• Tidak ada hasil yang ditemukan

getdocacf1. 123KB Jun 04 2011 12:04:50 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdocacf1. 123KB Jun 04 2011 12:04:50 AM"

Copied!
9
0
0

Teks penuh

(1)

ELECTRONIC

COMMUNICATIONS in PROBABILITY

ON A THEOREM IN MULTI-PARAMETER

POTENTIAL THEORY

MING YANG

Department of Mathematics, University of Illinois, Urbana, Illinois 61801 email: yang123@uiuc.edu

Submitted March 23, 2007, accepted in final form July 17, 2007 AMS 2000 Subject classification: 60G60, 60G51, 60G17

Keywords: Additive L´evy processes, Hausdorff dimension, multiple points.

Abstract

LetX be anN-parameter additive L´evy process in IRd with L´evy exponent (Ψ1,· · ·,ΨN) and letλd denote Lebesgue measure in IRd.We show that

E{λd(X(IRN+))}>0⇐⇒

Z

IRd

N

Y

j=1 Re

1

1 + Ψj(ξ)

dξ <.

This was previously proved by Khoshnevisan, Xiao and Zhong [1] under a sector condition.

1

Introduction and Proof

Let X1 t1, X

2

t2,· · · , X

N

tN be N independent L´evy processes in IR

d with their respective L´evy exponents Ψj, j= 1,2,· · ·, N. The random field

Xt=Xt11+X

2

t2+· · ·+X

N

tN, t= (t1, t2,· · ·, tN)∈IR

N +

is called the additive L´evy process. Letλd denote Lebesgue measure in IRd.

Theorem 1.1 Let X be an additive L´evy process in IRd with L´evy exponent (Ψ1,· · · ,ΨN). Then

E{λd(X(IRN+))}>0⇐⇒

Z

IRd

N

Y

j=1 Re

1

1 + Ψj(ξ)

dξ <. (1.1)

Recently, Khoshnevisan, Xiao and Zhong [1] proved that if

Re

 

N

Y

j=1 1 1 + Ψj(ξ)

 θ

N

Y

j=1 Re

1

1 + Ψj(ξ)

(1.2)

(2)

for some constantθ >0 then Theorem 1.1 holds. In fact the proof of Theorem 1.1 does not need any condition.

Proof of Theorem 1.1: Define

EΨ(µ) = (2π)−d Lemma 5.5 SupposeX is an additive L´evy process inIRd that satisfies Condition (1.3), and that RIRd

QN

j=1|1 + Ψj(ξ)|−1dξ <+∞,whereΨ = (Ψ1,· · ·,ΨN)denotes the L´evy exponent of

X. Then, for all compact setsF IRd, and for allr >0,

E{λd(X([0, r]N⊕F)} ≤θ−2(4e2r)N · CΨ(F),

whereθ >0 is the constant in Condition (1.3).

By reviewing the whole process of the proof of Theorem 1.1 of [1] given by Khoshnevisan, Xiao and Zhong, our Theorem 1.1 certainly follows if we instead prove the following statement: Let X be any additive L´evy process inIRd.If RIRd

Clearly, all we have to do is to complete Eq. (5.11) of [1] without bothering ourselves with Condition (1.3) of [1]. Sinceδ0is the only probability measure onF ={0}, lettingη→0, k→ Consider the 2N−1 similar additive L´evy processes (including X

t itself) Xt± = Xt11 ±X

2 t2±

· · · ±XN

tN.Here,±is merely a symbol for each possible arrangement of the minus signs; e.g.,

X1X2+X3,X1X2X3, X1+X2+X3and so on. Let Ψ± be the L´evy exponent for

where the first summationPis taken over the collection of all theXt±. On the other hand,

(3)

remains unchanged for allXt±as long asµis anN−fold product measure on IRN+.Proposition 10.3 of [1] and Theorem 2.1 of [1] together state that for any additive L´evy processX,

k1 are two constants depending only onr, N, d, π.Note thatλris anNfold product measure on IRN+.Thus, there exists a constantc2∈(0,∞) depending only onN andrsuch that as well. Therefore, by (1.4),

2N−1√c2

(1.3) follows, so does the theorem.

2

Applications

2.1 The Range of An Additive L´evy Process

As the first application, we use Theorem 1.1 to compute dimHX(IRN+). Here, dimH denotes the Hausdorff dimension. To begin, we introduce the standardd-parameter additiveα-stable L´evy process in IRd forα(0,1) :

Stα=St11+St22+· · ·+Stdd,

that is, theSjare independent standardα-stable L´evy processes in IRdwith the common L´evy exponent |ξ|α.

(4)

Proof LetCβ denote the Riesz capacity. By Theorem 7.2 of [1], for allβ(0, d) andS1−β/d independent ofX,

ECβ(X(IRN+))>0⇐⇒E{λd(S1−β/d(IRd+) +X(IRN+))}>0. (2.2) Note thatS1−β/d+X is a (d+N, d)additive L´evy process. Thus, by Theorem 1.1 and the fact thatβ < dand Re 1

1+Ψj(ξ)

∈(0,1], we have for allβ (0, d),

ECβ(X(IRN+))>0⇐⇒

Z

IRd|

ξ|β−d

N

Y

j=1 Re

1 1 + Ψj(ξ)

dξ <. (2.3)

Thanks to the Frostman theorem, it remains to show that Cβ(X(IRN+))>0 is a trivial event. Let Eβ denote the Riesz energy. By Plancherel’s theorem, given any β ∈ (0, d), there is a constantcd,β∈(0,∞) such that

Eβ(ν) =cd,β

Z

IRd|

ˆ

ν(ξ)|2|ξ|β−ddξ (2.4)

holds for all probability measuresνin IRd; see Mattila [3; Lemma 12.12]. Consider the 1-killing occupation measure

O(A) =

Z

IRN

+

1(Xt∈A)e−

PN

j=1tjdt, A

⊂IRd.

Clearly,O is a probability measure supported onX(IRN+). It is easy to verify that

E|Ob(ξ)|2= N

Y

j=1 Re

1

1 + Ψj(ξ)

.

It follows from (2.4) that

EEβ(O) =cd,β

Z

IRd|

ξ|β−d

N

Y

j=1 Re

1 1 + Ψj(ξ)

dξ <

whenECβ(X(IRN+))>0.Therefore,Eβ(O)<∞a.s. Hence,Cβ(X(IRN+))>0 a.s. 2.2 The Set of k-Multiple Points

First, we mention a q-potential density criterion: Let X be an additive L´evy process and assume that X has an a.e. positive q-potential density on IRd for some q 0. Then for all Borel setsF IRd,

PnF\X((0,)N)6=∅o>0⇐⇒Eλd(FX((0,)N)) >0. (2.5)

(5)

LetX1,· · · , Xk bek independent L´evy processes in IRd.Define

Zt= (Xt22−X

1

t1,· · · , X

k tk−X

k−1

tk−1), t= (t1, t2,· · ·, tk)∈IR

k +.

Z is ak-parameter additive L´evy process taking values in IRd(k−1).

Theorem 2.2 Let (X1; Ψ1),

· · · , (Xk; Ψk) be k independent L´evy processes in IRd for

k2. Assume that Z has an a.e. positive q-potential density for some q0. [A special case is that if for eachj = 1,· · ·, k, Xj has a one-potential densityu1

j >0, λd-a.e., thenZ has an a.e. positive 1-potential density on IRd(k−1).] Then

P( k

\

j=1

Xj((0,))6=∅)>0⇐⇒

Z

IRd(k−1)

k

Y

j=1 Re

1

1 + Ψj(ξj−ξj−1)

dξ1· · ·dξk−1<∞ (2.6)

with ξ0=ξk = 0.

Proof For any IRd-valued random variableX andξ1, ξ2IRd, ei[(ξ1,ξ2)·(X,−X)]=ei(ξ1−ξ2)·X.

In particular, the L´evy process (Xj,Xj) has L´evy exponent Ψj(ξ

1−ξ2).It follows that the corresponding integral in (1.1) for Z equals

Z

IRd(k−1)

k

Y

j=1 Re

1

1 + Ψj(ξj−ξj−1)

dξ1· · ·dξk−1

withξ0=ξk = 0.Clearly,

P( k

\

j=1

Xj((0,))6=)>0⇐⇒P(0Z((0,)k))>0.

SinceZ has an a.e. positiveq-potential density, by (2.5)

P(0Z((0,)k))>0⇐⇒E{λd(k−1)(Z((0,)k))}>0.

(2.6) now follows from Theorem 1.1.

For eachβ(0, d) andS1−β/d independent ofX1,· · · , Xk, define

ZtS,β= (Xt11−S

1−β/d t0 , X

2 t2−X

1

t1,· · ·, X

k tk−X

k−1 tk−1),

t= (t0, t1, t2,· · ·, tk)∈IRd+k+ , t0∈IRd+.

ZS,β is ak+dparameter additive L´evy process taking values in IRdk. Theorem 2.3 Let (X1; Ψ1),

· · · , (Xk; Ψk) be k independent L´evy processes in IRd for

(6)

one-potential densityu1j >0, λd-a.e., thenZS,βhas an a.e. positive1-potential density onIRdk

Proof According to the argument, Eq. (4.96)-(4.102), inProof of Theorem 3.2. of Khosh-nevisan, Shieh, and Xiao [2], it suffices to show that for allβ (0, d) andS1−β/dindependent

Similarly, the corresponding integral in (1.1) forZS,β equals

(7)

Finally, use the cyclic transformation: ξj−ξj−1=ξj′, j = 1,· · · , k−1, ξk−1=ξk′ to obtain

Z

IRdk

(1 +|ξ0|)β−d k

Y

j=1 Re

1

1 + Ψj(ξj−ξj−1)

dξ0dξ1· · ·dξk−1<∞

⇐⇒

Z

IRdk

(1 +|

k

X

j=1

ξ′j|)β−d k

Y

j=1

Re 1

1 + Ψj(ξ′ j)

!

1′dξ2· · ·k′ <.

LetX be a L´evy process in IRd.Fix any pathXt(ω).A pointxωIRdis said to be ak-multiple point of X(ω) if there existk distinct timest1, t2,· · ·, tk such that Xt1(ω) =Xt2(ω) =· · · =

Xtk(ω) =x

ω.Denote by Eω

k the set ofk-multiple points ofX(ω). It is well known that Ek can be identified with Tkj=1Xj((0,)) where theXj are i.i.d. copies of X. Thus, Theorem 2.2 and Theorem 2.3 imply the next theorem.

Theorem 2.4 Let (X, Ψ) be any L´evy process in IRd. Assume that X has a one-potential density u1>0, λd-a.e. Let Ek be thek-multiple-point set ofX. Then

P(Ek6=∅)>0⇐⇒

Z

IRd(k−1)

k

Y

j=1 Re

1

1 + Ψ(ξj−ξj−1)

dξ1· · ·dξk−1 <∞ (2.9)

with ξ0 =ξk = 0. If P(Ek 6=∅)>0, then almost surelydimHEk is a constant on {Ek 6=∅} and

dimHEk= sup{β ∈(0, d) :

Z

IRdk

(1 +| k

X

j=1

ξj|)β−d k

Y

j=1 Re

1

1 + Ψ(ξj)

dξ1dξ2· · ·dξk <∞}. (2.10)

2.3 Intersection of Two Independent Subordinators

Let Xt, t ≥ 0 be a process with X0 = 0, taking values in IR+. First, we ask this question: What is a condition onX such that for all setsF (0,),

P(F\X((0,))6=∅)>0⇐⇒E{λ1(FX((0,)))}>0 ?

For subordinators, still the existence and positivity of aq-potential density (q0) is the only known useful condition to this question.

Letσbe a subordinator. Take an independent copyσ− ofσ. We then define a process ˜σon IR by ˜σs = σs for s ≥0 and ˜σs = σ−s− for s < 0. Note that ˜σ is a process of the property: ˜

σt+b−σ˜b, t≥0 (independent of ˜σb) can be replaced byσfor allb∈IR.

LetXt, t≥0 be any process in IRd. Then theq-potential density is nothing but the density of the expectedq-occupation measure with respected to the Lebesgue measure. (Whenq= 0, assume that the expected 0-occupation measure is finite on the balls.) Since the reference measure is Lebesgue, one can easily deduce that ifuis aq-potential density ofX, thenu(x) is aq-potential density ofX. Consequently, if we defineXes=Xsfors≥0 andXes=X−s− for

s <0 whereX− is an independent copy ofX,thenu(x) +u(x) is aq-potential density of

e

(8)

is aq-potential density ofX. Ifσis a subordinator, after a little thought we can conclude that ˜

σhas an a.e. positiveq-potential density on IR if and only ifσhas an a.e. positiveq-potential density on IR+.

Lemma 2.5 If a subordinator σ has an a.e. positiveq-potential density for some q0 on IR+, then for all Borel sets F (0,),

P(F\σ((0,))6=∅)>0⇐⇒E{λ1(Fσ((0,)))}>0. (2.11)

Proof Assume that E{λ1(F σ((0,)))} > 0. From the above discussion, ˜σ has an a.e. positive q-potential density. Moreover, ˜σ is a process of the property: ˜σt+b −σ˜b, t ≥ 0 (independent of ˜σb) can be replaced byσfor allbIR.It follows from the standardq-potential density argument thatP(FTσ˜(IR\{0})6=∅)>0.ButF (0,) and ˜σ((−∞,0])⊂(−∞,0]. Thus, P(FTσ((0,)) =6 ∅) > 0. The direction =⇒ in (2.11) is elementary since σ has a

q-potential density.

Theorem 2.6 Letσ1 andσ2be two independent subordinators having the L´evy exponentsΨ1 andΨ2, respectively. Assume thatσ1 has an a.e. positive q-potential density for some q0 onIR+.Then

P[σ1((0,))\σ2((0,))6=]>0⇐⇒

Z ∞

−∞ Re

1

Ψ1(x)

Re

1

1 + Ψ2(x)

dx <. (2.12)

Note that our result does not require any continuity condition on theq-potential density. Proof By Lemma 2.5 and Theorem 1.1,

P[σ1((0,))\σ2((0,))6=]>0⇐⇒

Z ∞

−∞ Re

1 1 + Ψ1(x)

Re

1 1 + Ψ2(x)

dx <.

Sinceσ1 is transient,R|x|≤1Re 1 Ψ1(x)

dx <. The proof is therefore completed.

2.4 A Fourier Integral Problem

This part of content can be found in Section 6 of [1]. It is an independent Fourier integral problem. Neither computing the Hausdorff dimension nor proving the existence of 1-potential density needs the discussion below. [But this Fourier integral problem might be of novelty to those who want to replace the L´evy exponent by the 1-potential density.] LetXbe an additive L´evy process. Here is the question. Suppose that K : IRd [0,] is a symmetric function with K(x) < for x6= 0 that satisfies K L1 and Kb(ξ) = k1QNj=1Re

1 1+Ψj(ξ)

. Under what conditions, can

Z Z

K(xy)µ(dx)µ(dy) =k2

Z

|µˆ(ξ)|2 N

Y

j=1 Re

1 1 + Ψj(ξ)

(9)

hold for all probability measuresµin IRd? Here,k1, k2∈(0,∞) are two constants. Consider the function K in the following example. Define Xetjj =−Y−tjj fortj <0 and Xetjj =X

j tj for

tj≥0,whereYj is an independent copy ofXj and theYj are independent of each other and ofXas well. ThenXet=Xet11+Xe

2

t2+· · ·+Xe

N

tN, t∈IR

N is a random field on IRN.Assume that

e

X has a 1-potential densityK. So, KL1 and a direct check verifies thatK is symmetric. By the definition ofK,Kb(ξ) =RIRNe

−PN

j=1|tj|Eeiξ·Xetdt.Evaluating this integral quadrant by

quadrant and using the identity P QNj=1 1 1+z±j = 2

NQN j=1Re

1 1+zj

for Re(zj) 0 (where

P

is taken over the 2N permutations of conjugate) yieldKb(ξ) =k

1QNj=1Re

1 1+Ψj(ξ)

>0.

IfKb L1(even though this case is less interesting), on one hand by Fubini,

Z

|µˆ(ξ)|2Kb(ξ)dξ =

Z Z Z

e−iξ·(x−y)Kb(ξ)dξµ(dx)µ(dy)

and on the other hand by inversion (assuming the inversion holds everywhere by modification on a null set),

Z Z

K(xy)µ(dx)µ(dy) = (2π)−d

Z Z Z

e−iξ·(x−y)Kb(ξ)dξµ(dx)µ(dy).

Thus, (2.13) holds automatically in this case. If K is continuous at 0 and K(0) <, then

b

KL1.This is a standard fact. SinceKL1 andK >b 0,a bottom line condition needed to prove (2.13) is thatKis continuous at 0 on [0,].This paper makes no attempt to solve the general case K(0) =.

Remark Lemma 6.1 of [1] is not valid. The assumption that

ReQNj=11+Ψ1j(ξ)>0 cannot justify either equation in (6.4) of [1]. Fortunately, Lemma 6.1 played no role in [1], because Theorem 7.2 of [1] is an immediate consequence of the well-known identity (2.4) of the present paper and Theorem 1.5 of [1]. Nevertheless [1] indeed showed that the 1-potential density of an isotropic stable additive process is comparable to the Riesz kernel at 0, and therefore the 1-potential density is continuous at 0 on [0,].

References

[1] D. Khoshnevisan, Y. Xiao and Y. Zhong, Measuring the range of an additive L´evy process, Ann. Probab. 31 (2003) pp.1097-1141. MR1964960

[2] D. Khoshnevisan, N.-R. Sheih, and Y. Xiao, Hausdorff dimension of the contours of sym-metric additive proceeses, Probab. Th. Rel. Fields (2006), to appear.

Referensi

Dokumen terkait

[r]

Dalam penelitian ini akan menggunakan proses pembelajaran sebagai acuan dan sebagai perbandingan dengan hasil dari pengenalan pola tanda tangan yang dilakukan

UNIVERSITAS KOMPUTER INDONESIA FAKULTAS ILMU SOSIAL DAN ILMU POLITIK. PROGRAM STUDI ILMU PEMERINTAHAN

Berikut ini adalah tahapan dalam merancang cover buku anak yang dikerjakan oleh penulis Menyiapkan ilustrasi pada disain brosur penulis memiliki peranan dalam membuat

dapat memberikan kontribusi teoritis dengan menunjukkan bahwa hegemoni pemaknaan (norma) liberal majoritarian dalam demokrasi dan perwakilan telah menjadi penghambat utama

Pemilihan merupakan proses kegiatan sejak dari meninjau masalah kesehatan yang terjadi di rumah sakit, identifikasi pemilihan terapi, bentuk dan dosis, menentukan kriteria

[r]

Judul : Pemberdayaan wanita pedesaan melalui pelatihan pembuatan obat tradisional jus buah mengkudu dan ekstrak rimpang kunir dan temulawak serta sosialisasi pemanfaatannya. Program :