m

(

t

))

;

T

0 a

(

t

)

'

(

(

t

))

;

¥á«¨

(

t

)

< t; '

(

m

(

t

))=0

;

8 > > > > < > > > > :

'

(

(

t

))6=0;

1

;

¥á«¨

(

t

)

< t; '

(

m

(

t

))=0

;

'

(

(

t

))=0;

(II)

0 (

t

)=

8 > > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > > :

T

0

a

(

t

)+

T

0

p

(

t

)

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))6=0

;

'

max

(

t

)

'

(

m

(

t

))

,

T

0 a

(

t

)+

T

0

p

(

t

)

'

(

m

(

t

))

60;

'

max

(

t

)

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))6=0

;

0

<

'

max

(

t

)

'

(

m

(

t

))

,

T

0 a

(

t

)+

T

0

p

(

t

)

'

(

m

(

t

))

< M

;

'

(

m

(

t

))

M

+

T

0

a

(

t

)+

T

0

p

(

t

)

;

¥á«¨

(

t

)=

t;'

(

m

(

t

))6=0

;

0

<

'

max

(

t

)

'

(

m

(

t

))

,

T

0 a

(

t

)+

T

0

p

(

t

)

'

(

m

(

t

))

>

M

;

T

0

a

(

t

)+

T

0

p

(

t

)

;

¥á«¨

(

t

)=

t; '

(

m

(

t

))=0;

T

0

a

(

t

)+

T

0

p

(

t

)

;

¥á«¨

(

t

)

< t; '

(

m

(

t

))6=0

;'

(

(

t

))6=0

;

F

(

(

t

))

'

(

(

t

))

<

F

'

(

(

m

m

(

(

t

t

))

))

;

'

(

m

(

t

))

M

+

T

0

a

(

t

)+

T

0

p

(

t

)

;

¥á«¨

(

t

)

< t; '

(

m

(

t

))6=0

;'

(

(

t

))6=0

;

F

(

(

t

))

'

(

(

t

))

>

F

(

m

(

t

))

'

(

m

(

t

))

;

T

0

a

(

t

)+

T

0

p

(

t

)

;

¥á«¨

(

t

)

< t; '

(

m

(

t

))=0;

(III)

(9)

ãà ¢-­¥­¨ï:

F

(

t

)

'

,

max

(

t

)

+

T

0

p (

t

)

'

max

(

t

)

,

F

(

m

(

t

))

'

,

(

m

(

t

))=0

:

(3

:

10)

“à ¢­¥­¨¥ (3.10) ¨¬¥¥â ¥¤¨­á⢥­­®¥ ¯®«®¦¨â¥«ì­®¥ à¥è¥­¨¥ [11]

'

max

(

t

), ¨¬¥î饥 ¯à¥¤áâ ¢«¥­¨¥

'

max

(

t

)=

y

(

t;m

(

t

))

:

‘ä®à¬ã«¨à㥬 ⥮६ãíª¢¨¢ «¥­â­®áâ¨.

’¥®à¥¬  1 (⥮६  íª¢¨¢ «¥­â­®áâ¨). ãáâì § ¤ ­ë ­ ç «ì­ë¥ ¤ ­­ë¥

m;

^

;

^ ^

t

^

m <

^ 6 ^

t

, ªà ¥¢ ï ­¥¯à¥à뢭 ï äã­ªæ¨ï (

t

)

>

0,

t

2 [

m;

^ ^

t

] ¨ âà ¥ªâ®à¨ï

() = f

m

()

;

()

;'

()g, £¤¥

m

(

t

),

(

t

),

t

2 [

^

t;

+1[ |  ¡á®«îâ­® ­¥¯à¥àë¢­ë¥ ä㭪樨 á ¯à®¨§¢®¤­ë¬¨ ­¥¯à¥à뢭묨 á¯à ¢ , 㤮¢«¥â¢®àïî騥 ãá«®¢¨ï¬

m

(

t

) 6

(

t

) 6

t

,

m

(

t

)

< t

¨ ­ ç «ì­ë¬ §­ ç¥­¨ï¬

m

( ^

t

) = ^

t

,

( ^

t

) =

^;

'

(

t

) | ªãá®ç­®-­¥¯à¥à뢭 ï á¯à ¢  äã­ªæ¨ï,㤮¢«¥â¢®àïîé ï ­ ç «ì­®¬ã ãá«®¢¨î

'

(

t

)(

t

),

t

2[

m;

^

^

t

]. ’®£¤  ¤«ï «î¡®£®

t

2 [

^

t;

+1[ âà ¥ªâ®à¨ï

(

t

) 㤮¢«¥â¢®àï¥â ¯à¨­æ¨¯ã ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨ ⮣¤  ¨ ⮫쪮 ⮣¤ , ª®£¤  ¢ â®çª¥

t

á¯à ¢¥¤«¨¢  á¨á⥬  ãà ¢­¥­¨© (I){(III).

’¥®à¥¬  2 (⥮६  áãé¥á⢮¢ ­¨ï¨¥¤¨­á⢥­­®áâ¨).ãáâì§ ¤ ­ë­ ç «ì­ë¥

¤ ­­ë¥

m

^,

^, ^

t

â ª¨¥, çâ®

m <

^

^ 6 ^

t

¨ ªà ¥¢ ï ­¥¯à¥à뢭 ï äã­ªæ¨ï (

t

)

>

0,

t

2[

m;

^ ^

t

]. ’®£¤ áãé¥áâ¢ã¥â,¯à¨ç¥¬¥¤¨­á⢥­­®¥,à¥è¥­¨¥á¨á⥬ë(I){(III),£¤¥

m

(

t

),

(

t

),

t

2 [ ^

t;

+1[ |  ¡á®«îâ­® ­¥¯à¥àë¢­ë¥ ä㭪樨,

'

(

t

)

t

2 [

m;

^ +1[ | ªãá®ç­®-­¥¯à¥à뢭 ï á¯à ¢  äã­ªæ¨ï, 㤮¢«¥â¢®àïîé ï ªà ¥¢®¬ã ãá«®¢¨î

'

(

t

) = (

t

),

t

2 [

m;

^

^

t

[¨­ ç «ì­ë¬¤ ­­ë¬

m

( ^

t

)=

m

^,

( ^

t

)=

^. ®«¥¥â®£®,ä㭪樨

m

(

t

),

(

t

)â ª®¢ë, çâ®

m

(

t

)6

(

t

)6

t

,

m

(

t

)

< t

.

I

( )

( )

m t =0

t =t

α

II

( )

( )

0<m t <M

t =t

α

III

( )

( )

m t =M

t =t

α

IV

( )

( )

m t =0

t <t

α

V

( )

(

m t =M

t)<t

α

T t =0

p

( )

T t 0

p

( )

(10)

„®ª § â¥«ìá⢮ ⥮६ 1 ¨ 2 ¯à¨¢¥¤¥­® ¢ [11]. ¥à¥å®¤ë á ®¤­®£® ०¨¬  ­ 

¤à㣮© ¯à¥¤áâ ¢«¥­ë¤¨ £à ¬¬®©,á¬.à¨á. 1.

„ ¤¨¬ ­¥ª®â®à®¥ ¯®ïá­¥­¨¥ ª ¤¨ £à ¬¬¥. ‡ ¬¥â¨¬, çâ® ¢ ¯¥à¢ëå âà¥å á«ãç ïå

ãá«®¢¨¥ ’ 0

p

(

t

) = 0 (â. ¥. ¯ áᨢ­ë¥ âà㤮¢ë¥ à¥áãàáë ­¥ ¢¢®¤ïâáï) ï¥âáï ­¥®¡å®-¤¨¬ë¬ ãá«®¢¨¥¬ ⮣®, çâ®

(

t

) =

t

, ¥á«¨

T

0

p

(

t

) 6= 0, â® ¯à®¨á室¨â ¯¥à¥å®¤ ­  ०¨¬

(

t

)

< t

(IV ¨ V)).

 áᬮâਬ०¨¬I.…᫨®¡ê¥¬¯ áᨢ­ëåâà㤮¢ëåà¥áãàᮢ¬¥­ï¥âáï(

T

0

p

(

t

)6= 0),⮯நá室¨â¯¥à¥å®¤­ à¥¦¨¬IV(¯¥à¥å®¤­ à¥¦¨¬V­¥¢®§¬®¦¥­,â.ª.

M

1 ¨ ¢ í⮬ á«ãç ¥ ­ àãè¨âáï ãá«®¢¨¥

(

t

) 6

t

). ‘ í⮣® ¬®¬¥­â  ¢¢®¤ïâáï ä®­¤ë, âà¥-¡ãî騥¢à¥¬¥­¨­  ®á¢®¥­¨¥,¯®í⮬㨬¥î騥áïä®­¤ë­¥¢ë¢®¤ïâáï

m

0

(

t

)=0,â.¥. ¯à®¨á室¨â ­ ª®¯«¥­¨¥ ®á­®¢­ëå ä®­¤®¢. Š®£¤  ª ¯¨â «®¢®®à㦥­­®áâì âà㤮¢ëå

à¥áãàᮢ ­  ­ ª ¯«¨¢ ¥¬ëåä®­¤ å áà ¢­ïâáïá ª ¯¨â «®¢®®à㦥­­®áâìî

§ ¤¥©á⢮-¢ ­­ëå ¢¯à®¨§¢®¤á⢥ âà㤮¢ëå à¥áãàᮢ, â. ¥.

F

(

(

t

))

'

(

(

t

))

=

F

(

m

(

t

))

'

(

m

(

t

))

,¯à®¨á室¨â ¯¥à¥å®¤ ­  ०¨¬ V: áâ àë¥ ä®­¤ë ¯à¨ í⮬ ¡ã¤ã⠢뢮¤¨âìáï á ¬ ªá¨¬ «ì­®© ᪮à®áâìî

(

m

0

(

t

)=Œ),¨ ¨­â¥­á¨¢­®¡ã¤ã⢢®¤¨âìáï­®¢ë¥ ä®­¤ë

0

(

t

)=

'

(

m

(

t

))

M

+

T

0

a

(

t

)+

T

0

p

(

t

)

:

(3

:

11)

®¢ë¥ä®­¤ë¢¢®¤ïâáï᤮áâ â®ç­®¡®«ì让᪮à®áâìî(3.11),¯®í⮬㧠

ª®­¥ç-­®¥¢à¥¬ï

(

t

)¤®á⨣ ¥â

t

¨á¨á⥬ ¯¥à¥å®¤¨â­ à¥¦¨¬III.‚¤®ª § â¥«ìá⢥⥮६ë 2 (á¬. [11])¯®ª § ­®, ç⮢ ०¨¬¥ IIIá¨á⥬  ­¥ ¬®¦¥â à §¢¨¢ âìáï ¢¯«®âì ¤®

¡¥á-ª®­¥ç­®áâ¨,§  ª®­¥ç­®¥ ¢à¥¬ï ¯à®¨á室¨â¯¥à¥å®¤ «¨¡®­ à¥¦¨¬ II (¥á«¨

T

0

p

(

t

)=0), «¨¡®­  ०¨¬IV (¥á«¨ ’

0

p

(

t

)6=0). à¥¤¯®«®¦¨¬ ⥯¥àì, çâ®

T

0

p

(

t

) = 0, ¨ á¨á⥬  ­ ç¨­ ¥â à §¢¨¢ âìáï ᮣ« á­® ०¨¬ã II. …᫨

T

0

p

(

t

) 6= 0, â® á ०¨¬  II ¯à®¨á室¨â ¯¥à¥å®¤ ­  ०¨¬ IV, ¤ «ì-­¥©è¥¥ à §¢¨â¨¥ ¡ë«® à áᬮâ७® ¢ëè¥. …᫨ ®¡ê¥¬ ¯ áᨢ­ëå à¥áãàᮢ ­¥

¬¥­ï-¥âáï (

T

0

p

(

t

) = 0) ¨ ¨­â¥­á¨¢­®áâì ¢¢®¤   ªâ¨¢­ëå âà㤮¢ëå à¥áãàᮢ (

T

0

a

(

t

)) १ª® ¢®§à áâ ¥â, â® á¨á⥬  ¯¥à¥å®¤¨â ­  ०¨¬ I. …᫨ ®¡ê¥¬ ¯ áᨢ­ëå à¥áãàᮢ

¬¥­ï-¥âáï (

T

0

p

(

t

) 6= 0), â® ¯à®¨á室¨â ¯¥à¥å®¤ ­  ०¨¬ (â ª®© ¢ à¨ ­â 㦥 ¡ë« à áᬮâ-७). …᫨

T

0

p

(

t

) = 0 ¨

T

0

a

(

t

) 6= 0, â® ¤«ï ä㭪樨

'

max

(

t

) á¯à ¢¥¤«¨¢® ­¥à ¢¥­á⢮

'

max

(

t

)

'

(

m

(

t

))

6

T

0 a

(

t

)

'

(

m

(

t

))

. ˆá¯®«ì§ãïãà ¢­¥­¨¥ (3.10), ¯®«ãç ¥¬

'

max

(

t

)

'

(

m

(

t

)) =

1

=

F

(

t

)

F

(

m

(

t

)) 6

T

0

a

(

t

)

'

(

m

(

t

))

:

(3

:

12)

’ ª ª ª ä®­¤ë ­¥ ¢ë¢®¤ïâáï

m

0

(

t

) =0, â®

m

(

t

) =const =

m

¨

F

(

m

(

t

)) =

F

(

m

),

'

(

m

(

t

))=

'

(

m

)¥áâ좥«¨ç¨­ë¯®áâ®ï­­ë¥. ˆ§(3.12)¯®«ãç ¥¬á«¥¤ãî饥­¥à ¢¥­á⢮

F

(

t

)

T

0

a

(

t

) =

F

(

t

)

'

(

t

)

6

1

=

F

(

m

)

'

(

m

)

=const

:

(3

:

13)

’ ª¨¬ ®¡à §®¬, ¤® â¥å ¯®à, ¯®ª  ª ¯¨â «®¢®®à㦥­­®áâì âà㤮¢ëå à¥áãàᮢ ­¥

¯à¥-¢®á室¨â ­¥ª®â®à®©¯®áâ®ï­­®©¢¥«¨ç¨­ë,á¨á⥬  ¡ã¤¥âà §¢¨¢ âìáï ¢à¥¦¨¬¥ I.

Žâ¤¥«ì­®à áᬮâਬ á«ãç ©,ª®£¤ 

'

(

m

(

t

))=0. ’®£¤  ¯¥à¥¬¥­­ë¥¬®¤¥«¨ ®¯à¥-¤¥«ïîâáïãà ¢­¥­¨ï¬¨:

m

0
(11)

0 (

t

)=

>

>

>

>

>

<

>

>

>

>

>

: a

T 0

a (t)+T

0

p (t)

;

¥á«¨

(

t

)=

t

¨

T

a

(

t

)+

T

p

(

t

)6=0;

1

;

¥á«¨

(

t

)=

t

¨

T

0

a (

t

)+

T

0

p

(

t

)=0; T

0

a (t)

'((t))

;

¥á«¨

(

t

)

< t

¨

'

(

(

t

))6=0;

1

;

¥á«¨

(

t

)

< t

¨

'

(

(

t

))=0;

'

(

t

)=

T

0

a (

t

)+

T

0

p (

t

)

:

ɇǬ

T

0

a

(

t

) =0¨

T

0

p

(

t

) =0,â®

'

(

t

) =0¨ á¨á⥬  ¯®¯ ¤ ¥â ¢ ०¨¬ ý®¦¨¤ ­¨ïþ, â.¥. ¢â ª®¬á®áâ®ï­¨¨(ä®­¤ë­¥ ¢ë¢®¤ïâá鶴¥â¤¢¨¦¥­¨ï âà㤮¢ëåà¥áãàᮢ)

á¨á-⥬ ¡ã¤¥â­ å®¤¨âá冷â¥å¯®à,¯®ª ­¥ ¨§¬¥­ïâá¥è­¨¥å à ªâ¥à¨á⨪¨á¨á⥬ë

T

0 a

(

t

),

T

0

p

(

t

) (¨­â¥­á¨¢­®áâ좢®¤   ªâ¨¢­ëå¨/¨«¨¯ áᨢ­ëåâà㤮¢ëåà¥áãàᮢ).  áᬮâਬ ®¤¨­ ç áâ­ë© á«ãç ©. ‘¤¥« ¥¬ á«¥¤ãî饥 ¯à¥¤¯®«®¦¥­¨¥: ®¡ê¥¬

âà㤮¢ëå à¥áãàᮢ ª ª  ªâ¨¢­ëå, â ª ¨ ¯ áᨢ­ëå ­¥ ¬¥­ï¥âáï, â. ¥.

T

a

(

t

) = const,

T

p

(

t

) = const, ¨ ¢¢®¤¨¬ë¥ ä®­¤ë ¨¬¥îâ ¬£­®¢¥­­ãî ®â¤ çã, â. ¥.

(

t

) =

t

. ‚ í⮬ á«ãç ¥á¨á⥬  à §¢¨¢ ¥âáï ¯® ®¤­®¬ã ¨§ ०¨¬®¢I, II¨«¨III.

 ¨¡®«¥¥ ¨­â¥à¥á­ë¬ï¢«ï¥âáï०¨¬ II. ‚[10]¯®ª § ­®, ç⮥᫨ äã­ªæ¨ï

F

(

t

) ¨¬¥¥â íªá¯®­¥­æ¨ «ì­ë© ¢¨¤, â. ¥.

F

(

t

) =

f

1=

(

t

)

(

t

) =

Ce

t

, â® äã­ªæ¨ï

m

(

t

) ¯à¨

t

!+1¢ë室¨â­ à¥¦¨¬á¯®áâ®ï­­ë¬§ ¯ §¤ë¢ ­¨¥¬

m

(

t

)

t

,

A

, äã­ªæ¨ï

'

(

t

) á® ¢à¥¬¥­¥¬¢ë室¨â­  ¯¥à¨®¤¨ç¥áª¨© ०¨¬.

 à¨áã­ª å2,3¯à¥¤áâ ¢«¥­ ç¨á«¥­­ ïॠ«¨§ æ¨ï ¤ ­­®£®á«ãç ï.

m t

( )

α

( )

t

L

t

Ðèñ. 2. Ãðàôèêè ôóíêöèé ( ),

α

t m t .

( )

Ðèñ. 3. Ãðàôèê ôóíêöèè

ϕ

( ).

t

ϕ

( )

t

t

t

‚ ⮬ á«ãç ¥, ª®£¤  äã­ªæ¨ï

F

(

t

) ¨¬¥¥â á⥯¥­­®© à®áâ, äã­ªæ¨ï

m

(

t

) ¡ã¤¥â ¯à¨¡«¨¦ âìáïª «¨­¥©­®©

m

(

t

)

at

+

b

,

a <

1 (à¨á.4, 5).

m t

( )

Ðèñ. 4. Ãðàôèêè ôóíêöèé

α

( ),

t m t

( ).

α

( )

t

L

t

t

Ðèñ. 5. Ãðàôèê ôóíêöèè

ϕ

( ).

t

ϕ(

t

)

(12)

à¨ í⮬, ¨­â¥à¢ «ë [t

k ;t

k+1

], ­  ª®â®àëå ¯à®¤®«¦ ¥âáï äã­ªæ¨ï '(t) á®

¢à¥-¬¥­¥¬ã¢¥«¨ç¨¢ îâáï,®¤­ ª®®¡ê¥¬ ¢¢®¤¨¬ëå­ íâ¨å ¨­â¥à¢ « å¢à¥¬¥­¨âà㤮¢ëå

à¥áãàᮢ,ª ª¯®ª § «¨à áç¥âë,­¥¬¥­ï¥âáï,â.¥. ¨­â¥£à «®âä㭪樨'(t)­ «î¡®¬

®â१ª¥[t

k ;t

k+1

]¥áâ좥«¨ç¨­  ¯®áâ®ï­­ ï.

‹¨â¥à âãà 

1.

à ã­Œ.

’¥®à¨ï ¨ ¨§¬¥à¥­¨¥ â¥å­¨ç¥áª®£® ¯à®£à¥áá .|Œ.: ‘â â¨á⨪ , 1971.

2.

‹®â®¢€.‚.

‚¢¥¤¥­¨¥ ¢ íª®­®¬¨ª®-¬ â¥¬ â¨ç¥áª®¥ ¬®¤¥«¨à®¢ ­¨¥.|Œ.: 1984.

3. Œ â¥¬ â¨ç¥áª®¥ ¬®¤¥«¨à®¢ ­¨¥ íª®­®¬¨ç¥áª¨å ¯à®æ¥áᮢ / ®¤ ।. ˆ. ‚. Š®â®¢ .|‹.: ˆ§¤-¢®

‹ƒ“, 1980.

4.

¥áªà®¢­ë©ˆ.Œ.

à®¡«¥¬ë ¨á¯®«ì§®¢ ­¨ï ¬ ªà®íª®­®¬¨ç¥áª¨å ¬®¤¥«¥© ¤«ï § ¤ ç

¯« ­¨à®-¢ ­¨ï ¢ ãá«®¢¨ïå ¨­â¥­á¨¢­®£® à §¢¨â¨ï // ‚®¯à. à ¤¨®-í«¥ªâà®­¨ª¨. ‘¥à. €‘“.|1984.|

‚ë¯. 2. ‘. 3{12.

5.

ƒ«ã誮¢‚.Œ.,ˆ¢ ­®¢‚.‚.,Ÿ­¥­ª®‚.Œ.

Œ®¤¥«¨à®¢ ­¨¥ à §¢¨¢ îé¨åáï á¨á⥬.|Œ.:  ãª ,

1983.

6.

Sollow R.

Investment and Technical Progress // Mathematical Methods in the Social Science.|

Stanford Univ. Press, 1960.|P. 89{104.

7.

Š ­â®à®¢¨ç‹.‚.,ƒ®à쪮¢‹.ˆ.

”㭪樮­ «ì­ë¥ ãà ¢­¥­¨ï ®¤­®¯à®¤ãªâ®¢®© ¬®¤¥«¨ // „®ª«.

€ ‘‘‘.|1959.|’. 129, ü 4.|‘. 732{736.

8.

ƒ«ã誮¢‚.Œ.

Ž¡ ®¤­®¬ ª« áᥠ¤¨­ ¬¨ç¥áª¨å ¬ ªà®íª®­®¬¨ç¥áª¨å ¬®¤¥«¥© // “¯à ¢«ïî騥

¬ è¨­ë ¨ á¨á⥬ë.|1977.|ü 2.|‘. 3{6.

9.

Š ­â®à®¢¨ç‹.‚.,†¨ï­®¢‚.ˆ.

ޤ­®¯à®¤ãªâ®¢ ï ¤¨­ ¬¨ç¥áª ï ¬®¤¥«ì íª®­®¬¨ª¨,

ãç¨â뢠î-é ï áâàãªâãàã ä®­¤®¢ ¯à¨ ­ «¨ç¨¨ â¥å­¨ç¥áª®£® ¯à®£à¥áá  // „®ª«. € ‘‘‘.|1973.|’. 211,

ü 6,|‘. 1280{1283.

10.

Š ­â®à®¢¨ç‹.‚.,†¨ï­®¢‚.ˆ.,•®¢ ­áª¨©€.ƒ.

à¨­æ¨¯ ¤¨ää¥à¥­æ¨ «ì­®© ®¯â¨¬¨§ æ¨¨ ¢

¯à¨¬¥­¥­¨¨ ª ®¤­®¯à®¤ãªâ®¢®© ¤¨­ ¬¨ç¥áª®© ¬®¤¥«¨ íª®­®¬¨ª¨ // ‘¨¡. ¬ â. ¦ãà­.|1978.|

’. 19, ü 5.|‘. 1053{1064.

11.

¥ª« àוֹ.€.,®à¨á®¢ ‘.‚.

Ž¡ ®¤­®© ¤¨­ ¬¨ç¥áª®© ¬®¤¥«¨ § ¬¥é¥­¨ï ¯à®¨§¢®¤á⢥­­ëå

¬®é­®á⥩ // ª®­®¬¨ª  ¨ ¬ â. ¬¥â®¤ë.|2002.|’. 38, ü 3.

12.

¥ª« àוֹ.€,®à¨á®¢ ‘.‚.

ޤ­®¯à®¤ãªâ®¢ ï ¬®¤¥«ì ¯à®¨§¢®¤á⢠ á ãç¥â®¬ ¨­¥à樮­­ëå

᢮©á⢠¢¢®¤¨¬ëå ¨ ¢ë¢®¤¨¬ëå ä®­¤®¢ // à¥¯à¨­â # WP/2000/093|Œ.: –Œˆ €, 2000.|

56 á.

13.

¥ª« àוֹ.€,®à¨á®¢ ‘.‚.

ޤ­®¯à®¤ãªâ®¢ ï ¤¨­ ¬¨ç¥áª ï ¬®¤¥«ì ¯à®¨§¢®¤á⢠ á

¨­¥àæ¨-®­­ë¬¨ ᢮©á⢠¬¨ á¨á⥬ë // à¥¯à¨­â # WP/98/045.|Œ.: –Œˆ €, 1998.|22 á.

14.

®à¨á®¢ ‘. ‚.

Œ®¤¥«ì ¯à®¨§¢®¤á⢠ á ãç¥â®¬ ¨­¥à樮­­ëå ᢮©á⢠¢¢®¤¨¬ëå ¨ ¢ë¢®¤¨¬ëå

ä®­¤®¢ // €ã¤¨â ¨ 䨭 ­á®¢ë©  ­ «¨§.|1999.|ü 2.|‘. 5{18.

Referensi

Dokumen terkait

Orszag, Advanced Mathematical Methods for Scientists and Engineers , Mcgraw–Hill Book Company, 1978, 218..

School of Mathematical Sceinces, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor D.

The result suggests that the actual investment behavior can be explained as an optimal behavior in the 1980s, but a rise in investment rates in the 1960s and the 1970s cannot

Of course, technical progress will improve the data: improving temporal resolution (mainly limited by the signal-to-noise ratio of the dyes) will allow investigating the

In order to evaluate whether investment in IT-assisted teaching and learning methods provides net benefits to institutions, it is necessary to have information on the current costs

In the same year, ¸ Cafak Alpay joined the faculty of Middle East Technical University, and, except for semester long visits to Eastern Mediterranean University and

The organization of the book is straightforward and logical; it covers transportation demand, cost, pricing, investment, and regulation (of both market power and externalities) in

Therefore in 1992, the root distribution pattern of an established Miscanthus crop was measured in field trials using the trench profile and the auger methods.. Also, in 1994 /