• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:VMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:VMJ:"

Copied!
5
0
0

Teks penuh

(1)

“„Š 517.5

’…ސ…Œ€ Ž‹Ž’Ž‘’ˆ

Œ. ‘. €«¡®à®¢ 

‘ä®à¬ã«¨à®¢ ­  ¨¤®ª § ­ â¥®à¥¬ ®¯«®â­®á⨯à®áâà ­á⢠¡¥áª®­¥ç­®

¤¨ää¥à¥­-æ¨à㥬ëå ä㭪権 ¢ ­¨§®âய­ëå¯à®áâà ­áâ¢ å ‘®¡®«¥¢  ¯à¨ ­¥ª®â®àëå ãá«®¢¨ïå

­ «®¦¥­­ëå­ ®¡« áâì.

‚ ­ áâ®ï饩 à ¡®â¥ ¨§ãç ¥âáï ¢®¯à®á ® ¯«®â­®á⨠¯à®áâà ­á⢠

¡¥áª®-­¥ç­® ¤¨ää¥à¥­æ¨à㥬ëå ä㭪権 ¢  ­¨§®âய­ëå ¯à®áâà ­á⢠å

‘®¡®«¥-¢ . Œë ¡ã¤¥¬ à áᬠâਢ âì ¯à®áâà ­á⢠ L l

p

() å à ªâ¥à¨§ãî騥áï

ª®­¥ç-­®áâìî ­®à¬ë:

kfk

L l

p ()

= X

j:lj=1 kD

fk

Lp() ;

§¤¥áì | ®âªàë⮥ ¬­®¦¥á⢮ ¢ R n

, 1 6 p 6 1, = (

1

;:::;

n

) ¨ l =

(l

1 ;:::;l

n

) | ¬ã«ì⨨­¤¥ªáë, j:lj:=

1

l

1

++

n

l

n , D

f = @

f

@x

1

1 :::@x

n

n .

‚¨§®âய­®¬á«ã砥ࠧ«¨ç­ë¥ á¯¥ªâë§ ¤ ç¨®¯«®â­®á⨯à®áâà ­á⢠

¡¥áª®­¥ç­® ¤¨ää¥à¥­æ¨à㥬ëå ­¥¯à¥à뢭ëå ä㭪権 ¢ ¯à®áâà ­á⢠å

‘®¡®-«¥¢  å®à®è® ¨§ãç¥­ë ¢ à ¡®â å ¬­®£¨å  ¢â®à®¢, á¬., ­ ¯à¨¬¥à, ‘. ‹.

‘®¡®-«¥¢[1],‚.ƒ.Œ §ìï[2],†.-‹. ‹¨®­á,.Œ ¤¦¥­¥á[3],„¦.®«ª¨­ [4],‹.

•¥¤-¡¥à£ [5].

‚  ­¨§®âய­®¬ á«ãç ¥ ¢®¯à®á ® ¯«®â­®á⨠¨§ãç «áï ¤«ï ®¡« á⥩,

㤮¢-«¥â¢®àïîé¨åãá«®¢¨îண ¨¤«ï¡«¨§ª®£®ª« áá ®¡« á⥩¢à ¡®â åŽ.‚.

¥-ᮢ , ‚.. ˆ«ì¨­ , ‘. Œ. ¨ª®«ì᪮£® [6], ‘.‚. “ᯥ­áª®£®, ƒ. ‚.„¥¬¨¤¥­ª®,

‚. ƒ. ¥à¥¯¥«ª¨­  [7], . ˆ. ‹¨§®àª¨­ , ‚. ˆ. ã७ª®¢ , ‘. Š. ‚®¤®¯ìï­®¢ 

¨ ¤à.

1. à¥¤¢ à¨â¥«ì­ë¥ ᢥ¤¥­¨ï

ãáâì R n

| ¥¢ª«¨¤®¢® ¯à®áâà ­á⢮ â®ç¥ª x = (x

1

;:::;x

n

), l =

(l

1 ;:::;l

n

) | ¬ã«ì⨨­¤¥ªá, l

i >0.

 áᬮâਬ ®¤­®¯ à ¬¥âà¨ç¥áªãî £à㯯㠯८¡à §®¢ ­¨© R n

H

t

(x)=(t l

l

1

x

1 ;:::;t

l

l

n

x

n

) (t2R +

(2)
(3)

‘«¥¤á⢨¥ 1. ‘ãé¥áâ¢ã¥â ¯®áâ®ï­­ ï M â ª ï,çâ®

Z

(x;y)6" jD

f(y)j p

dy 6M" pl

(1,j:lj) X

j:lj=1 Z

(x;y)62" jD

f(y)j p

dy (4)

¤«ï ¢á¥å x2 R n

, " > 0 ¨ ¤«ï ¢á¥å f 2 L l

p (R

n

), ª®â®àë¥ ®¡à é îâáï ¢ ­®«ì ­ 

®âªàë⮬ ¯®¤¬­®¦¥á⢥ B

" (x).

‹¥¬¬  1. ãáâì K R n

| ª®¬¯ ªâ. ‘ãé¥áâ¢ã¥â äã­ªæ¨ï '

"

(x) â ª ï,

çâ® '

"

(x) =1 ¤«ï «î¡®£® x 2K, '

"

(x)=0 ¢­¥"-®ªà¥áâ­®á⨠K ¨ ¤«ï «î¡®£®

¬ã«ì⨨­¤¥ªá  =(

1 ;:::

n )2N

n

¨¬¥¥â ¬¥áâ® ®æ¥­ª 

jD

'

"

(x)j 6K

"

,l

j:lj

: (5)

C ‡ ä¨ªá¨à㥬äã­ªæ¨î '2C 1

0 (R

n

), ®â«¨ç­ãî®â ­ã«ï¢ è à¥ (x)<1

¨ ⮦¤¥á⢥­­® à ¢­ãî ­ã«î ¢­¥ í⮣® è à . ãáâì (x) = P

'(x,), £¤¥

| ¯à®¡¥£ ¥â ¢á¥ â®çª¨ á æ¥«®ç¨á«¥­­ë¬¨ ª®®à¤¨­ â ¬¨ ¢ R n

. Žç¥¢¨¤­®

(x) > 0. ®«®¦¨¬

(x) =

'(x,)

(x)

. ˆ¬¥¥¬

(x) 2 C 1

(R n

),

(x) = 0 ¯à¨

(x,)> 1 ¨ ¤«ï ¢á¥å x 2 R n

¢¥à­® P

(x)=1. ãáâì ⥯¥àì h = 1

2c ", £¤¥

c | ¯®áâ®ï­­ ï ¨§ ­¥à ¢¥­á⢠ âà¥ã£®«ì­¨ª  ¤«ï ¢ë¡à ­­®£® -à ááâ®ï­¨ï.

 áᬮâਬ á¨á⥬ã ä㭪権

(H

h ,1

(x)). ãáâì fg | ¢á¥ ¢¥ªâ®àë, ¤«ï

ª®â®àëå ­®á¨â¥«ìä㭪樨

(H

h

,1(x)) ¯¥à¥á¥ª ¥â ¬­®¦¥á⢮ K. ®«®¦¨¬

'

" (x) =

X

fg

(H

h

,1(x)):

Žç¥¢¨¤­®, '

"

(x) 2 C 1

(R n

), '

"

(x) = 1 ¤«ï x 2 K, '

"

(x) = 0 ¤«ï ¢á¥å x,

«¥¦ é¨å ¢­¥ "-®ªà¥áâ­®áâ¨K ¨

jD

'

" (x)j6

K

" l

j:lj : B

Žâ¬¥â¨¬, çâ® ¤®ª § â¥«ìá⢮ «¥¬¬ë ®á­®¢ ­® ­  á奬¥, ¯à¥¤«®¦¥­­®© ¢

¨§®âய­®¬ á«ãç ¥ ž. ƒ. ¥è¥â­ïª®¬ [10] ¨ à á¯à®áâà ­¥­­®© ­ 

 ­¨§®âய-­ë© á«ãç © ‘. Š.‚®¤®¯ìï­®¢ë¬ [8].

Œë ¡ã¤¥¬ à áᬠâਢ âì ®¡« áâ¨K, 㤮¢«¥â¢®àïî騥 ãá«®¢¨î (A):

(A) ‘ãé¥áâ¢ãîâ > 0, > 0 â ª¨¥, çâ® ¤«ï «î¡ëå x;y 2 R n

nK,

㤮¢-«¥â¢®àïîé¨å ­¥à ¢¥­áâ¢ã (x;y) < ­ ©¤¥âáï á¯àשׂ塞 ï ¤ã£  R n

nK

¤«¨­®© l(), ᮥ¤¨­ïîé ï x ¨ y, ¯à¨ç¥¬ l() 6 c(x;y) ¨ ¤«ï «î¡®£® z 2

¨¬¥îâ ¬¥áâ® ­¥à ¢¥­á⢠

(z;@K)>(x;@K); (z;@K)<(y;@K);

§¤¥áì ¯®áâ®ï­­ ï c ­¥ § ¢¨á¨â ®â x ¨ y. Œ¥âਪ  ¡¥à¥âáï ¢¨¤  (2).

2. ’¥®à¥¬  ® ¯«®â­®áâ¨

’¥®à¥¬ . ãáâìK R n

|ª®¬¯ ªâ,㤮¢«¥â¢®àïî騩 ãá«®¢¨î (A).’

®£-¤  C 1

(K) ¯«®â­®(L l

)

(4)
(5)

‹¨â¥à âãà 

1.

‘®¡®«¥¢ ‘. ‹.

¥ª®â®àë¥ ¯à¨¬¥­¥­¨ï ä㭪樮­ «ì­®£®  ­ «¨§  ¢ ¬ â¥¬ â¨ç¥áª®©

䨧¨ª¥. | ‹.: ˆ§¤-¢® ‹ƒ“, 1950.|225 á.

2.

Œ §ìï ‚.ƒ.

à®áâà ­á⢠ ‘®¡®«¥¢ .|‹.: ˆ§¤-¢® ‹ƒ“, 1985.|416 á.

3.

‹¨®­á†.-‹.,Œ ¤¦¥­¥á.

¥®¤­®à®¤­ë¥ £à ­¨ç­ë¥ § ¤ ç¨ ¨ ¨å ¯à¨«®¦¥­¨ï.|Œ.:

Œ¨à, 1971.|371 á.

4.

Polking J. C.

Approximation in

L

p

by solution of eliptic partial dierential

equa-tions //Amer. J. Math.|1972.|V. 94.|P. 1231{1244.

5.

Hedberg L.I.

Approximation in the mean by solution of eliptic equations // Duke Math.|

1973.|V. 40, No. 1.|P. 9{16.

6.

¥á®¢Ž.‚.,ˆ«ì¨­‚..,¨ª®«ì᪨©‘.Œ.

ˆ­â¥£à «ì­ë¥ ¯à¥¤áâ ¢«¥­¨ï ä㭪権

¨ â¥®à¥¬ë ¢«®¦¥­¨ï. |Œ.:  ãª .|1975.|408 á.

7.

“ᯥ­áª¨© ‘. ‚., „¥¬¨¤¥­ª® ƒ.‚., ¥à¥¯¥«ª¨­ ‚. ƒ.

’¥®à¥¬ë ¢«®¦¥­¨ï ¨

¯à¨«®-¦¥­¨ï ª ¤¨ää¥à¥­æ¨ «ì­ë¬ ãà ¢­¥­¨ï¬.| ®¢®á¨¡¨àáª:  ãª  1978.

8.

€«¡®à®¢  Œ. ‘., ‚®¤®¯ìï­®¢ ‘. Š.

“áâà ­¨¬ë¥ ®á®¡¥­­®á⨠¤«ï ®£à ­¨ç¥­­ëå

à¥-襭¨© ª¢ §¨í««¨¯â¨ç¥áª¨å ãà ¢­¥­¨© // „¥¯. ¢ ‚ˆˆ’ˆ.|1987, B87-804.

9.

€«¡®à®¢  Œ. ‘.

¥ª®â®àë¥ ¨­â¥£à «ì­ë¥ ­¥à ¢¥­á⢠ ¨ â¥®à¥¬ë ¢«®¦¥­¨ï ¤«ï

 ­¨-§®âய­ëå ä㭪樮­ «ì­ëå ¯à®áâà ­á⢠// „¥¯. ¢ ‚ˆˆ’ˆ, 2000, 3258-‚-00.

10.

¥è¥â­ïª ž. ƒ.

Ž ¯®­ï⨨ ¥¬ª®á⨠¢ ⥮ਨ ä㭪権 á ®¡®¡é¥­­ë¬¨

¯à®¨§¢®¤­ë-¬¨ // ‘¨¡. ¬ â. ¦ãà­.|1969.|’. 10, ü 5.|C. 1109{1139.

Referensi

Dokumen terkait

Horadam, Generating functions for powers of a certain generalised sequence of numbers, Duke Math. Mansour, A formula for generating function of powers of Horadam’s sequence,

Kiguradze: On multi-point boundary value problems for systems of func- tional differential and difference equations.. Differential

(3.19), then the zero solution of the reduced subsystem (3.16) and the one of the boundary layer subsystem (3,17) respectively is exponentially stable in mean

Maˇr´ık, Nonexistence of the positive solutions of partial differ- ential equations with p − Laplacian, to appear in Math. Ugulava, On the oscillation and nonsocil- lation of a

In this paper, we introduce a new analytical method (GAM - Gen- eralized approximation method) for the solution of nonlinear heat flow problems that produce excellent results and

Okrasi´ nski, Uniqueness of solutions for a class of nonlin- ear Volterra integral equations with convolution kernel, Math.. Okrasi´ nski, Nonlinear Volterra integral equations

Manojlovic, Asymptotic behavior of positive solutions of fourth order nonlinear difference equations, Ukranian Math. Bromwich, An Introduction to the Theory of Infinite

Our method grasps all the capabilities of modern computer algebra in order to solve (algebraic approximation) some equations of third and fourth degree with intricate forcing