• Tidak ada hasil yang ditemukan

PROSIDING SEMINAR NASIONAL KEBUMIAN KE-7 Jurusan Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada, Oktober 2014

N/A
N/A
Protected

Academic year: 2021

Membagikan "PROSIDING SEMINAR NASIONAL KEBUMIAN KE-7 Jurusan Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada, Oktober 2014"

Copied!
9
0
0

Teks penuh

(1)

M2P-07

STUDI INTERKONEKSI ANTARA SUMUR REINJEKSI DENGAN

SUMUR PRODUKSI DAN ANALISIS

MASS RECOVERY

DENGAN METODE ISOTOP STABIL

18

O DAN DI LAPANGAN

PANAS BUMI KAMOJANG, JAWA BARAT

D. Febriani1*, T. Wicaksono2, P. Utami3, A. Muharini1

1

Jurusan Teknik Fisika, Fakultas Teknik, Universitas Gadjah Mada Jl.Grafika No.2 Bulaksumur, Yogyakarta, Indonesia, *Email:dwi.febriani.19@gmail.com

2

PT. Pertamina Geothermal Energy Area Lahendong

3

Jurusan Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada Jl.Grafika No.2 Bulaksumur, Yogyakarta, Indonesia

1

Jurusan Teknik Fisika, Fakultas Teknik, Universitas Gadjah Mada Jl.Grafika No.2 Bulaksumur, Yogyakarta, Indonesia

Diterima 20 Oktober 2014

Abstrak

Lapangan Kamojang terletak 42 km arah tenggara kota Bandung, Jawa Barat. Lapangan ini adalah lapangan panas bumi pertama yang dikembangkan di Indonesia dan merupakan sistem dominasi uap. Fluida pengisi sistem hidrotermal lapangan Kamojang berasal dari air meteorik. Untuk mendukung ketersediaan uap dalam memasok PLTP, maka diperlukan pengelolaan reservoir guna menjaga kesetimbangan panas dan massa dalam reservoir panas bumi. Salah satu upaya yang dilakukan adalah dengan menerapkansistem reinjeksi yang tepat sasaran. Tujuan penelitian ini : 1) untuk mengetahui interkoneksi antara sumur reinjeksi dengan sumur produksi ; 2) menentukan nilai mass recoveryfluida dari reinjeksi yang muncul di sumur produksi. Untuk memantau pengaruh air reinjeksi terhadap produksi uap dapat dilakukan melalui monitoring isotop stabil oksigen-18 dan deuterium. Pada penelitian ini sampel air berasal dari 12 sumur produksi dan 2 sumur reinjeksi. Analisis isotop air menggunakanLiquid Water Isotope AnalyzerLGR DLT-100 untuk mengetahui komposisi isotop oksigen-18 (δ18O) dan deuterium (δD). Berdasarkan kandunganδD danδ18

O dari sampel diketahui terdapat indikasi interkoneksi antara sumur produksi KMJ-62 dengan sumur reinjeksi KMJ-55; serta sumur produksi KMJ-38 dan KMJ-45 dengan sumur reinjeksi KMJ-21. Mass recoveryair reinjeksi rerata sumur produksi KMJ-38, KMJ-45, dan KMJ-62 masing-masing : 0,86 % ; 1,02 % dan 6,02 %.

Kata Kunci: Kamojang, Isotop Air, Oksigen-18, Deuterium, Interkoneksi, Mass Recovery

Pendahuluan

Lapangan Kamojang merupakan salah satu dari 5 lapangan panas bumi dengan sistem dominasi uap yang ada di dunia. Berdasarkan beberapa penelitian diketahui bahwa fluida hidrotermal lapangan Kamojang berasal dari air meteorik (Abidin, 1993 dan Febriani, 2014). Telah terjadi penurunan jumlah produksi uap di lapangan Kamojang 6 – 7 % /tahun ( data EPT tahun 2000 ). Agar pasokan uap untuk pembangkitan energi listrik di PLTP (Pembangkit Listrik Tenaga Panas bumi) Kamojang tetap terpenuhi, maka diperlukan suatu strategi manajemen lapangan uap dalam upaya menjaga kesetimbangan panas dan massa di lapangan bersangkutan, salah satunya melalui upaya optimalisasi fungsi sumur reinjeksi.

Metode isotop stabil didasarkan pada keikutsertaan isotop18O dan D dalam senyawa airpada siklus hidrologi. Siklus hidrologi dimulai dari penguapan air laut, kondensasi air hujan hingga imbuh kedalam air tanah (Gambar 1) (Hastowo dan Abidin, 2007). Dalam

(2)

studi hidrologi, 18O dan D merupakan “DNA” air yang dapat digunakan sebagai perunut untuk mengetahui asal-usul air dan membedakan berbagai sumber air seperti air hujan, air tanah, air laut dan air magma berdasarkan komposisiδ18O danδD-nya, termasuk merunut pencampuran antara air reinjeksi dan fluida reservoir disuatu lapangan panas bumi.

Proses evaporasi yang terjadi dipower stationakan merubah kandungan isotop18O dan D uap yang berasal daripipelineyang awalnya rendah menjadi lebih tinggi. Perubahan ini memberikan perbedaan kandungan isotop yang cukup signifikan antara uap reservoir dengan kondensat yang akan diinjeksikan kembali. Perbedaan yang cukup besar ini dapat dimanfaatkan sebagai perunut untuk mengetahui adanya interkoneksi antara sumur reinjeksi dan sumur produksi (Axelsson, 2008), dengan melakukan monitoring isotop untuk kandungan D dengan 18O dari sampel air sumur produksi dan sumur reinjeksi secara berkala (More dan Nuti, 1981).

Metodologi

Lokasi pengambilan sampel air dilakukan di lapangan panas bumi PT Pertamina Geothermal Energy area Kamojang (Gambar 2). Sampel air pada penelitian ini berasal dari 12 sumur produksi dan 2 sumur reinjeksi. Sumur produksi terdiri dari : 14, KMJ-18, KMJ-28, KMJ-37, KMJ-38, KMJ-45, KMJ-62, KMJ-67, KMJ-71, KMJ-74, KMJ-75, dan CHR-1. Sumur reinjeksi terdiri dari : KMJ-21 dan KMJ-55.

Pengambilan sampel air dari sumur produksi dilakukan dengan cara mengkondensasikan uap secara sempurna menggunakan alat steam sample condenser (Gambar 3) di saluran pipa transmisi fluida. Hal ini dimaksudkan agar nilai komposisi isotop dari kondensat tetap mencerminkan nilai komposisi isotop uap reservoir. Pengambilan sampel air reinjeksi dilakukan di saluran pipa transmisi. Pengukuran komposisi oksigen-18 dan deuterium sampel dilakukan dengan menggunakan LWIA (Liquid Water Isotope Analyzer)tipe LGR DLT-100 (Gambar 4).

Hasil dan Pembahasan

Analisis Kandungan Oksigen-18 dan Deuterium (Tabel 1)

Interkoneksi Antara Sumur Reinjeksi dengan Sumur Produksi

Berdasakan hasil analisis kandungan isotop kondensat dari sumur produksi dan air reinjeksi pada data Tabel 1 diketahui bahwa komposisi antara keduanya jauh berbeda. Dalam metode isotop stabil, untuk menentukan adanya hubungan interkoneksi antara sumur reinjeksi dan sumur produksi adalah dengan melihat komposisi δD dan δ18O, jika komposisinya hampir sama atau sama, maka dipastikan bahwa air memiliki pola aliran yang sama, yang berarti terdapat hubungan interkoneksi antara sumur reinjeksi dan sumur produksi. Namun, untuk kasus di lapangan panas bumi khususnya lapangan Kamojang, berdasarkan hasil uji perunut tritium yang dilakukan oleh peneliti BATAN (Badan Tenaga Nuklir Nasional), mass recoveryair reinjeksi di lapangan ini hanya sekitar ~3 hingga 8 % (Abidin dkk, 2004), sehingga perbedaan komposisi δD dan δ18O yang signifikan antara sumur reinjeksi dan sumur produksiini tidak dapat dijadikan indikasi bahwa tidak ada interkoneksi antara sumur reinjeksi dan sumur produksi di lapangan bersangkutan.

Untuk mendeteksi pencampuran antara uap produksi dan uap yang berasal dari air reinjeksi yang jumlahnya sangat kecil ini, maka perhitungan fraksinasi isotop air reinjeksi dalam reservoir dapat membantu dalam menentukan mixing line (garis pencampuran)

(3)

isotope balance dapat ditentukan besar fraksinasi isotop air reinjeksi dalam reservoir sebagai fungsi temperatur (Badan Tenaga Nuklir Nasional, 1993).

Untuk penentuan proporsi pencampuran, minimal ada dua end member. Dalam kasus ini end memberyang digunakan adalah komposisi fraksinasi isotop air reinjeksi dalam reservoirdan komposisi isotop awal dari sumur produksi.Besar fraksinasi isotop air reinjeksi dalam reservoir sebagai fungsi temperatur dapat dihitung dengan menggunakan persamaan (Badan Tenaga Nuklir Nasional, 1993):

Dimana

δr mean weightdari air reinjeksi (‰) y fraksinasi air reinjeksi dalam reservoir 1000 lnα konstanta fraksinasi isotop fungsi temperatur

δu komposisi uap yang dihasilkan dari fraksinasi air reinjeksi di reservoir (‰)

Nilai fraksi uap (y) yang digunakan adalah 0,1; 0,25; 0,5; dan 0,75. Data untuk nilai 1000 ln α dapat dilihat pada Tabel 2, dengan temperatur yang digunakan adalah 200-240°C (temperatur reservoir lapangan Kamojang).Untuk menentukan nilaiδu, maka perlu ditentukan terlebih dahulu nilaimean weight(δr) air reinjeksi, dimananilai mass flow rate air reinjeksi dapat dilihat padaTabel 3.Menentukan mean weight air reinjeksi δr dengan menggunakan persamaan di bawah ini (Badan Tenaga Nuklir Nasional, 1993) :

Dimana

i : komposisi rasio isotop sumur reinjeksi pada bulan ke-i(δ18O atauδD dalam

0

/00)

: debit air reinjeksi (l/menit)

r : mean weightdari air reinjeksi (δ18O atauδD dalam0/00)

Komposisi isotop sumur produksi merupakan nilai yang ingin diuji, apakah terletak di antaramixing lineatau tidak. Nilai komposisi fraksinasi isotop air reinjeksi dalam reservoir sebagai fungsi temperatur yang diperoleh dengan menggunakan Persamaan (1) digunakan sebagai end member pertama dan komposisi isotop awal dari sumur produksi sebelum dilakukan reinjeksi menjadi end member kedua. Namun, karena keterbatasan data, maka digunakan komposisi δ18O dan δD dari data hasilmonitoring isotop yang dilakukan BATAN pada tahun 2011 sebagai komposisi awal sumur produksi (Badan Tenaga Nuklir Nasional, 2011).

Gambar 5 memperlihatkan bahwa komposisi isotop sumur produksi KMJ-38, KMJ-45 dan KMJ-62 yang diperoleh dari penelitian ini (Tahun 2013) berada di sekitarmixing line dengan fraksi uap y = 0,75. Hal ini memperkuat indikasi bahwa terdapat hubungan interkoneksi antara 3 sumur produksi (KMJ-38, KMJ-45 dan KMJ-62) dengan sumur reinjeksi.

(4)

Dalam studi interkoneksi antara sumur reinjeksi dengan sumur produksi, beberapa parameter penting yang harus dipertimbangkan antara lain jarak horizontal di permukaan, densitas batuan reservoir, porositas, lebar dan tinggi daerah patahan, permeabilitas sertaperbedaan kedalaman antara sumur reinjeksi dan sumur produksi (Abidin dkk, 2004; Prasetio dan Abidin, 2005). Jarak horizontal di permukaan merupakan parameter paling sederhana dalam menentukan hubungan interkoneksi.

Dalam penelitian ini terdapat 12 sumur produksi yang diteliti, dengan indikasi 3 sumur produksi yang memiliki hubungan interkoneksi dengan sumur reinjeksi. Untuk menentukan dengan sumur reinjeksi mana 3 sumur produksi tersebut memiliki hubungan interkoneksi, maka selanjutnya jarak horizontal di permukaan yang menjadi acuan. Berdasarkan jarak horizonal di permukaan diketahui bahwa sumur reinjeksi KMJ-21 lebih dekat jaraknya terhadap sumur produksi KMJ-38 dan KMJ-45, dengan jarak horizontal masing-masing 1115 m dan 781 m, sedangkan sumur reinjeksi KMJ-55 lebih dekat terhadap sumur produksi KMJ-62 dengan jarak horizontal 1078 m.

Mass RecoveryAir Reinjeksi

Deuterium merupakan parameter fluida yang tidak terpengaruh oleh fraksinasi air pada temperatur ~ 200-240°C (Nuti dan Fancelli). Oleh karena itu, komposisi deuterium fluida reservoir dapat digunakan sebagai pendeteksi jejak aliran (flow path) uap produksi yang berasal dari air reinjeksi.

Untuk mengevaluasi air reinjeksi yang kembali di sumur produksi secara kuantitatif, maka komposisi isotop air reinjeksi harus mencapai nilai konstan. Hal ini dikarenakan : - Bila komposisi air reinjeksi masih terus berubah, maka tidak ada nilaiend membertetap

yang dapat digunakan dalam perhitungan fraksi uap air reinjeksi

- Perjalanan air reinjeksi menuju sumur produksi (bila memang ada interkoneksi) dalam waktu bervariasi, beberapa hari, bulan bahkan tahun, sehingga untuk memastikan bahwa kompossi isotop saat sampling adalah komposisi sebenarnya (air reinjeksi telah sampai di zona produksi), maka nilai komposisi isotop harus sudah mencapai konstan

Uap dari air reinjeksi dalam berbagai fraksi uap yang muncul di sumur produksi secara kuantitatif dapat dihitung berdasarkan persamaan (More dan Nuti, 1981):

Dimana

Gi : uap dari air reinjeksi reinjeksi yang muncul di sumur produksi (ton/jam)

Gp : produksi uap (ton/jam)

p : komposisi isotop uap sumur produksi (‰) u : komposisi isotop uap dari air reinjeksi (‰) a : komposisi isotop uap asal (‰)

Nilai idealnya diperoleh dari komposisi awal isotop sumur produksi sebelum adanya sistem reinjeksi di lapangan bersangkutan. Dilakukan.Namun, karena keterbatasan data maka digunakan komposisi air imbuhdi lapangan Kamojang yaitu -7,74 ‰ untuk δ18

Odan - 45,12 ‰ untuk δD sebagai komposisi isotop awal (Febriani, 2014). Dengan mengetahui nilai Gi, maka dapat dihitung nilai mass recovery air reinjeksi berdasarkan rasio Gi terhadapmassflow rateair reinjeksi. Nilai Gi yang digunakan dalam perhitungan

(5)

Berdasarkan hasil perhitungan mass recovery air reinjeksi untuk berbagai temperatur dan fraksinasi isotop, diperoleh nilai rerata total mass recovery untuk 3 sumur produksi yang diindikasi mengalami mixing dengan uap dari air reinjeksi, yaitu KMJ-38, KMJ-45 dan KMJ-62. Nilai reratamass recoveryair reinjeksi dapat dilihat padaTabel 5.

Nilai mass recovery di lapangan Kamojang relatif kecil sekitar 3 hingga 8 %, tetapi nilai tersebut sudah mampu meningkatkan produksi uap dengan menurunkan trend penurunan produksi 1,8 % menjadi tinggal 0,2 % per tahun (Abidin dkk, 2004).Perbedaan mass recovery air reinjeksi pada tiap sumur disebabkan beberapa faktor diantaranya (Abidin dkk, 2004):

 Perbedaan jarak antara sumur produksi dan sumur reinjeksi  Laju produksi uap

 Ketidakhomogenan struktur permeabilitas

Kesimpulan

Metode isotop stabil adalah metode yang powerfulldalam menentukan asal usul fluida hidrotermal, termasuk sebagai perunut untuk mengetahui adanya hubungan interkoneksi antara sumur reinjeksi dan sumur produksi di lapangan panas bumi. Terdapat indikasi interkoneksi antara sumur produksi KMJ-62 dengan sumur reinjeksi KMJ-55; serta sumur produksi KMJ-38 dan KMJ-45 dengan sumur reinjeksi KMJ-21. Berdasarkan hasil penelitian diperoleh nilai rerata mass recoveryuntuk sumur produksi KMJ-38, KMJ-45, dan KMJ-62 masing-masing : 0,86 % ; 1,02 % dan 6,02 %. Meskipun nilainya relatif kecil, tetapi sudah cukup efektif dan potensial meningkatkan produksi uap di lapangan Kamojang dengan menurunkan laju penurunan produksi uap dari 1,8 % menjadi 0,2 % per tahun.

Ucapan Terima kasih

Terima kasih kepada PT Pertamina Geothermal Energy area Kamojang yang telah memberikan izin kepada penulis untuk melakukan penelitian di perusahaan bersangkutan, juga kepada seluruh staff yang telah membantu dalam penelitian ini : Pak Tondo Wicaksono, Pak Asep Abdullah, Pak Febri, dan Pak Asep Saepul Rohmat.

Daftar Pustaka

Abidin, W.Z., 1993, "Isotope Study in Geothermal Fields in Java Island,"Isotope and Geochemical Techniques Applied to Geothermal Investigations, International Atomic Energy Agency -TECDOC, vol. 788, h. 83 – 91.

Abidin, W.Z., Alip, dan Djijono, R.P., 2004, Aplikasi Perunut Radioaktif Tritium untuk Menentukan Mass Recovery Air Reinjeksi Lapangan Panas bumi Kamojang, Risalah Seminar Ilmiah Penelitian dan Pengembangan Aplikasi Isotop dan Radiasi, Jakarta.

Axelsson, G., 2008, Importance of Geothermal Reinjetion, Workshop for Decision Makers on Direct Heating Use of Geothermal Resoures in Asia, China.

Badan Tenaga Nuklir Nasional, 1993., Laporan Akhir Monitoring Isotop di Lapangan Panas bumi Kamojang-Jawa Barat,Laporan Penelitian, Jakarta.

Badan Tenaga Nuklir Nasional, 2011., Studi Water Content dan Analisis Isotop Alam di Area Geothermal Kamojang,Laporan Penelitian, Jakarta.

Febriani, D., 2014,Studi Isotop Stabil O-18 dan D sebagai Pendukung Manajemen Lapangan Uap di Lapangan Panas Bumi Kamojang, Jawa Barat, Yogyakarta.

Geyh, M., 2000, Environmental Isotope in The Hydrogical Cycle Principles and Application Groundwater Saturated and Unsaturated Zone,International Atomic Energy Agency dan United Nations Educational, Scientific and Cultural Organization, Paris.

(6)

Hastowo, H. dan Abidin, A.H.Z., 2007, Teknologi Isotop Alam untuk Manajemen Eksplorasi dan Eksploitasi Air Tanah,Jurnal Ilmiah Aplikasi Isotop dan Radiasi, vol. 3, h. 1 - 9.

International Atomic Energy Agency, 2009, Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes, Vienna.

More, C. dan Nuti, P.N.S., 1981, Use of Enviromental Isotopes as Natural Tracers in A Reinjection Experiment at Larderello, Proceedings of The Seventh on Workshop Geothermal Reservoir Engineering, Stanford, h. 85 – 89.

Nuti, P.N.S. dan Fancelli R D’Amore F., Geochemistry and Reinjection of Waste Waters in Vapor Dominated Fields,International Institute for Geothermal Researches, Pisa, h. 244 – 248. Prasetio, R. dan Abidin, W.Z., 2005, Pemodelan Sistem Reservoir Panas bumi Lapangan Kamojang

Menggunakan Program TRINV dan TRCOOL,Risalah Lokakarya Komputasi dalam Sains dan Teknologi Nuklirvol. XVI, h. 273 – 287.

PT. Pertamina, 2013, Laporan Harian Fungsi Produksi PT Pertamina Geothermal Energy Area Kamojang, Bandung.

(7)

Tabel 1.Hasil analisis kandungan isotopδ18O danδD pada sampel kondensat sumur produksi dan air reinjeksi di lapangan panas bumi Kamojang

Lokasi δD (‰) δ18O (‰) KMJ-21 -0,12 ± 0,87 -0,45 ± 0,11 KMJ-55 -6,75 ± 0,58 0,39 ± 0,08 KMJ-14 -47,64 ± 0,57 -6,83 ± 0,14 KMJ-18 -48,40 ± 0,65 -5,98 ± 0,19 KMJ-67 -47,62 ± 0,50 -6,41 ± 0,08 KMJ-28 -47,90 ± 0,95 -7,81 ± 0,24 KMJ-37 -47,48 ± 0,62 -7,06 ± 0,17 KMJ-38 -42,73 ± 0,19 -6,54 ± 0,36 KMJ-45 -41,23 ± 0,34 -6,32 ± 0,15 KMJ-62 -39,71 ± 0,89 -5,64 ± 0,09 KMJ-71 -42,06 ± 0,74 -8,57 ± 0,10 KMJ-74 -45,95 ± 0,56 -10,92 ± 0,06 KMJ-75 -42,95 ± 0,46 -8,15 ± 0,18 CHR-1 -46,07 ± 0,42 -9,81 ± 0,15

Tabel 2.Nilai konstanta fraksinasi isotop sebagai fungsi temperatur

T (°C) 1000 lnα 18 O D 200 2,48 3,50 220 2,10 0,10 240 1,77 -2,20

Tabel 3.Mass flow rateair reinjeksi

No. Sumur reinjeksi Mass flow rateair reinjeksi (l/m)

1 KMJ-21 1800

2 KMJ-55 1500

Sumber : [HYPERLINK \l "Lap13"13 ]

Tabel 4.Produksi uap rerata sumur produksi

No Sumur produksi Produksi uap (ton/jam)

1 KMJ-38 17,28

2 KMJ-45 12,64

3 KMJ-62 38,04

Sumber :13]}

Tabel 5.Mass recoveryrerata sebagai fungsi temperatur dan fraksinasi isotop

Sumur produksi Mass recovery[%]

KMJ-38 0,86

KMJ-45 1,02

(8)

Gambar 1.Berbagai komposisi isotop18O dalam siklus hidrologi

(http://www.hydroisotop.de/sites/all/themes/hydroisotop).Isotop18O air hujan pada berbagai ketinggian mempunyai konsentrasi berbeda-beda. Perbedaan ini karena adanya perbedaan elevasi

(ketinggian), iklim dan garis lintang.

Gambar 2.Peta lokasi sumur produksi, sumur reinjeksi dan mata air dingin penelitian di lapangan panas bumi Kamojang. Peta lokasi sumur dan batas reservoir diperoleh dari Data Fungsi Enjinering PT Pertamina Gothermal Energy area Kamojang (2013). Peta topografi area Kamojang diperoleh

dari Data SRTM (Shuttle Radar Topography Mission) Jawa Barat (2014).

Gambar 3.Zonasi kelerengan di daerah penelitian

1 2 3 4 5 6

(9)

Keterangan 1. pressure gage

2. selang yang terhubung dengan drum berisi air dan es batu 3. stainlesteel cooling coil

4. pre-cooler water coolingyang terhubung dengan pipa transmisi uap sumur produksi 5. gallon pail

6. saluran tempat keluarnya sampel kondensat

Gambar 4.Liquid Water Isotope Analyzer tipe LGR DLT-100: 1.pompa vakum; 2.kolom drierite;3. Komputer internal dan kamar laser (International Atomic Energy Agency, 2009).

Gambar 5.Grafik pencampuran antara uap produksi dengan uap dari air reinjeksi.Grafik memperlihatkan komposisi 3 sumur produksi yang diindikasi memiliki hubungan interkoneksi dengan sumur reinjeksi berada di sekitarmixing linedenganend member: 1) komposisi 3 sumur

produksi dari data tahun 2011 ; 2). Fraksinasi isotop air reinjeksi di reservoir pada y = 0,75 2 3 1 Fraksinasiisotop air reinjeksidalam reservoir Komposisi 3sumurproduksitahun 2011 (KMJ-38, KMJ-45, KMJ-62)

Berada di sekitarmixing lineindikasiadanyahubung aninterkoneksiantarasumurr einjeksidansumurproduksi

Gambar

Tabel 1. Hasil analisis kandungan isotop δ 18 O dan δD pada sampel kondensat sumur produksi dan air reinjeksi di lapangan panas bumi Kamojang
Gambar 3. Zonasi kelerengan di daerah penelitian1234 5 6
Gambar 4. Liquid Water Isotope Analyzer tipe LGR DLT-100: 1.pompa vakum; 2.kolom drierite; 3

Referensi

Dokumen terkait

Pada flowchart Gambar 2.2 dan Gambar 2.3, memiliki 15 nama gangguan afektif yaitu Gangguan Afektif Akibat Penyakit Umum, Gangguan Afektif Akibat Zat, Gangguan Bipolar I,

Peran Pemerintah Desa Salut khususnya pemangku kepeningan seharusnya berperan lebih aktif dalam melakukan pemberdayaan secara berkala melalui kelompok tani lebah

(3) Pengujian konsekuensi sebagaimana dimaksud pada ayat (1) dilakukan terhadap Informasi Publik yang diusulkan oleh PPID Utama, PPID Perwakilan atau unit kerja di

• Diskrit , yaitu bila suatu ruang contoh mengandung jumlah titik contoh yang terhingga atau suatu barisan unsur yang tidak pernah berakhir tetapi yang sama banyaknya dengan

Mengingat material pipa yang diberikan adalah jenis pipa baru yaitu pipa High Density Poly Ethylene (HDPE) yang belum dikenal oleh masyarakat terutama dalam proses

Nilai yang tampil pada monitor saat bergerak motor adalah ½ dari nilai yang dimasukkan pada setting parameter setiap posisinya.. Saat setting parameter posisi, nilai

Universitas Negeri Semarang merupakan lembaga pendidikan tinggi yang salah satu misi utamanya adalah menyiapkan, mencetak tenaga pendidik yang mampu dan

3.5.1.3 Reliability of the Pretest and Posttest of Reading Narrative Text Error..