• Tidak ada hasil yang ditemukan

S TE 1100243 Abstract

N/A
N/A
Protected

Academic year: 2017

Membagikan "S TE 1100243 Abstract"

Copied!
2
0
0

Teks penuh

(1)

i Kartika Ainur Rohmah, 2016

OPTIMAL ANOMALOUS SHORT TERM LOAD FORECASTING BERBASIS ALGORITMA FEED FORWARD BACKPROPAGATION

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

ABSTRAK

Skripsi ini berisi tentang peramalan beban jangka pendek (STLF) dengan menggunakan metode jaringan syaraf tiruan khususnya algoritma feed forward backpropagation yang dioptimalkan agar mendapatkan hasil dengan nilai error yang tereduksi. Sasaran peramalan adalah beban listrik hari libur yang memiliki pola tidak identik dan berbeda dengan beban hari kerja, dengan kata lain pola yang dimiliki hari libur merupakan sebuah anomali. Dengan kondisi demikian, tingkat akurasi pada suatu peramalan akan menurun. Oleh karena itu, dibutuhkan sebuah metode yang mampu menurunkan nilai error pada peramalan beban anomali. Proses pembelajaran algoritma ini adalah supervised atau terkontrol, sehingga ada beberapa parameter yang diatur sebelum proses komputasi dilakukan. Nilai momentum constanta ditetapkan pada angka 0,8 sebagai acuan karena memiliki kecenderungan konvergen paling besar. Pemilihan learning rate dilakukan hingga 2 angka dibelakang koma. Selain itu, komponen hidden layer dan input turut diuji dalam beberapa variasi jumlah yang berbeda. Hasil pengujian memberikan kesimpulan yakni jumlah hidden layer berdampak besar terhadap keakuratan peramalan dan lamanya pengujian ditentukan oleh banyaknya iterasi yang dibutuhkan saat pembelajaran data input hingga mencapai nilai maksimal dari salah satu parameter.

(2)

ii Kartika Ainur Rohmah, 2016

OPTIMAL ANOMALOUS SHORT TERM LOAD FORECASTING BERBASIS ALGORITMA FEED FORWARD BACKPROPAGATION

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

ABSTRACT

This paper contains the Short-Term Load Forecasting (STLF) using artificial neural network especially feed forward backpropagation algorithm which is particularly optimized in order to getting a reduced error value result. Electrical load forecasting target is a holiday that hasn’t identical pattern and different from weekdays pattern, in other words the pattern of holiday load is an anomalous. Under these conditions, the level of forecasting accuracy will be decrease. Hence we need a method that capable to reducing error value in anomalous load forecasting. Learning process of algorithm is supervised or controlled, then some parameters are arranged before performing computation process. Momentum constanta value is set at 0.8 which serve as a reference because it has the greatest converge tendency. Learning rate selection is made up to 2 decimal digits. In addition, hidden layer and input component are tested in several variation of number also. The test result leads to the conclusion that the number of hidden layer impact on the forecasting accuracy and test duration determined by the number of iterations when performing input data until it reaches the maximum of a parameter value.

Referensi

Dokumen terkait

DESAIN MODEL UNTUK PRAKIRAAN BEBAN JANGKA MENENGAH DENGAN REGRESI MULTIPLE DAN JARINGAN SYARAF TIRUAN.. Universitas Pendidikan Indonesia | repository.upi.edu

DESAIN MODEL UNTUK PRAKIRAAN BEBAN JANGKA MENENGAH DENGAN REGRESI MULTIPLE DAN JARINGAN SYARAF TIRUAN.. Universitas Pendidikan Indonesia | repository.upi.edu

Selanjutnya model prakiraan Jaringan Syaraf Tiruan dengan algoritma backpropagtion yang telah dirumuskan diatas akan dilatihkan untuk memprediksi beban harian mulai dari

Penerapan metode Jaringan Syaraf Tiruan untuk peramalan permintaan Keripik tempe rasa daun jeruk dengan menggunakan algoritma Backpropagation , arsitektur Multi

Dalam penelitian ini membahas mengenai jaringan syaraf tiruan menggunakan metode algoritma backpropagation dalam peramalan inventory barang habis pakai di rumah

Penerapan metode Jaringan Syaraf Tiruan untuk peramalan permintaan Keripik tempe rasa daun jeruk dengan menggunakan algoritma Backpropagation, arsitektur Multi Layer

Peramalan Tinggi Muka Air Sungai Bengawan Solo Menggunakan Jaringan Syaraf Tiruan Backpropagation dengan Algoritma Levenberg Marquardt dan.. Modified

Program peramalan dengan Jaringan syaraf tiruan dengan algoritma Backpropagation memberikan hasil yang cukup memuaskan dalam peramalan harga sahamsehingga baik untuk