• Tidak ada hasil yang ditemukan

PowerPoint Pembelajaran Fungsi Invers « fadjarp3g

N/A
N/A
Protected

Academic year: 2017

Membagikan "PowerPoint Pembelajaran Fungsi Invers « fadjarp3g"

Copied!
21
0
0

Teks penuh

(1)
(2)

2 2

Kompetensi Dasar yang Hendak Dicapai:

5.2. Menentukan invers suatu fungsi

Indikator:

Menentukan fungsi invers dari suatu fungsi.

Menentukan syarat agar suatu fungsi mempunyai invers.Menggambarkan grafik fungsi invers dari grafik fungsi asalnya.

Konteks Invers Pengertian Invers

Contoh Soal Invers Fungsi Pilih Lalu

Klik

(3)

3

Perjalanan Gorila

Kegiatan Memakai Sepatu

Pilih Lalu

Klik

(4)

4

Bagaimana cara ia pulang?

Apa bedanya dengan ketika ia berangkat?

Klik Utk Lanjut

A

B

C

7,5 km

7 km

Klik Utk Lanjut

Menu 1 Utama

(5)

5

5

KONTEKS 2

KONTEKS 2

Kegiatan Memakai Sepatu

Kegiatan Memakai Sepatu

Beri komentar tentang langkah

Beri komentar tentang langkah

memakai sepatu di atas.

memakai sepatu di atas.

Memasukkan Kaki

Mengikat Tali Sepatu

Mengambil Sepatu

Memasang Kaos Kaki

(6)

6

Bagaimana cara

membuka

sepatu?

Beri komentar

tentang langkah

memakai dan membuka

sepatu?

Menu 1 Utama

(7)

7

MEMAKAI & MEMBUKA SEPATU

Mengambil Sepatu

Memasang Kaos

Memasukkan Kaki

Mengikat Tali

Tidak Bersepatu

Bersepatu

Membuka Tali Mengeluarkan Kaki

Membuka Kaos Meletakkan Sepatu

Menu 1 Utama

(8)

8

MEMAKAI DAN MEMBUKA SEPATU

Kegiatannya saling berkebalikan

(invers)

Ada yang

menarik?

Urutannya saling berkebalikan

(9)

9

5

2

10

10

x

5

50

x=

y

f:

x

5

x

f

–1

:

x

x/

5

Menu 1 Utama

(10)

10

Misal fungsi:

f: A

B,

maka invers fungsi f dinyatakan dengan

f

–1

: B

A

(11)
(12)
(13)

13

Pilih A, B, C, atau D utk f

 –1

(x) dari:

B. f

 –1(x) = (x+2)/5

(14)

14

Ke Soal 2

Ke Soal 1

Pilih Lalu Klik

(15)

15

Penasaran. Mau Coba Lagi

Ingin Tahu Jawabannya Deh

Pilih Lalu Klik

(16)

16

Jawabannya Adalah D

Coba Cari. Kenapa Harus D?

Soal No 2

Kembali ke Soal No 1

Pilih Lalu Klik

(17)

17

Pilih A, B, C, atau D yang menyatakan       

f

 –1

(x) dari: f(x) = x

2

+2x+3; x

0

A. f 

–1(x) = (x–2) – 1

B. f 

–1(x) = (x–2) +1

D. f 

–1(x) = (x+2) +1

C. f 

–1(x) = (x+2) – 1

Menu 1 Utama

(18)

18

Penasaran. Mau Coba Lagi

Ingin Tahu Jawabannya Deh

Menu 1 Utama

(19)

19

LANJUT

(20)

20

Jawaban No 2 Adalah A, dengan Alasan:

f(x) = x

2

+2x+3 = (x+1)

2

+2

 

Ke Soal 2

Lanjut

Ke Soal 1

Menu 1 Utama

Menu 2 Konteks

(21)

21

Referensi

Dokumen terkait