• Tidak ada hasil yang ditemukan

COMPTON SUPRESI UNTUK mentifikasi RADIONUKLmA DALAM SAMPEL LINGKUNGAN

N/A
N/A
Protected

Academic year: 2021

Membagikan "COMPTON SUPRESI UNTUK mentifikasi RADIONUKLmA DALAM SAMPEL LINGKUNGAN"

Copied!
7
0
0

Teks penuh

(1)

~1/

202 ISSN 0216 -3128 M. Yazid, dkk.

-.

OPTIMASI

SPEKTROMETER

GAMMA

DENGAN SISTEM

COMPTON

SUPRESI

UNTUK

mENTIFIKASI

RADIONUKLmA

DALAM SAMPEL LINGKUNGAN

5i1b

M. Yazid, Sudarti S., Aris Bastianudin daD E. Supriyatni

Puslitbang Teknologi Maju Batan, Yogyakarta.

,

ABSTRAK

OPTIMASI SPEKTROMETER GAMMA DENGAN SISTEM COMPTON SUPRES'I UNTUK IDENTIFIKASI RADIONUKLIDA DALAM SAMPEL L/NGKUNGAN. Optimasi peralatan ini dilakukan dengan tujuan menentukan kondisi yang paling optimum pencacahan sampellingkungan sehingga pemakaian peralatan ini menjadi lebih efektif don efisien. Dalam sistem spektrometri gamma ini digunakan HPGe sebagai detektor utama don NaIrrl) sebagai detektor "guard" yang berfungsi sebagai perisai aktif Kedua detektor terse but dirangkai secara antikainsidensi elektronik untuk dapat menekan cacah latar yang berasal dari hamburan compton maupun radiasi kosmis menjadi serendah mungkin. Telah dipelajari metode pengukuran don perhitungan efisiensi puncak energi maksimum sebagai fungsi tenaga. Efisiensi don ralat pengukuran yang diperoleh digunakan untuk menentukan kondisi optimum dari ketebalan sampel. lama waktu pencacahan don jarak cuplikan dari detektor. Dari hasil percobaan ini dapat disimpulkan bahwa kandisi optimum ketebalan sam pel 3 cm, lama waktu pencacahan 70 jam don jarak cuplikan 5,5 cm dari detektor NaIrrl). Pemakaian spektrometer gamma dengan mode supresi don normal secara bersama-sama akan memberikan hasil yang lebih sempurna

ABSTRACT

THE OPTlMATION OF THE GAMMA SPECTROMETER WITH COMPTON SUPPRFliION SY~EM FOR RADIONUCLIDE .IDENTIFICATION IN THE ENVIRONMENTAL SAMPLE. The objectives of this instrument optimation is to determine the most optimum condition of the environmental sample counting, so the used of the instrument become more effective and efficient. In this gamma spectrometer system, the HPGe was used for the main detector and the Nalrrl) for the guard detector as an active shield function. Both detector were connected by electronic anticoincidence system to suppress the background count that come from the co~rlpton scattering and cosmic radiation to be as low as possible. The measurement method and the maximum energy peak calculation efficiency as like the efficiency function has been learned. The efficiency and measurement error were used for determination of the optimum condition of the sample thickness. counting time and the sample distance to the detector. From the experiment it can be concluded that the optimum condition of the sample thickness is 3 cm, the counting time is 48 hours and the distance of the sample is 5.5 cm from the Nalrrl) detector. The application of the gamma spectrometer on the suppression mode and normal mode simultaniously will give complete data result.

PENDAHULUAN

P emantauan radioaktivitas lingkungan sangat

penting artinya baik bagi masyarakat maupun

penguasa instalasi nuklir itu sendiri, karena kegiatan ini dimaksudkan untuk mengurangi kekhawatiran akan terjadinya pencemaran lingkungan yang disebabkan oleh beroperasinya suatu instalasi nuklir serta penggunaan tenaga nuklir dalam berbagai bidang.

Radioaktivitas sampel lingkungan pada umumnya memiliki aktivitas yang sangat rendah dan hampir tidak berbeda dengan radioaktivitas alamiah, maka besar kemungkinannya akan dijumpai kesulitan di dalam interpretasi data yang diperoleh. Oleh karena itu, dalam pengukuran sampellingkungan tersebut diperlukan teknik yang

spesiflk baik dalam preparasi cuplikan, alat cacah

yang digunakan serta metode pencacahannya

maupun faktor-faktor koreksi pengukuran yang

diperlukan.(I)

Peralatan spektrometri gamma dengan

sistem supresi compton dirancang khusus untuk

pengukuran radioaktivitas yang sangat rendah

dengan men~aii cacah latar serendah mungkin,

agar cacah sampel

tidak tenggelam di dalam cacah

latar tersebut. Dengan menggunakan sistem ini

diharapkan dapat menekan bagian compton

sehingga puncak-puncak fotolistrik dari cuplikan

dapat muncul daD akhimya kemampuan deteksi

peralatan

tersebut

dapat meningkat(2)

Spektrometri gamma ini menggunakan

HPGe sebagai detektor utama serta NaI(TI) yang

dapat melingkupi detektor tersebut. Kedua detektor

Prosldlng Perte,muan dan Presentasilimiah Penelltlan Dasar IImu Pengetahuan dan Teknologl Nukllr P3TM-BATAN Yogyakarta, 7.8 Agustus 2001

(2)

ISSN 0216 -3128

M. Yazid,

dkk.

203

tersebut disusun secara antikoinsidensi elektronik diharapkan bagian compton dapat ditekan, begitu pula radiasi yang berasal dari sinar kosmis dapat

dihilangkan dengan adanya perisai aktif detektor NaI(TI) tersebuto (I) Skema peralatan selengkapnya dapat dilihat pada Gambar 10

2. Gas nitrogen

3. Nitrogen cair

4. Wadah

cuplikan dari polietilen

5. Timbangan

analitik

-.

6. Spektrometri gamma dengan sistem supresi

compton

Metode Kerja

I. Persiapan peralatan spektrometri gamma

dengan sistem supresi compton diatur pada

kondisi operasi

awal.

2. Oilakukan

kalibrasi

energi

dengan

menggunakan

sumber

standard

Eu-132

3. Oilakukan pencacahan

cuplikan standar

SRM-IAEA-326 dengan variasi waktu, jarak dari

detektor

dan ketebalan

cuplikan.

HASIL DAN PEMBAHASAr.c

Gambar 1. Skema spektrometer gamma dengan sistem supresi compton

Optimasi peralatan ini bertujuan untuk mencari kondisi yang paling optimum dalam pencacahan sampel lingkungan sehingga diharapkan pekerjaan ini dapat menjadi lebih berdayaguna dan berhasilguQa serta sesuai dengan kinerja yang diharapkan.

Mekanisme fisis yang terjadi pada pencacahan menggunakan peralatan ini sebagai berikut : apabila cuplikan ditempatkan diantara 2 detektor maka akan memancarkan radiasi gamma ke segala arah (4 1t) yang akan berinteraksi dengan detektor HPGe maupun NaT(TI). Interaksi radiasi gamma dengan detektor HPGe akan terjadi efek fotolistrik sehingga dihasilkan keluaran pulsa yang akan tercatat langsung di MCA. Pada efek fotolistrik ini seluruh energi radiasi gamma akan terserap semuanya oleh materi detektor HPGe. Sedangkan radiasi gamma yang mengenai detektor NaI(TI) juga menyebabkan terjadinya efek fotolistrik, namun keluaran pulsa dari detektor tersebut tidak akan tercatat oleh MCA. Hal ini disebabkan karena pulsa tersebut akan melalui gerbang anti-koinsiden yang hanya dapat meneruskan pulsa-pulsa yang datang secara tidak

bersamaan(J)

Hasil pencacahan cuplikan SRM-IAEA-326 dengan variasi waktu disajikan pada Tabel 1. Jika dilihat basil perhitungan efisiensi -sebagai fungsi

tenaga pada variasi waktu pencacaban, maka

pencacahan 7,5 jam menghasilkan efisiensi yang lebih besar dibandingkan dengan yang lain, tetapi temyata ralat efisiensinya juga relatif besar. Sedangkan kecenderungan ralat yang besar dalam pencacahan akan menyebabkan data kurang akurat. Adapun ralat relatif efisiensi tergantung dari ralat relatif area atau cacah bersih. Jika dilihat dari data pengukuran untuk waktu pencacahan yang bervariasi, temyata semakin lama waktu pencaCahan maka ralat area semakin kecil, sehingga ketelitian pengukuran akan semakin besar dengan bertambahnya waktu pencacahan.

Dari Tabel 2 dapat diketahui bahwa untuk variasi jarak temyata dihasilkan harga efisiensi yang hampir sarna, namun untuk menambah puncak-puncak fotolistrik yang sangat berguna di dalam analisa kulalitatif maka detektor HPGe clan cuplikan lingkungannya sebaiknya ditempatkan pacta kedalarnan yang maksimal, karena berdasarkan teori hamburan compton, sudut hamburan sinar gamma berkisar antara 0 -1800 , maka untuk mengantisipasi agar gamma terhambur dari detektor HPGe dapat berinteraksi dengan detektor Nal(TI), maka detektor HPGe ditempatkan pacta kedalaman tersebut, sehingga didapatkan hasil pengukuran yang optimum.

TATA KERJA

Bahan daD Peralatan yang digunakan

I. Cuplikan Standard

SRM-IAEA-326

Proslding Pert.emuan dan Presentasl IImlah Penelltlan Dasar IImu Pengetahuan dan Teknologl Nukllr P3TM.BATAN Yogyakarta. 7 -8 Agustus 2001

(3)

204 ISSN 0216 -3128

M. Yazid,

dkk.

Tabell. Has;! pencacahan

dengan var;as; waktu pencacahan

EFISIENSI(%)

1 JAM 7,5JAM 0,0408:1: 14,3 0,0916:1: 27,4

I

24 JAM

0,0127 % 10,0 0,0290 % 18,2 0,0590 % 21,2 0,0153 % 10,4 0,0243 % 15,4 0,0063 % 15,9 i 0,0129%27,9 0,0065 % 5,6 i 0,0848 % 29,5 36 JAM 0,0085 % 8,8 0,0193 % 13,2 0,0394% 17,3 0,0101 % 8,8 0,0163 % 13,7 0,0043:r. 12,5 0,0088 % 21,7 0,0043 % 5,5 0,0561 % 17,3 48 JAM I 0,00064 % 7,5 0,0145 % 13,9 , 0,0290 % 13,5I 0,0076 % 8,0 0,0010 % 10,4, i 0,0032% 11,6, i 0,0~67 % 13,3, 0,0032 % 5,4 0,0421 % 16,4 0,0689 % 43,9 0,0228 % 58,0 0,0125 % 8,0 0,0206 % 9,1 0,0206 % 24,1 0,0589 % 33,5 0,0256 % 5,6 0,1065 % 21,2 0,1847 % 34,4 I 0,1263 % 21,9

RADIO

NUKLmA

Pb-211 Pb-214 Ac-228 Pb-214 TI-208 TI-208 Bi-214 Cs-137 Bi-212 Ac-228 TI-208 Ac-228 Ac-228 Bi-214 Ri-214

K-40

Ac-228 Bi-212 Bi.214

TENAGA

(KeV) 238,62 295,22 338,70 351,97 510,72 583,14 609,30 661,62 727,17

795,00

860,00 911,20 964,40

1120,40

1378,00 1460,75 1488,30 1620,00 1764,00 0,0489:i: 16,8 0,0786:i: 23,7 0,0206:i: 20,8 0,0402:i: 39,1 0,0207:i: 6,2

1°;1546* 11,5

-0,0166:1: 9,0 0,0274:1: 10,5

0,0799: 17,0

O,0248:i: 10,6 O,0414:i: 13,8 O,0397:i: 24,1 I 0,0284* 18,7

-0,0342:1: 5,7

1.2422:!:

14.2

o-;T638~

7,5

0,0513 % 5,9 I O,141~,7 O,2489~,4 ~ O,1652:!: 41,8

KETERANGAN : Tanda

(-) tidak muncul

puncak

f~

Tabel2. .'fasil pencacahan

dengan variasi jarak dari detektor NaI(Tl)

5,5 Cm

0,0408:!: 14,3

0,0916:!: 27,4

8,5 Clil

0,0404% 14,1 I 0,0938 % 32,4 0,1898 % 38,3 0,0482 % 15,6 0,0782 % 20,4 0,0203 % 17,8 0,0416 % 15,6 0,0207 % 6,2 0,2675 % 30,3 0,0804 % 13,5 0,1301 % 31,3 0,1208 % 37,6 0,1637 % 6,6

RADIO

NUKLmA

Pb-212

Pb-214

Ac-228

Pb-214

TI-208

Tl-208

Bi-214

Cs-137

Bi-212

Ac-228

Ac-228

Bi-214

K-40

TENAGA

(KeY)

238,62

295,22

338,70

351,97

510,72

583,14

609,30

661,62

727,12

911,20

964,40

1120,40

1460,75

0,480:i: 16,8 0,0786 :i: 23,7 0,0206 :i: 20,8 0,0407:i: 39,1 0,0207 :i: 6,2 O,0799:i: 17,0 I 0,1

0,1638:

7,5

KETERANGAN : Tanda (-) tidak muncul puncak fotolistrik

Prosldlng Pertemuan dan Presentasilimiah Penelitlan Dasar IImu Pengetahuan dan Teknologl Nukllr P3TM-BATAN Yogy.ikarta, 7 -8 Agustus 2001

(4)

M. Yazid,

dkk.

ISSN 0216 -3128

205

Dari Tabel 3 dapat diketahui bahwa area atau cacah bersih daTi masing-masing tenaga semakin meningkat sesuai dengan tebal cuplikan, sehingga akan mempermudah dalam melakukan identifikasi radionuklidanya. Tetapi kalau dilihat harga efisiensi untuk masing-masing tenaga, untuk ketebalan I cm meiniliki harga efisiensi yang lebih besar dibandingkan dengan lainnya, hal ini disebabkan karena adanya faktor absorbsi diri (self absorb/ion) daTi cuplikan tersebut. Namun daTi basil perhitungan temyata untuk ketebalan 3 cm akan memberikan basil pengukuran yang lebih baik dalam arti mempunyai area lebih besar daD ralat Terata yang lebih kccil.

Perbandingan spektrum pencacahan sampel menggunakan spektrornetri gamma dengan sistem supresi compton (mode supresi) daD tanpa sistem itu (mode normal) disajikan pada Gambar 2, sedangkan data basil pencacahannya disajikan pada Tabel 4 dan 5.

Gambar 2. Perbandingan spektrum pencacahan

dengan

supresi compton

don normal

Dari pengamatan clan analisa data pengukuran radioaktivitas menggunakan spektrometer gamma tersebut, dijumpai fenomena

'.

menarik dimana pada tingkat energi gamma sebesar 511 Ke V _untuk mode normal (non supresi) diperoleh luas puncak kanal yang cukup besar, tetapi pada mode supresi puncak energi 511 KeV tersebut tidak muncul atau muncul pada sebagian kecil sampel saja dengan luas puncak yang relatif kecll, hal ini kemungkman disebabkan karena pada tenaga E > 1,022 MeV kemungkinan terjadi efek produksi pasangan sehingga terjadi proses anihilasi yaitu bergabungnya positron hasil produksi pasangan dengan elektron yang ada di sekitarnya. Massa positron dan elektron akan berubah menjadi 2 foton y dengan energi sebesar 511 KeV yang dipancarkan dengan arah yang berlawanan. (4)

Dilihat dari jarak detektor HPGe dengan sampel yang sangat dekat, kemungkinan kedua foton y anihilasi terserap semua clan berinteraksi dengan detektor. Kemungkinan lain yaitu karena adanya radionuklida pemancar gamma dengan energi sebesar 511 KeV seperti Rn-222, Ti-208, Pa-234, Na-22, Ru-l06, Cu-64, Zn-65,..Co-58, Zr-89 dan lain-lain.

Selain itu, spektrum yang terbentuk pada model normal dengan puncak 511 KeV muncul pada --s-eInua sampel dengan luas puncak yang besar, sedangkan pacta mode supresi puncak dengan tenaga tersebut hilang atau tidak terdeteksi. Hal ini memperkuat dugaan bahwa puncak energi tersebut berasal dari proses anihilasi yang akhimya tersupresi sehingga tidak muncul.

Dari perbandingan energi dan luas puncak spektrum model normal dan supresi diketahui bahwa pada jangkauan energi < 1200 KeV sistem compton supresi ini akan menekan foton y yang

Prosidlng PertEtmUan dan Presentasilimiah Penelltlan Dasar IImu Pengetahuan dan Teknologi Nukllr P3TM-BATAN Yogyakarta, 7 -8 Agustus 2001

(5)

206 ISSN 0216 -3128

AI: Yazid, dkk.

berinteraksi dengan materi detektor sehingga

akan

mengurangi puncak yang muncul. Tetapi pacta

energi> 1200 KeV sistem ini akan menambah

luas

puncak yang acta dan memunculkan

puncak-puncak energi baru yang tidak dijumpai pacta

model normal.

Tabel 5. Pencacahan

dengan menggunakan

model supresi compton

Prosldlng Pertelmuan dan Presentasl IImlah Penelltlan Dasar IImu Pengetahuan dan Teknologl Nukllr P3TM-BATAN Yogyakarta, 7.8 Agustus 2001

(6)

ISSN 0216 -3128

M. Yazid,

dkk.

207

model supresi lebih cocok untuk analisa

kualitatif sedangkan model normal untuk

analisa

kuantitatif.

DAFTAR PUSTAKA

Berdasarkan beberapa hal tersebut maka dapat diketahui beberapa kelebihan sistem supresi comptom ini yaitu mampu mendeteksi radiasi gamma pada daerah energi yang lebih besar serta dapat menseleksi foton y yang berasal dari radionuklida clan proses produksi pasangan, selain itu pada daerah energi di atas 1200 KeV mampu memunculkan puncak spektrum yang berintensitas lemah. Adapun beberapa kekurangan dari sistem ini antara lain pada jangkauan energi < 1200 KeV dimana sebagian energi y terdeteksi justru akan menekan pemunculan puncak spektrum yang dihasilkan, sehingga akan mengurangi luas puncak yang muncul.

Berdasarkan beberapa hal tersebut di atas, maka pemakaian spektrometer y dengan model

normal clan model supresi secara bersama-sama dalam analisa radioaktivitas lingkungan akan diperoleh hasil yang lebih baik. Adanya

pemunculan puncak-puncak energi baru pada

model supresi akan membantu untuk analisa kualitatatif atau identiflkasi radionuklida Sedangkan untuk analisa kuantitatif penambahan luas puncak clan pemunculan puncak baru akan sangat ueigUna ~ dalam penentuan tingkat radioaktivitas sampet.

I. KNOLL,G.,

Radiation

Detection

and

Measurement,

University of Michigan, USA

(1989)

2. KUSTIONO, A.S., "Metode Pengukuran

Aktivitas Sangat Rendah",

Prosiding

Lokakarya Kimia dan teknologi Pemurnian

Bahan Nuklir, Yogyakarta 24-27 Maret (1982)

3. HOTZL,H and WINKLER,L., " The GSF

Anticoincidence Shield Ge(Li) GaJnmma Ray

Spektrometer

and Its application

to the analysis

of Environmental

Sample", IAEA-SM 252/59

4. ROSBACH..M et al ., The Use of Compton

Suppression Spektrometers for the Trace

Element Studies in the Biological Material,

KFA Julich, Germany (1990)

TANYAJAWAB

KESIMPULAN

Derry Poernomo

-Optimasi yang dilakukan pada variabel bebas (waktu, jarak dan tebal) sebaiknya menggunakan metode Qptimasi yang benar, misal optimasi secara Golden Section atau Hoske Jeeves.

-Mengapa pemilihan variabel bebas, jarak minimal 5,5 cm dan tebal maksimum 3 cm.

M. Yazid ..

-Terma kasih alas sarannya dan~kami akan mempelajari metode yang anda tawarkan serta menjajagi kemungkinan dapat digunakannya untuk keperluan ini.

-Karenajarak minimal dan ketebalan maksimum tersebut yang hanya dapat dilakukan mengingat posisi detektor utama harus memasuki lubang

dari detektor guard.

1. Hasi! pencacahan dengan ketebalan cuplikan 3 cm diperoleh harga ralat yang lebih kecil dibandingkan dengan lainnya yaitu sebesar 0,0130 ::t: 8,8 %., sedangkan untuk 1 cm sebesar 0,0365 ::t: 11,8 % daD 2 cm sebesar 0,0187::t:ll,I%.

2. Efisiensi pengukuran akan cenderung meningkat mulai dari tenaga 661,62 KeY ke atas, untuk mendapatkan basil pengukuran yang uptimal tidak hanya didasarkan atas efisiensi, tetapi tergantung pula ralatnya.

Untuk tenaga 661,62 KeY Cs-137 dengan waktu pencacahan 70 jam didapatkan ralat sebesar 5,4 % , sedangkan untuk 1 jam sebesar

II, 5 %. .Selain itu, akan menambah puncak fotolistrik sehingga makin ban yak radionuklida yang dapat diidentifikasi.

3. Posisi sampel dan detektor HPGe yang paling optimum dalam sistem ini yaitu pada kedalaman yang maksimum dengan jarak 5,5 cm dari detektor Nal(TI).

4. Pemakaian spektrometri gamma dengan model supresi dan normal secara bersama-sama akan memberikan basil yang lebih sempuma, karena

Hadirahman

-Oalam pengambilan sampel lingkungan agar dapat dicantumkan sampel apa yang diambil. Apa itu berupa udara, air, tanah dll.

-Ketebalan cuplikan 3 cm itu berupa apa ?

Proslding Pertemuan dan Presentasl IImlah Penelltian Dasar IImu Pengetahuan dan Teknologi Nuklir P3TM.BATAN Yogyakarta, 7 .8 Agustus 2001

(7)

208 ISSN 0216 -3128

M. Yazld,

dkk.

Elizabeth S.

-Radiasi

gamma yang berasal dari sampel

dicacah oleh detektor HpGe don ditampilkan

dalam spektrum energi. Sedangkan detektor

NaI(TI) meskipun juga mencacah karena

dilewatkan gerbang antikonsidens sehingga

hanya yang mempunyai energi yang berbeda

dengan yang ditangkap oleh detektor HpGe

yang ditampilkan. Kemudian keduanya saling

dikurangkan.

sehingga diharapkan keluaran

dari keduanya hanya dari energi radiasi yang

terkait.

Elizabeth S.

-Secara rutin sampe/

/ingkungan yang diambi/ :

air, tanah, tanaman

don jatuhan. Semua sampe/

tersebut dibentuk menjadi padatan.

-Keteba/an

bermacam-macam,

tergantung hasi/

preparasi.

Isman MT.

-Mohon dijelaskan prinsip kerja daTi compton supresi dalam pengukuran identiflkasi radionuklida.

-Prosldlng Pertemuan dan Presentasillmiah Penelltlan Dasar IImu Pengetahuan dan Teknologl Nukllr P3TM-BATAN Yogyakarta, 7 -8 Agustus 2001

Gambar

Gambar  1.  Skema  spektrometer  gamma  dengan sistem supresi compton
Gambar 2.  Perbandingan spektrum pencacahan dengan  supresi compton  don normal Dari  pengamatan  clan  analisa  data pengukuran  radioaktivitas  menggunakan spektrometer gamma  tersebut, dijumpai  fenomena
Tabel 5.  Pencacahan  dengan menggunakan  model supresi compton

Referensi

Dokumen terkait

Dengan demikian seorang debitur disebutkan dan berada dalam keadaan wanprestasi, apabila dia dalam melakukan pelaksanaan prestasi perjanjian telah lalai sehingga terlambat

‘Sementara itu Karo Ops Polda metro Jaya, Kombes Daniel Pasaribu mengatakan dari pemeriksaan terhadap pelaku, kawa- nan ini mengaku melakukan aksi begal dan hasilnya

[r]

Berdasarkan hasil penelitian menyatakan bahwa pemberian sabut kelapa dengan berbagai ketebalan memberikan pengaruh yang nyata terhadap pertumbuhan bibit tanaman sukun selama 90

Kategori IVd Tidak, karena pada kasus ini belum diketahui jenis bakteri, jadi masih digunakan antibiotika dengan spektrum luas Kategori IIIa Tidak, 3-7 hari merupakan terapi

Main purpose of this research is to identify value chain from solid waste management using qualitative approach by adopted Value chain development as tool research.. Another

Penyusunan program pengembangan kompetensi konselor pada era revolusi industry 4.0 dalam konteks konseling lintas budaya, dirancang berdasarkan pendekatan studi