Matrices & Vector Spaces
Euclidean –n & Vector Spaces
Lecture 9
Delivered by:
Filson Maratur Sidjabat [email protected]
(90%*score / 20% extra points for HW-Q)
Retake Quiz
1. Compute (a) det(a), (b) adj(A), and (c) A-1 of this matrix:
A = 1 3 1
2 1 1
−2 2 −1
2. Use Cramer’s rule to solve
𝑥1 + 2𝑥2 + 𝑥3 = 5
2𝑥1 + 2𝑥2 + 𝑥3 = 6
𝑥1 + 2𝑥2 + 3𝑥3 = 9
2015/6/4 Elementary Linear Algebra 2
Use adjoint for this problems
1. Find an elementary matrix E such that EB = D (20 mark) 2. Find an elementary matrix F such that AF = C (20 mark)
𝐴 = 2 1 3 4 2 7
1 3 5 𝐵 = 3 1
5 2 𝐶 = 0 1 3 0 2 7
−3 3 5 𝐷 = 1 2 3 4
Preview
Sistem Persamaan Linier
Eliminasi Gauss dan Gauss-Jordan
Matriks dan Operasi Matriks
Invers Matriks
Invers dan Aritmetika Matriks
Matriks Elementer dan Metode mencari A-1
Determinan
Cofactor Expansion
Adjoint and Cramer’s Rule
2015/6/4 Elementary Linear Algebra 4
Matrices & Vector Spaces Vector Spaces
Lecture 9 (Make-up class)
Delivered by:
Filson Maratur Sidjabat [email protected]
Vector - quick reminder
Jika diketahui: v = (2,0, -5) dan w = (3,1,4), maka:
v+w
3v
-w
v-w
2015/6/4 Elementary Linear Algebra 6
Vector - quick reminder
Jika diketahui: v = (2,0, -5) dan w = (3,1,4), maka:
v . w = ||v||.||w|| cos q (hasil kali titik - proyeksi)
v x w (hasil kali silang)
Geometry of Vectors
Vectors have direction and magnitude
The are portable
They are added (subtracted) tip-to-tail
Parallelogram rule applies
Three-element vector is three dimensional space
More than three elements is called n-tuple
Has no geometric representation but still used extensively
Good idea to draw vectors
2015/6/4 Elementary Linear Algebra 8
Matrices & Vector Spaces Euclidean n-Space
Lecture 9
#4th June 2015 Delivered by:
Filson Maratur Sidjabat [email protected]
4-1 Definitions
If n is a positive integer, then an ordered n-tuple is a sequence of n real numbers (a1,a2,…,an). The set of all ordered n-tuple is called n- space and is denoted by Rn.
Two vectors u = (u1 ,u2 ,…,un) and v = (v1 ,v2 ,…, vn) in Rn are called equal if
u1 = v1 ,u2 = v2 , …, un = vn The sum u + v is defined by
u + v = (u1+v1 , u1+v1 , …, un+vn)
and if k is any scalar, the scalar multiple ku is defined by ku = (ku1 ,ku2 ,…,kun)
2015/6/4 Elementary Linear Algebra 12
4-1 Remarks
The operations of addition and scalar multiplication in this definition are called the standard operations on Rn.
The zero vector in Rn is denoted by 0 and is defined to be the vector 0 = (0, 0, …, 0).
If u = (u1 ,u2 ,…,un) is any vector in Rn, then the negative (or additive inverse) of u is denoted by -u and is defined by -u = (-u1 ,-u2 ,…,-un).
The difference of vectors in Rn is defined by
v – u = v + (-u) = (v1 – u1 ,v2 – u2 ,…,vn – un)
Theorem 4.1.1 (Properties of Vector in R
n)
If u = (u1 ,u2 ,…,un), v = (v1 ,v2 ,…, vn), and w = (w1 ,w2 ,…, wn) are vectors in Rn and k and l are scalars, then:
u + v = v + u
u + (v + w) = (u + v) + w
u + 0 = 0 + u = u
u + (-u) = 0; that is u – u = 0
k(lu) = (kl)u
k(u + v) = ku + kv
(k+l)u = ku+lu
1u = u
2015/6/4 Elementary Linear Algebra 14
4-1 Euclidean Inner Product
Definition
If u = (u1 ,u2 ,…,un), v = (v1 ,v2 ,…, vn) are vectors in Rn, then the Euclidean inner product u · v is defined by
u · v = u1 v1 + u2 v2 +… + un vn
Example 1
The Euclidean inner product of the vectors u = (-1,3,5,7) and v = (5,-4,7,0) in R4 is
u · v = (-1)(5) + (3)(-4) + (5)(7) + (7)(0) = 18
Theorem 4.1.2
Properties of Euclidean Inner Product
If u, v and w are vectors in Rn and k is any scalar, then
u · v = v · u
(u + v) · w = u · w + v · w
(k u) · v = k(u · v)
v · v ≥ 0; Further, v · v = 0 if and only if v = 0
4-1 Example 2
(3u + 2v) · (4u + v)
= (3u) · (4u + v) + (2v) · (4u + v )
= (3u) · (4u) + (3u) · v + (2v) · (4u) + (2v) · v
=12(u · u) + 11(u · v) + 2(v · v)
2015/6/4 Elementary Linear Algebra 16
4-1 Norm and Distance in Euclidean n-Space
We define the Euclidean norm (or Euclidean length) of a vector u = (u1 ,u2 ,…,un) in Rn by
Similarly, the Euclidean distance between the points u = (u1 ,u2 ,…,un) and v = (v1 , v2 ,…,vn) in Rn is defined by
2 2
2 2
1 2
/
1 ...
)
( u u un
u u u
2 2
2 2
2 1
1 ) ( ) ... ( )
( )
,
( u v u v un vn
d u v u v
4-1 Example 3
Example
If u = (1,3,-2,7) and v = (0,7,2,2), then in the Euclidean space R4
2015/6/4 Elementary Linear Algebra 18
58 )
2 7 ( )
2 2 ( ) 7 3 ( )
0 1 ( )
, (
7 3 63 )
7 ( ) 2 ( )
3 ( )
1 (
2 2
2 2
2 2
2 2
v u u d
Theorem 4.1.3
(Cauchy-Schwarz Inequality in R n )
If u = (u1 ,u2 ,…,un) and v = (v1 , v2 ,…,vn) are vectors in Rn, then |u · v| ≤ || u || || v ||
Theorem 4.1.4
(Properties of Length in R n )
If u and v are vectors in Rn and k is any scalar, then
|| u || ≥ 0
|| u || = 0 if and only if u = 0
|| ku || = | k ||| u ||
|| u + v || ≤ || u || + || v || (Triangle inequality)
2015/6/4 Elementary Linear Algebra 20
Theorem 4.1.5
(Properties of Distance in R n )
If u, v, and w are vectors in Rn and k is any scalar, then
d(u, v) ≥ 0
d(u, v) = 0 if and only if u = v
d(u, v) = d(v, u)
d(u, v) ≤ d(u, w ) + d(w, v) (Triangle inequality)
Hasil kali Titik dari Vektor
Jika u dan v adalah vektor - vektor dalam ruang berdimensi 2 atau berdimensi 3 dan q adalah
sudut antara u dan v, maka hasil kali titik atau hasil kali dalam euclidean u.v, didefinisikan
sebagai :
q
0 atau v
0 u
jika
0
0 dan v
0 u
jika
cos v
v u
.
u
u.v = u1.v1+ u2.v2+u3.v3 R3
u.v = u1.v1+ u2.v2 R2
CONTOH : u = (2,-1,1) DAN v = (1,1,2), CARILAH u.v dan tentukan sudut antara u dan v
v u
v u
.
cos q .
Sudut Antar Vektor
Jika u dan v adalah vektor-vektor tak nol, maka :
v u
v
.
cos q u
Hasil kali titik bisa digunakan untuk memperoleh informasi mengenai sudut antara 2 vektor.
Jika u dan v adalah vektor-vektor tak nol dan q adalah sudut antara kedua vektor tersebut, maka :
q lancip jika dan hanya jika u.v>0 q tumpul jika dan hanya jika u.v<0
q =/2 jika dan hanya jika u.v=0
u.v = u
1.v
1+ u
2.v
2+u
3.v
3 R
3
u.v = u
1.v
1+ u
2.v
2 R
2CONTOH :
u = (2,-1,1) dan v = (1,1,2),
Carilah u.v serta tentukan sudut antara u dan v
4-1 Orthogonality
Two vectors u and v in Rn are called orthogonal if u · v = 0
Example 4
In the Euclidean space R4 the vectors
u = (-2, 3, 1, 4) and v = (1, 2, 0, -1) are orthogonal, since
u · v = (-2)(1) + (3)(2) + (1)(0) + (4)(-1) = 0
If u and v are called orthogonal, we writes: u v
Hasil Kali Silang Vektor
Jika hasil kali titik berupa suatu skalar maka hasil kali silang berupa suatu vektor.
Jika u = (u1,u2,u3) dan v = (v1,v2,v3) adalah vektor-vektor dalam ruang berdimensi 3, maka hasil kali silang u x v adalah vektor yang didefinisikan sebagai
u x v =(u2v3 - u3v2 ,u3v1 - u1v3 ,u1v2 - u2v1 ) atau dalam notasi determinan :
v v
u u
, v
v
u u
, v
v
u u x v u
2 1
2 1
3 1
3 1
3 2
3 2
Sifat-sifat utama dari hasil kali silang.
Jika u,v, dan w adalah sebarang vektor dalam ruang berdimensi 3 dan k adalah sebarang skalar, maka :
u x v = -(v x u)
u x (v+w) = (u x v) + (u x w) (u + v) x w = (u x w) + (v x w) k(u x v) = (ku) x v = u x (kv) u x 0 = 0 x u = 0
u x u = 0
Hubungan antara hasil kali titik dan hasil kali silang
Jika u, v dan w adalah vektor-vektor dalam ruang berdimensi 3, maka :
u.(u x v) = 0 u x v ortogonal terhadap u.
v.(u x v) = 0 u x v ortogonal terhadap v.
|u x v|2=|u|2|v|2 – (u.v)2 identitas Lagrange |u x v|=|u||v|sin Ө
u x (v x w) = (u.w)v – (u.v)w (u x v) x w = (u.w)v – (v.w)u
Vector - quick reminder
Jika diketahui: v = (2,0, -5) dan w = (3,1,4), maka:
v . w = ||v||.||w|| cos q (hasil kali titik - proyeksi)
v x w (hasil kali silang)
Theorem 4.1.7
(Pythagorean Theorem in R n )
If u and v are orthogonal vectors in Rn which the
Euclidean inner product, then || u + v ||2 = || u ||2 + || v ||2
2015/6/4 Elementary Linear Algebra 32
4-1 Matrix Formulae for the Dot Product
If we use column matrix notation for the vectors u = [u1 u2 … un]T and v = [v1 v2 … vn]T , or
then
u · v = vTu Au · v = u · ATv u · Av = ATu · v
n
n v
v u
u
1 1
and v u
4-1 Example 5
Verifying that Au‧v= u‧Atv
2015/6/4 Elementary Linear Algebra 34
5 0 2 ,
4 2 1 ,
1 0
1
1 4
2
3 2 1
v u
A
4-1 A Dot Product View of Matrix Multiplication
If A = [aij] is an mr matrix and B =[bij] is an rn matrix, then the ij- the entry of AB is
ai1b1j + ai2b2j + ai3b3j + … + airbrj
which is the dot product of the ith row vector of A and the jth column vector of B
Thus, if the row vectors of A are r1, r2, …, rm and the column vectors of B are c1, c2, …, cn ,
2 2
2 1
2
1 2
1 1
1
n n
AB
c r
c r
c r
c r c
r c
r
c r c
r c
r
4-1 Example 6
A linear system written in dot product form system dot product form
2015/6/4 Elementary Linear Algebra 36
0 8
5
5 4
7 2
1
4 3
3 2
1
3 2
1
3 2
1
x x
x
x x
x
x x
x
0 5 1
) ,
, ( (1,5,-8)
) ,
, ( (2,-7,-4)
) ,
, ( (3,-4,1)
3 2 1
3 2 1
3 2 1
x x x
x x x
x x x
Homework
1. Gunakan vektor-vektor untuk mencari cosinus sudut dibagian dalam sudut segitiga dengan titik-titik sudut (-1, 0), (-2, 1) dan (1, 4)
2. Diketahui vektor u = ( 2, -3, 4 ) dan v = ( -1, 3, 2 ).
Berapakah nilai u x v ?
3. Carilah luas segitiga yang ditentukan oleh titik-titik A ( 2, 2, 0 ), B ( -1, 0, 2 ), C ( 0, 4, 3 ).
4. Misalkan u =(-1, 3, 2) w=(1, 1, -1). Cari semua vektor y yang memenuhi u x y = w!