• Tidak ada hasil yang ditemukan

DESAIN JEMBATAN

N/A
N/A
Protected

Academic year: 2021

Membagikan "DESAIN JEMBATAN"

Copied!
24
0
0

Teks penuh

(1)

BAB I

PEMBEBANAN

I.1 DATA DESAIN

A. Latar Belakang

Dokumen ini berisi analisa kalkulasi struktur pondasi sumuran untuk proyek Jembatan

B. Lingkup Perencanaan

Lingkup perencanaan Pondasi abutment hanya pengecekan terhadap daya dukung pondasi sumuran.

Dengan kedalaman 1.5 m. Dan untuk analisa abutment tidak kami desain.

C. Peraturan-peraturan yang dipakai

SNI 03 – 2847 – 2002 : Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung

Peraturan Pembebanan Indonesia Untuk Gedung (PPIUG) 1983

SK-SNI 03-1726-2002 : Tata Cara Perencanaan Bangunan Tahan Gempa

Tata Cara perencanaan jembatan Penyebrangan untuk pejalan kaki diperkotaan bina

marga

D. Data Pembebanan

a. Beban Mati

adalah beban mati yang diakibatkan oleh berat konstruksi permanen, termasuk abutment Beton

bertulang

= 2400 kg/m

3

b. Beban Hidup

Untuk pembebanan jembatan. Desain Pondasi abutment mengikuti analisis struktur abutment

yang sudah terkombinasi. Maka didalam perencanaan pondasi abutment yang di masukan

kedalam program Pondasi AFES. Untuk beban hidup ada 3 kondisi.

1. Beban hidup yang terkombinasi pertama yaitu akibat beban gandar kendaraan dibelakang

abutment. Dengan di beri code ( LL )

2. Beban hidup yang terkombinasi pertama yaitu akibat beban gandar kendaraan dibelakang

abutment. Dengan di beri code ( L1 )

3. Beban hidup yang terkombinasi pertama yaitu akibat beban gandar kendaraan dibelakang

(2)

KOMBINASI BEBAN JEMBATAN

II.1 KOMBINASI PEMBEBANAN

Kombinasi beban dihitung berdasarkan Tata Cara perencanaan jembatan standarisasi Bina Marga

kombinasi berikut ini

1 DL + 1 LL

- Beban Vertikal (1319.340 ton )

- Beban Horizontal (355.742 ton )

- Momen

(178.23 tonm )

1 DL + 1 L1

- Beban Vertikal (1411.950 ton )

- Beban Horizontal (469.086 ton )

- Momen

(-354.212 tonm )

1 DL + 1 title beban hidup

- Beban Vertikal (1411.950 ton )

- Beban Horizontal (469.086 ton )

- Momen

(-354.212 tonm )

(3)

BAB III

DATA SONDIR

IV.1 RESUME HASIL SONDIR

Dari Hasil Sondir bahwa final QCc 108 kg/cm2 dikedalaman 1.5 m. maka dengan rumus daya

dukung sumuran Pu pile yaitu ¼ ƛ d2 x ( qc/SF ) dengan safety Factor diambil 5

(4)

Momen maksimum terjadi pada jarak f di bawah permukaan tanah, dimana dan

Sehingga momen maksimum adalah : dimana :

Hu = Gaya lateral ijin

L = Panjang tiang pancang yang tertanam ditanah = 1.5 m

= 150 cm

e = Tinggi gaya horizontal yang terjadi = 10 cm

φ = sudut gesek dalam = 50 °

= 3.85

γ    =berat volume tanah = 1.8g/cm3 d = diameter tiang pancang

= 135 cm 0.5 x 0.002 x 135 x 150 x 3.8518 10 + 150 = 9871.84 kg = 0.82 x 9871.84 135 x 3.85184 x 0.0018 = 84.21 cm = 9871.84 ( 10 + 2 x 84.2123 /3 ) = 652,939 kgcm

Momen tahanan tiang

35 x 30^2 5250 cm3

Mutu beton tiang pancang adalah K-500 0.43 x 500 = 215 kg/cm2 My = 5250 x 215

= 1,128,750.00 kgcm M max > My (tiang panjang) Dari grafik terlampir

0.1 0.067 42.8571 1.5 1E+06 35^4 x 0.002 x 3.85184 0.49 30 30 x 3.852 x 1.8 x 2460375 511756424.9 g 511.7564249 ton Hu ijin = Hu ijin =

Asumsi tiang pendek, tiang dianggap berotasi di bawah ujung tiang. Tekanan yang terjadi di tempat ini digantikan oleh gaya terpusat Hu di bawah ujung tiang.

Hu =

e/L =

(5)

FOUNDATION CALCULATION SHEET

One-Stop Solution for Foundation

TITLE

DESCRIPTION

PROJECT/JOB NO.

PROYEK JEMBATAN

PROJECT/JOB NAME

PROYEK JEMBATAN

CLIENT NAME

PT PLN ( Persero) UNIT INDUK PEMBANGUNAN VI

SITE NAME

DOCUMENT NO.

REFERENCE NO.

STRUCTURE NAME

JEMBATAN CIHANJAWAR

LOAD COMBINATION GROUP NAME

(6)

Page 1 Client : PT PLN ( Persero...

FOUNDATION LISTS

Group Name No. Description No. Description

(7)

Page 2

Calculation Sheet

of

Foundation

Project Na. : PROYEK JEMBATAN Project No. : PROYEK JEMBATAN Client : PT PLN ( Persero...

CONTENTS

1. GENERAL

1.1 CODE & STANDARD

1.2 MATERIALS & UNIT WEIGHT

1.3 SUBSOIL CONDITION & SAFETY FACTORS

1.4 LOAD COMBINATION

2. DRAWING

2.1 LOCATION PLAN

2.2 DETAIL SKETCH

3. FOUNDATION DATA

3.1 FOOTING DATA

3.2 PIER DATA

3.3 SECTION DATA

3.4 LOAD CASE

3.5 LOAD COMBINATION

4. CHECK OF STABILITY

4.1 CHECK OF PILE REACTION

5. DESIGN OF FOOTING

5.1 DESIGN MOMENT AND SHEAR FORCE

5.2 REQUIRED REINFORCEMENT

5.3 ONE WAY SHEAR FORCE

5.4 TWO WAY SHEAR FORCE

5.5 PILE PUNCHING SHEAR FORCE

(8)

Page 3 Client : PT PLN ( Persero...

1. GENERAL

1.1 CODE & STANDARD

Items Description

Design Code American Concrete Institute (ACI 318) [Metric]

Horizontal Force for Wind AMERICAN SOCIETY OF CIVIL ENGINEERS [ASCE 7-02] Horizontal Force for Seismic AMERICAN SOCIETY CIVIL ENGINEERS [ASCE 7-02] Unit System Input : MKS, Output : MKS, Calculation Unit : IMPERIAL

1.2 MATERIALS & UNIT WEIGHT

Items Value

Concrete (fck : compressive strength) Lean Concrete (Lfck : compressive strength)

Rs (Soil unit weight) Rc (Concrete unit weight) Es (Steel Modulus of Elasticity) Ec (Concrete Modulus of Elasticity)

- Pile Capacity

Items Value

Pile Name PONDASI SUMURAN

Footing List F1 Diameter 1350 mm Length 1.5 m Thick 25 mm Shape Circle Capacity ( Ha , Ua , Va ) 511 , 10 , 309.2 tonf

1.3 SUBSOIL CONDITION & SAFETY FACTORS

Items Description

Allowable Increase of Soil (Wind) 33 %

Allowable Increase of Soil (Seismic) 33 %

Allowable Increase of Soil (Test) 33 %

Allowable Increase of Pile Horizontal (Wind) 33 % Allowable Increase of Pile Horizontal (Seismic) 33 % Allowable Increase of Pile Horizontal (Test) 33 % Allowable Increase of Pile Vertical (Wind) 33 % Allowable Increase of Pile Vertical (Seismic) 33 % Allowable Increase of Pile Vertical (Test) 33 % Reinforcement (10M ~ 16M , yield strength)

Reinforcement (19M ~ , yield strength)

250.000 kgf/cm2 150.000 kgf/cm2 2400.000 kgf/cm2 4000.000 kgf/cm2 2.000 ton/m3 2.400 ton/m3 2.000 106 kgf/cm2 250998.000 kgf/cm2

(9)

Page 4

Calculation Sheet

of

Foundation

Project Na. : PROYEK JEMBATAN Project No. : PROYEK JEMBATAN Client : PT PLN ( Persero...

Allowable Increase of Pile Uplift (Wind) 33 %

Allowable Increase of Pile Uplift (Seismic) 33 %

Allowable Increase of Pile Uplift (Test) 33 %

Safety factor against overturning for OVM1(FO1) 2 Safety factor against overturning for OVM2(FO2) 2 Safety factor against overturning for OVM3(FO3) 2 Safety factor against overturning for OVM4(FO4) 2 Safety factor against sliding for the SL1(FS1) 2 Safety factor against sliding for the SL2(FS2) 2 Safety factor against sliding for the SL3(FS3) 2 Safety factor against sliding for the SL4(FS4) 2

0.35

1.4 LOAD COMBINATION

Comb . ID Load Combination for stability

10 1.0 SW + 1.0 LL + 1.0 Loadtype None Title Beban Mati 11 1.0 SW + 1.0 Ll + 1.0 Loadtype None Title Beban Mati

12 1.0 SW + 1.0 Loadtype None Title Beban Mati + 1.0 Loadtype None Title Beban Hidup

Comb . ID Load Combination for Reinforcement

13 1.0 SW + 1.0 Loadtype None Title Beban Mati + 1.0 Loadtype None Title Beban Hidup 12/10/2014

(10)

Page 5 Client : PT PLN ( Persero...

2. DRAWING

2.1 LOCATION PLAN

2.2 DETAIL SKETCH

(11)

REFERENCE DWGS

NO. DWG NO. DWG TITLE

N O T E S

* OUTPUT UNIT : mm

PROYEK JEMBATAN PROJECT

FOUNDATION LOCATION PLAN

JEMBATAN CIHANJAWAR

SQUAD CHECK PROCESS PIPING VESSELS STRUCT. ELEC. INST.

SCALE AS SHOWN JOB NO. PROYEK JEMBATAN MICROFILM NO. F1 1

A01

01

Z

X

Y

12/10/2014 Page 6

(12)
(13)

REFERENCE DWGS

NO. DWG NO. DWG TITLE

N O T E S

* PILE

8-¥õ1350 PONDASI SUMURAN * ANCHOR BOLT

1X4-M12 ANC. BOLTS (TYPE TYPE L)

* OUTPUT UNIT : mm

PROYEK JEMBATAN PROJECT

FOUNDATION DETAIL FOR

F1

SQUAD CHECK PROCESS PIPING VESSELS STRUCT. ELEC. INST.

SCALE

AS SHOWN

JOB NO.

PROYEK JEMBATAN

MICROFILM NO. REV. DATE DESCRIPTION DRWNCHKDAPPDAPPD APPD

1500 2500 3000 2500 1500 1500 3000 1500 5500 3000 11000 6000 19M@100 19M@100 19M@100 19M@100 50 TYP. TOP BOTTOM L C FOOTING

FOUNDATION PLAN

FOOTING REINF. PLAN

LEAN CONC. 50 THK 1500 1000 TOC EL. - 500 120 75 100 16M @200 100 19M 75 PROJ.

SECTION

12/10/2014 Page 8

(14)

Page 9 Client : PT PLN ( Persero...

3. FOUNDATION DATA

3.1 FOOTING DATA

11000 6000

The Origin coordinate

The Center of Gravity & Pile (0,0) mm 1000

500 Unit : mmFt. Name F1 Ft. Type Area Ft. Thickness 1000.00 mm Ft. Volume Ft. Weight 158.400 tonf Soil Height 500.00 mm Soil Volume

Soil Weight 66.000 tonf

Buoyancy Not Consider

Self Weight (except Pr.SW) 224.400 tonf

3.2 PIER DATA

Off X , Off Y is offset position from the Center of the footing

If Pier Shape is Circle or Circle wall, Pl is a Diameter. and Pw is a Inner Diameter Area is pier concrete area

Weight is pier and inner soil weight in case circle wall except Tank1 Type(Circle Ring Footing Shape)

Unit( Length : mm , Weight : tonf , Area : m2 )

Ft.Name Pr.Name Shape Pl Pw Ph Area Weight Off X Off Y

F1 1 Rectangle 0.000 0.000 0.000 0.000 0.000 0.000 ISO 66.000 m2 66.000 m3 33.000 m3 0.000

(15)

Page 10

Calculation Sheet

of

Foundation

Project Na. : PROYEK JEMBATAN Project No. : PROYEK JEMBATAN Client : PT PLN ( Persero...

3.3 SECTION DATA

11000 6000 Unit : mm Ft.Name / Sec.Name F1 / S1

Direction All Direct Section Area

F.Volume F.Weight

S.Volume S.Weight

Pier Wt Total Weight

3.4 LOAD CASE

Input the point loads in the global coordinate system direction. Positive directions of moments (shown in the sketch) are based on the right hand rule.

Fx Fy Fz Mx My Mz

Index Load Case Name

1 SW

2 Ll

3 Loadtype None Title Beban Mati 4 Loadtype None Title Beban Hidup

5 LL

Unit( tonf , tonf-m )

Ft.Name Pr.Name Load Case Fx Fy Fz Mx My

F1 1 1 0.000 0.000 0.000 0.000 0.000 2 469.086 0.000 -1411.950 354.212 0.000 3 0.000 0.000 -1.000 0.000 0.000 4 481.000 0.000 -1418.700 110.565 464.777 5 355.740 0.000 -1319.340 178.230 0.000 Footing SW 0.000 0.000 -224.400 0.000 0.000 12/10/2014 66.000 m2 66.000 m3 158.400 tonf 33.000 m3 66.000 tonf 0.000 tonf 224.400 tonf

(16)

Page 11 Client : PT PLN ( Persero...

3.5 LOAD COMBINATION

In Pier Top

without Self Weight

In Footing Bottom with Pier Self Weight,

But without Footing Self Weight,

In Footing Bottom Center

with Pier & Footing Self Weight & Soil Weight, Case PileType

in centroid of Pile Group Case NonPileType in centroid of Footing

3.5.1 Load Combination in Pier Top (Without SW)

Unit( tonf , tonf-m )

Ft.Name Pr.Name L.Comb.

1

10 355.740 0.000 -1320.340 178.230 0.000

11 469.086 0.000 -1412.950 354.212 0.000

12 481.000 0.000 -1419.700 110.565 464.777

13 481.000 0.000 -1419.700 110.565 464.777

3.5.2 Load Combination in Footing Bottom (With Pier SW)

Unit( tonf , tonf-m )

Ft.Name Pr.Name L.Comb.

1

10 355.740 0.000 -1320.340 178.230 355.740

11 469.086 0.000 -1412.950 354.212 469.086

12 481.000 0.000 -1419.700 110.565 945.777

13 481.000 0.000 -1419.700 110.565 945.777

3.5.3 Load Combination in Footing Bottom Center (With Pier & Footing SW)

Load Combination of Elastic Condition

p : PileType

- C.G. of Load is coordinate from left bottom. Unit : mm Unit( tonf , tonf-m )

Ft.Name L.Comb. C.G. of Loads

10 355.740 0.000 -1544.740 178.230 355.740 5500.0 , 3000.0

11 469.086 0.000 -1637.350 354.212 469.086 5500.0 , 3000.0

12 481.000 0.000 -1644.100 110.565 945.777 5500.0 , 3000.0

Load Combination of Ultimate Condition

p : PileType

- C.G. of Load is coordinate from left bottom. Unit : mm Unit( tonf , tonf-m )

Ft.Name Sec.Nam L.Comb. C.G. of Loads

S1 13 481.000 0.000 -1419.700 110.565 945.777 5500.0 , 3000.0 SFx SFy SFz SMx SMy F1 SFx SFy SFz SMx SMy F1 SFx SFy SFz SMx SMy F1 p SFx SFy SFz SMx SMy F1 p

(17)

Page 12

Calculation Sheet

of

Foundation

Project Na. : PROYEK JEMBATAN Project No. : PROYEK JEMBATAN Client : PT PLN ( Persero...

4. CHECK OF STABILITY

4.1 CHECK OF PILE REACTION (Bi-Axial)

4.1.1 Formula

if footing is checked in Buoyancy SFz means SFz - Fb a. Vertical - Bi Axial : R = SFz Np SMy X S Xi2 SMx Y S Yi2 - Ru = Rmax - Uf = Min[ 0 , Rmin ] - Ru < Va => OK b. Horizontal - Hmax = (SHxi2 + SHyi2) Np < Ha => OK c. Uplift - Uf < Ua => OK

Ver. / Uf. = Vertical / Uplift

4.1.2 Check of Vertical & Uplift Reaction

Ft.Name Np(EA) Fl (mm) Fw (mm)

F1 8 11000 6000 73 18

Unit( tonf )

Ft.Name L.Comb. Pile Result

F1 12 PONDASI 266.55 144.475 266.55 0 309.17 10

4.1.3 Check Of Horizontal Reaction

Ft.Name L.Comb. Pile Hmax (tonf) Ha (tonf) Result

F1 12 PONDASI SUMURAN 60.125 511 12/10/2014 SXi2 (m2) SYi2 (m2) R Max R Min Ru Uf Ra Ua OK OK

(18)

Page 13 Client : PT PLN ( Persero...

5. DESIGN OF FOOTING

5.1 DESIGN MOMENT AND SHEAR FORCE

Footing design is in accordance with unltimate strength method at footing bottom. Calculated total pier load as

SQ = SFz - Self Weight Factor (Soil Weight + Footing Weight)

Ft.Name : Footing Name , Sec.Name : Strip Name for Footing Reinforcement Design Dir. : Direction , L.Comb. : Load Combination Index , Sl or Sw : Strip X or Y width

5.1.1 Data

Unit( mm , tonf , tonf-m )

Ft.Name Sec.Nam Dir. L.Comb. Fl or Fw Sl or Sw

S1 X 13 11000.00 6000.00 1419.700 945.78 1419.700

S1 Y 13 6000.00 11000.00 1419.700 110.565 1419.700

5.1.2 Design Parameters

Yield Strength - 10M ~ 16M : fy1 , 19M ~ : fy2 f_cl : Clear Cover for edge of footing reinforcement f_clt : Clear Cover for top of footing reinforcement

fp_clb : Clear Cover for bottom of footing reinforcement (Pile Foundation) Loc. : Location of Critical Point from left side of footing

Unit(kgf/cm2,mm)

fck fy1 fy2 f_cl f_clt fp_clb

0.9 0.75 250.00 2400.00 4000.00 50.0 50.0

5.2 REQUIRED REINFORCEMENT

5.2.1 Reinforcement Formula

- Shrinkage And Temperature Reinforcement ---- ACI CODE 7.12.2 As As1 = fac b h , fac = following

Area of shrinkage and temperature reinforcement shall provide at least the following ratio of reinforcement area to gross concrete area, but not less than 0.0014

(a) Slabs where Grade 40 or 50 deformed bars are used ...0.0020 (b) Slabs where Grade 60 deformed bars or welded wire reinforcement are used...0.0018 (c) Slabs where reinforcement with yield stress exceeding 60,000 psi measured at a yield

strain of 0.35 percent is used ...0.0018 60,000 fy - Required Reinforcement by Analysis

As As2 = r.reqb d

- At every section of flexural members where tensile reinforcement is required As (As5 = 3 fck

fy bwd) (As4 =

200

fy b d) ---- ACI Eq (10-3)

- The requirements of Eq (10-3) need not be applied, if every section As provided is at least one -third greater then that required by analysis ---- ACI CODE 10.5.3 As3 = 1.333 r.reqb d Asmax = 0.75 rb b d rb = 0.85 b1 fck fy 0.003 Es 0.003 Es + fy SFz SM SQ F1 p 120.0 f(Flexure) f(Shear)

(19)

Page 14

Calculation Sheet

of

Foundation

Project Na. : PROYEK JEMBATAN Project No. : PROYEK JEMBATAN Client : PT PLN ( Persero...

Selected As = Max ( As1 , As2 , Min ( As3 , Max ( As4 , As5 ) ) ) If Selected As < Using As < Asmax , then OK!!

Note : The reinforcement is calculated bases on the maximum moment under the foundation in each direction. But, the 'ISO' , 'OCT' , 'HEX' , 'COMB' , 'TANK1' foundations are calaulated as face pier

Where, Rn = fMu bd2 , f = 0.9 , r.req = 0.85 fck fy

(

1 - 1 - 2Rn 0.85fck

)

5.2.2 Check of Footing Reinforcement

Footing Name : F1 GroupType : Isolated - X direction (Unit Width)

Sec.Name L.Comb. Using Bar (mm) Width b (m) d (cm)

S1 13 top 5.500 1.000 94.050 28.353 13 botom 5.500 1.000 87.050 28.353 Sec.Name L.Comb. S1 13 top - -13 bottom 59.263 0.0178 Sec.Name L.Comb. S1 13 top 9.000 - - 33.062 29.573 191.112 13 bottom 9.000 154.919 206.507 30.601 27.371 176.888

Sec.Name L.Comb. Result

S1 13 top 28.353 9.000

13 bottom 28.353 154.919

- Y direction (Unit Width)

Sec.Name L.Comb. Using Bar (mm) Width b (m) d (cm)

S1 13 top 3.000 1.000 92.150 28.353 13 botom 3.000 1.000 85.150 28.353 Sec.Name L.Comb. S1 13 top - -13 bottom 15.604 0.0041 Sec.Name L.Comb. S1 13 top 9.000 - - 32.394 28.975 187.251 13 bottom 9.000 34.536 46.037 29.933 26.774 173.027

Sec.Name L.Comb. Result

S1 13 top 28.353 9.000 13 bottom 28.353 34.536 12/10/2014 Loc. (m) As (cm2) 10 - 19M @ 100 10 - 19M @ 100 Mu (tonf-m) Rn r.Req -404.162 As 1(cm2) As2(cm2) As3(cm2) As4(cm2) As5(cm2) Asmax(cm2) Select As(cm2) Using As(cm2) OK NG Loc. (m) As (cm2) 10 - 19M @ 100 10 - 19M @ 100 Mu (tonf-m) Rn r.Req -101.824 As 1(cm2) As2(cm2) As3(cm2) As4(cm2) As5(cm2) Asmax(cm2) Select As(cm2) Using As(cm2) OK NG

(20)

Page 15 Client : PT PLN ( Persero...

5.3 ONE WAY SHEAR FORCE

5.3.1 One-Way Shear Formula

ACI 318-05 CODE 11.3.1.1

- For members subject to shear and flexure only. - f Vc = 0.75 2 fck B'w d (eq 11-3) - Vu <= f Vc , then OK!!

5.3.2 Check of One-Way Shear

Footing Name : F1 GroupType : Isolated PileType : True

11000

6000

6371

2129

Unit : mm

- X direction One-Way Shear (Unit Width)

Sec.Name L.Comb. Result

S1 13 6371 870.5 1000 54.742 139.824 NG

- Y direction One-Way Shear (Unit Width)

Sec.Name L.Comb. Result

S1 13 2129 851.5 1000 53.547 65.569 NG

Loc. (mm) d (mm) Bw (mm) fVc (tonf) Vu (tonf)

(21)

Page 16

Calculation Sheet

of

Foundation

Project Na. : PROYEK JEMBATAN Project No. : PROYEK JEMBATAN Client : PT PLN ( Persero...

5.4 TWO WAY SHEAR FORCE

5.4.1 Two-Way Shear Formula

Vu = SFz Shade Ratio

(a) f Vc1 = 0.75 2 (1 + 2/bc) fck bo d (eq 11-33) <- Vc1 (b) f Vc2 = 0.75 2 (1 + as d / 2 bo) fck bo d (eq 11-34) <- Vc2 (c) f Vc3 = 0.75 4 fck bo d (eq 11-35) <- Vc3 f Vc = Min(f Vc1 , f Vc2 , f Vc3) ACI 318-05 CODE 11.12.2.1 Vu f Vc , then OK

where

b = ratio of long side to short side of the column, concentrated load or reaction area as = 40 for interior colimns

= 30 for edge columns = 20 for corner columns bo = perimeter of critical section

Shade Ratio = Footing Area - Punching Area Footing Area

5.4.2 Check of Two-WayShear

There is no pier that can be Analyzed

5.5 PILE PUNCHING SHEAR FORCE

5.5.1 Pile Punching Shear Formula

Vu = SFz Shade Ratio

(a) f Vc1 = 0.75 2 (1 + 2/bc) fck bo d (eq 11-33) <- Vc1 (b) f Vc2 = 0.75 2 (1 + as d / 2 bo) fck bo d (eq 11-34) <- Vc2 (c) f Vc3 = 0.75 4 fck bo d (eq 11-35) <- Vc3 f Vc = Min(f Vc1 , f Vc2 , f Vc3) ACI 318-05 CODE 11.12.2.1 Vu f Vc , then OK

where

b = ratio of long side to short side of the column, concentrated load or reaction area as = 40 for interior colimns

= 30 for edge columns = 20 for corner columns bo = perimeter of critical section

Shade Ratio = Footing Area - Punching Area Footing Area

5.5.2 Check of Pile Punching Shear

(22)

Page 17 Client : PT PLN ( Persero... 11000 6000 1 2 3 4 5 6 7 8

Ft.Name F1 Punching Area

Pile No. 2 1 / 40

Shape Circle

L.Comb. 13

PileName PONDASI SUMURAN

Diameter 1350mm bo 6975.91mm Vu d 870.5mm Result bc / as f Vc1 f Vc2 f Vc3 f Vc 38725.000 cm2 1145.630 tonf 1334.938 tonf 763.753 tonf 763.753 tonf 266.550 tonf OK

(23)

Page 1

Calculation Sheet

of

Foundation

Project Na. : PROYEK JEMBATAN Project No. : PROYEK JEMBATAN Client : PT PLN ( Persero...

SUMMARY REPORT FOR FOUNDATION DESIGN

Project Information

Project Name PROYEK JEMBATAN

Structure Name JEMBATAN CIHANJAWAR

1. Check of Pile Reaction (Bi-Axial)

1.1 Check of Vertical (Unit : tonf)

Ft.Name # L/C Pile Ru Uf Ra Ua Result

F1

10 PONDASI 227.438 0 309.17 10

11 PONDASI 259.89 0 309.17 10

12 PONDASI 266.55 0 309.17 10

1.2 Check of Horizontal (Unit : tonf)

Ft.Name # L/C Pile H Max Ha Result

F1 10 PONDASI 44.5 511 11 PONDASI 58.6 511 12 PONDASI 60.1 511

2. DESIGN OF FOOTING

2.1 Check of Reinforcement

(Unit : cm2)

Ft.Name Sec.Nam # L/C Result

F1 S1 (X) 13 9.00 / 154.92 28.35 / 28.35

S1 (Y) 13 9.00 / 34.54 28.35 / 28.35

2.2 Check of One Way Shear

(Unit : tonf)

Ft.Name Sec.Nam # L/C Result

F1 S1 (X) 13 54.74 139.82

S1 (Y) 13 53.55 65.57

2.3 Check of Two Way Shear

(Unit : tonf)

Ft.Name # L/C Ct. Pr.Name Result

F1 13 0.000 0.000

2.4 Check of Pile Punching

(Unit : tonf)

Ft.Name # L/C Ct. PL.Name Result

F1 13 2 763.753 266.550 12/10/2014 OK OK OK OK OK OK Req.As

top / bottom Used.As top / bottom

OK / NG OK / NG Vu fVc NG NG Vu fVc OK Vu fVc OK

(24)

INPUT DATA KOLOM

Kuat tekan beton,

f

c

' =

17.5

MPa

Tegangan leleh baja,

f

y

=

390

MPa

Diameter kolom,

D =

1350

mm

Tebal brutto selimut beton,

d

s

=

50

mm

Jumlah tulangan,

n =

75

buah

Diameter tulangan,

∅ =

16

mm

PERHITUNGAN DIAGRAM INTERAKSI

Modulus elastis baja, Es = 2.E+05MPa

β1 = 0.85 untuk fc' ≤ 30 MPa

β1 = 0.85 - 0.008 (fc' - 30) untuk fc' > 30 MPa

Faktor distribusi tegangan, β1 = 0.85

Luas baja tulangan total, As = n * π / 4 * ∅ 2

= 15080 mm2

Referensi

Dokumen terkait

Perbandingan Model Inkuiri dengan Model Direct Teaching Terhadap Hasil Belajar Senam Lantai (Studi eksperimen di SMK Negeri 1 Cirebon).. Universitas Pendidikan Indonesia

Dalam rangka perayaan Natal PPD Distrik XVIII Jabartengdiy dan Natal Umum tahun 2015, untuk itu diajak semua Kaum Perempuan gereja kita untuk mengikuti Latihan Kantata

In Section 6.2 the differential of a vector-valued function is defined as a linear transformation, and the chain rule is discussed in terms of composition of such functions..

Berdasarkan hasil penelitian ini telah dihasilkan buku elektronik interaktif fisika kuantum yang dapat digunakan sebagai sumber belajar di kelas maupun mandiri oleh

Morton dalam (Sears, dkk., 1992) mengatakan pengungkapan diri merupakan kegiatan membagi perasaan dan informasi yang akrab dengan orang lain.Pengungkapan diri

Syllabus update: Cambridge IGCSE ® American History (US) (0409) for examination in 2018.. We have updated

Menetapkan : PERATURAN KOMISI PEMILIHAN UMUM TENTANG TAHAPAN, PROGRAM, DAN JADUAL PENYELENGGARAAN PEMILIHAN UMUM ANGGOTA DEWAN PERWAKILAN RAKYAT, DEWAN PERWAKILAN

(6) Batas waktu yang telah ditetapkan oleh Gubernur, pimpinan DPRD, pimpinan Badan Kehormatan Dewan dalam suatu produk hukum daerah yang bersifat penetapan dapat