• Tidak ada hasil yang ditemukan

Euclidean n & Vector Spaces. Matrices & Vector Spaces

N/A
N/A
Protected

Academic year: 2022

Membagikan "Euclidean n & Vector Spaces. Matrices & Vector Spaces"

Copied!
37
0
0

Teks penuh

(1)

Matrices & Vector Spaces

Euclidean –n & Vector Spaces

Lecture 9

Delivered by:

Filson Maratur Sidjabat [email protected]

(2)

(90%*score / 20% extra points for HW-Q)

Retake Quiz

1. Compute (a) det(a), (b) adj(A), and (c) A-1 of this matrix:

A = 1 3 1

2 1 1

−2 2 −1

2. Use Cramer’s rule to solve

𝑥1 + 2𝑥2 + 𝑥3 = 5

2𝑥1 + 2𝑥2 + 𝑥3 = 6

𝑥1 + 2𝑥2 + 3𝑥3 = 9

2015/6/4 Elementary Linear Algebra 2

(3)

Use adjoint for this problems

1. Find an elementary matrix E such that EB = D (20 mark) 2. Find an elementary matrix F such that AF = C (20 mark)

𝐴 = 2 1 3 4 2 7

1 3 5 𝐵 = 3 1

5 2 𝐶 = 0 1 3 0 2 7

−3 3 5 𝐷 = 1 2 3 4

(4)

Preview

Sistem Persamaan Linier

Eliminasi Gauss dan Gauss-Jordan

Matriks dan Operasi Matriks

Invers Matriks

Invers dan Aritmetika Matriks

Matriks Elementer dan Metode mencari A-1

Determinan

Cofactor Expansion

Adjoint and Cramer’s Rule

2015/6/4 Elementary Linear Algebra 4

(5)

Matrices & Vector Spaces Vector Spaces

Lecture 9 (Make-up class)

Delivered by:

Filson Maratur Sidjabat [email protected]

(6)

Vector - quick reminder

Jika diketahui: v = (2,0, -5) dan w = (3,1,4), maka:

v+w

3v

-w

v-w

2015/6/4 Elementary Linear Algebra 6

(7)

Vector - quick reminder

Jika diketahui: v = (2,0, -5) dan w = (3,1,4), maka:

v . w = ||v||.||w|| cos q (hasil kali titik - proyeksi)

v x w (hasil kali silang)

(8)

Geometry of Vectors

Vectors have direction and magnitude

The are portable

They are added (subtracted) tip-to-tail

Parallelogram rule applies

Three-element vector is three dimensional space

More than three elements is called n-tuple

Has no geometric representation but still used extensively

Good idea to draw vectors

2015/6/4 Elementary Linear Algebra 8

(9)
(10)

Matrices & Vector Spaces Euclidean n-Space

Lecture 9

#4th June 2015 Delivered by:

Filson Maratur Sidjabat [email protected]

(11)

4-1 Definitions

If n is a positive integer, then an ordered n-tuple is a sequence of n real numbers (a1,a2,…,an). The set of all ordered n-tuple is called n- space and is denoted by Rn.

Two vectors u = (u1 ,u2 ,…,un) and v = (v1 ,v2 ,…, vn) in Rn are called equal if

u1 = v1 ,u2 = v2 , …, un = vn The sum u + v is defined by

u + v = (u1+v1 , u1+v1 , …, un+vn)

and if k is any scalar, the scalar multiple ku is defined by ku = (ku1 ,ku2 ,…,kun)

(12)

2015/6/4 Elementary Linear Algebra 12

4-1 Remarks

The operations of addition and scalar multiplication in this definition are called the standard operations on Rn.

The zero vector in Rn is denoted by 0 and is defined to be the vector 0 = (0, 0, …, 0).

If u = (u1 ,u2 ,…,un) is any vector in Rn, then the negative (or additive inverse) of u is denoted by -u and is defined by -u = (-u1 ,-u2 ,…,-un).

The difference of vectors in Rn is defined by

v – u = v + (-u) = (v1 – u1 ,v2 – u2 ,…,vn – un)

(13)

Theorem 4.1.1 (Properties of Vector in R

n

)

If u = (u1 ,u2 ,…,un), v = (v1 ,v2 ,…, vn), and w = (w1 ,w2 ,…, wn) are vectors in Rn and k and l are scalars, then:

u + v = v + u

u + (v + w) = (u + v) + w

u + 0 = 0 + u = u

u + (-u) = 0; that is u – u = 0

k(lu) = (kl)u

k(u + v) = ku + kv

(k+l)u = ku+lu

1u = u

(14)

2015/6/4 Elementary Linear Algebra 14

4-1 Euclidean Inner Product

Definition

If u = (u1 ,u2 ,…,un), v = (v1 ,v2 ,…, vn) are vectors in Rn, then the Euclidean inner product u · v is defined by

u · v = u1 v1 + u2 v2 +… + un vn

Example 1

The Euclidean inner product of the vectors u = (-1,3,5,7) and v = (5,-4,7,0) in R4 is

u · v = (-1)(5) + (3)(-4) + (5)(7) + (7)(0) = 18

(15)

Theorem 4.1.2

Properties of Euclidean Inner Product

If u, v and w are vectors in Rn and k is any scalar, then

u · v = v · u

(u + v) · w = u · w + v · w

(k u) · v = k(u · v)

v · v ≥ 0; Further, v · v = 0 if and only if v = 0

(16)

4-1 Example 2

(3u + 2v) · (4u + v)

= (3u) · (4u + v) + (2v) · (4u + v )

= (3u) · (4u) + (3u) · v + (2v) · (4u) + (2v) · v

=12(u · u) + 11(u · v) + 2(v · v)

2015/6/4 Elementary Linear Algebra 16

(17)

4-1 Norm and Distance in Euclidean n-Space

We define the Euclidean norm (or Euclidean length) of a vector u = (u1 ,u2 ,…,un) in Rn by

Similarly, the Euclidean distance between the points u = (u1 ,u2 ,…,un) and v = (v1 , v2 ,…,vn) in Rn is defined by

2 2

2 2

1 2

/

1 ...

)

( u u un

u u u

2 2

2 2

2 1

1 ) ( ) ... ( )

( )

,

( u v u v un vn

d u v u v

(18)

4-1 Example 3

Example

If u = (1,3,-2,7) and v = (0,7,2,2), then in the Euclidean space R4

2015/6/4 Elementary Linear Algebra 18

58 )

2 7 ( )

2 2 ( ) 7 3 ( )

0 1 ( )

, (

7 3 63 )

7 ( ) 2 ( )

3 ( )

1 (

2 2

2 2

2 2

2 2

v u u d

(19)

Theorem 4.1.3

(Cauchy-Schwarz Inequality in R n )

If u = (u1 ,u2 ,…,un) and v = (v1 , v2 ,…,vn) are vectors in Rn, then |u · v| ≤ || u || || v ||

(20)

Theorem 4.1.4

(Properties of Length in R n )

If u and v are vectors in Rn and k is any scalar, then

|| u || ≥ 0

|| u || = 0 if and only if u = 0

|| ku || = | k ||| u ||

|| u + v || ≤ || u || + || v || (Triangle inequality)

2015/6/4 Elementary Linear Algebra 20

(21)

Theorem 4.1.5

(Properties of Distance in R n )

If u, v, and w are vectors in Rn and k is any scalar, then

d(u, v) ≥ 0

d(u, v) = 0 if and only if u = v

d(u, v) = d(v, u)

d(u, v) ≤ d(u, w ) + d(w, v) (Triangle inequality)

(22)

Hasil kali Titik dari Vektor

Jika u dan v adalah vektor - vektor dalam ruang berdimensi 2 atau berdimensi 3 dan q adalah

sudut antara u dan v, maka hasil kali titik atau hasil kali dalam euclidean u.v, didefinisikan

sebagai :

 

 q

0 atau v

0 u

jika

0

0 dan v

0 u

jika

cos v

v u

.

u

(23)

u.v = u1.v1+ u2.v2+u3.v3  R3

u.v = u1.v1+ u2.v2  R2

CONTOH : u = (2,-1,1) DAN v = (1,1,2), CARILAH u.v dan tentukan sudut antara u dan v

v u

v u

.

cos  q .

(24)

Sudut Antar Vektor

Jika u dan v adalah vektor-vektor tak nol, maka :

v u

v

.

cos  q u

(25)

Hasil kali titik bisa digunakan untuk memperoleh informasi mengenai sudut antara 2 vektor.

Jika u dan v adalah vektor-vektor tak nol dan q adalah sudut antara kedua vektor tersebut, maka :

q lancip jika dan hanya jika u.v>0 q tumpul jika dan hanya jika u.v<0

q =/2 jika dan hanya jika u.v=0

(26)

u.v = u

1

.v

1

+ u

2

.v

2

+u

3

.v

3

 R

3

u.v = u

1

.v

1

+ u

2

.v

2

 R

2

CONTOH :

u = (2,-1,1) dan v = (1,1,2),

Carilah u.v serta tentukan sudut antara u dan v

(27)

4-1 Orthogonality

Two vectors u and v in Rn are called orthogonal if u · v = 0

Example 4

In the Euclidean space R4 the vectors

u = (-2, 3, 1, 4) and v = (1, 2, 0, -1) are orthogonal, since

u · v = (-2)(1) + (3)(2) + (1)(0) + (4)(-1) = 0

If u and v are called orthogonal, we writes: u  v

(28)

Hasil Kali Silang Vektor

Jika hasil kali titik berupa suatu skalar maka hasil kali silang berupa suatu vektor.

Jika u = (u1,u2,u3) dan v = (v1,v2,v3) adalah vektor-vektor dalam ruang berdimensi 3, maka hasil kali silang u x v adalah vektor yang didefinisikan sebagai

u x v =(u2v3 - u3v2 ,u3v1 - u1v3 ,u1v2 - u2v1 ) atau dalam notasi determinan :

 

 

 

 v v

u u

, v

v

u u

, v

v

u u x v u

2 1

2 1

3 1

3 1

3 2

3 2

(29)

Sifat-sifat utama dari hasil kali silang.

Jika u,v, dan w adalah sebarang vektor dalam ruang berdimensi 3 dan k adalah sebarang skalar, maka :

u x v = -(v x u)

u x (v+w) = (u x v) + (u x w) (u + v) x w = (u x w) + (v x w) k(u x v) = (ku) x v = u x (kv) u x 0 = 0 x u = 0

u x u = 0

(30)

Hubungan antara hasil kali titik dan hasil kali silang

Jika u, v dan w adalah vektor-vektor dalam ruang berdimensi 3, maka :

u.(u x v) = 0 u x v ortogonal terhadap u.

v.(u x v) = 0 u x v ortogonal terhadap v.

|u x v|2=|u|2|v|2 – (u.v)2 identitas Lagrange |u x v|=|u||v|sin Ө

u x (v x w) = (u.w)v – (u.v)w (u x v) x w = (u.w)v – (v.w)u

(31)

Vector - quick reminder

Jika diketahui: v = (2,0, -5) dan w = (3,1,4), maka:

v . w = ||v||.||w|| cos q (hasil kali titik - proyeksi)

v x w (hasil kali silang)

(32)

Theorem 4.1.7

(Pythagorean Theorem in R n )

If u and v are orthogonal vectors in Rn which the

Euclidean inner product, then || u + v ||2 = || u ||2 + || v ||2

2015/6/4 Elementary Linear Algebra 32

(33)

4-1 Matrix Formulae for the Dot Product

If we use column matrix notation for the vectors u = [u1 u2 … un]T and v = [v1 v2 … vn]T , or

then

u · v = vTu Au · v = u · ATv u · Av = ATu · v

n

n v

v u

u

1 1

and v u

(34)

4-1 Example 5

Verifying that Au‧v= u‧Atv

2015/6/4 Elementary Linear Algebra 34





5 0 2 ,

4 2 1 ,

1 0

1

1 4

2

3 2 1

v u

A

(35)

4-1 A Dot Product View of Matrix Multiplication

If A = [aij] is an mr matrix and B =[bij] is an rn matrix, then the ij- the entry of AB is

ai1b1j + ai2b2j + ai3b3j + … + airbrj

which is the dot product of the ith row vector of A and the jth column vector of B

Thus, if the row vectors of A are r1, r2, …, rm and the column vectors of B are c1, c2, …, cn ,

2 2

2 1

2

1 2

1 1

1

n n

AB

c r

c r

c r

c r c

r c

r

c r c

r c

r

(36)

4-1 Example 6

A linear system written in dot product form system dot product form

2015/6/4 Elementary Linear Algebra 36

0 8

5

5 4

7 2

1

4 3

3 2

1

3 2

1

3 2

1

x x

x

x x

x

x x

x









0 5 1

) ,

, ( (1,5,-8)

) ,

, ( (2,-7,-4)

) ,

, ( (3,-4,1)

3 2 1

3 2 1

3 2 1

x x x

x x x

x x x

(37)

Homework

1. Gunakan vektor-vektor untuk mencari cosinus sudut dibagian dalam sudut segitiga dengan titik-titik sudut (-1, 0), (-2, 1) dan (1, 4)

2. Diketahui vektor u = ( 2, -3, 4 ) dan v = ( -1, 3, 2 ).

Berapakah nilai u x v ?

3. Carilah luas segitiga yang ditentukan oleh titik-titik A ( 2, 2, 0 ), B ( -1, 0, 2 ), C ( 0, 4, 3 ).

4. Misalkan u =(-1, 3, 2) w=(1, 1, -1). Cari semua vektor y yang memenuhi u x y = w!

Referensi

Dokumen terkait

Berdasarkan uji One Way Anova menunjukkan bahwa taraf signifikasi lebih dari 0,05 yang memiliki arti bahwa adanya pengaruh pupuk organik cair buah maja ( Aegle marmelos )

Terbatasnya manusia pengambil keputusan dalam organisasi di samping efisiensi relatif dari pengolahan manusia atas keputusan berarti bahwa SIM harus memprogram sebanyak

Hubungan Usia dengan Ekspresi HER2 dan Ki67 Penderita Kanker Payudara di RSUP H.. Adam

Puji dan syukur penulis haturkan kepada Allah SWT yang Maha Pengasih lagi Maha Penyayang yang telah memberikan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan skripsi

Begitu pula Mahkamah Agung telah memainkan peranan penting dalam memajukan status golongan orang Amerika keturunan Afrika, melalui beberapa keputusannya, diantaranya yang

Percobaan lapangan perlakuan mulsa sisa tanaman (batang jagung) dan strip penguat teras telah dilakukan pada usaha tani lahan kering di Sub DAS Solo Hulu dan

Politeknik Kutaraja adalah perguruan tinggi yang diselengarakan oleh Yayasan Pendidikan Sarana Ilmu Kutaraja yang berkedudukan di Banda Aceh. Politeknik Kutaraja,