• Tidak ada hasil yang ditemukan

REKAYASA TURBIN AIR JENIS CROSS FLOW SEBAGAI PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO JORONG LUBUK SALASIH, KECAMATAN GUNUNG TALANG, KABUPATEN SOLOK

N/A
N/A
Protected

Academic year: 2021

Membagikan "REKAYASA TURBIN AIR JENIS CROSS FLOW SEBAGAI PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO JORONG LUBUK SALASIH, KECAMATAN GUNUNG TALANG, KABUPATEN SOLOK"

Copied!
6
0
0

Teks penuh

(1)

REKAYASA TURBIN AIR JENIS CROSS FLOW

SEBAGAI PEMBANGKIT LISTRIK TENAGA

MIKRO HIDRO JORONG LUBUK SALASIH,

KECAMATAN GUNUNG TALANG,

KABUPATEN SOLOK

Yusri

(1)

, Roswaldi

(2)

, Munafri Alwys

(3)

, Asmed

(1)

.

(1)

Staf Pengajar Jurusan Teknik Mesin, Politeknik Negeri Padang

(2)

Staf Pengajar Jurusan Teknik Elektro, Politeknik Negeri Padang

(3)

Staf Pengajar Jurusan Teknik Sipil, Politeknik Negeri Padang

ABSTRACT

Remote rural areas not reached by most of the national electricity network (PLN) is an issue for the construction and development of rural communities. One of the areas in West Sumatra with the potential to be used as an energy source Micro Hydro Power (PLTMH) is

Sungai Mudik Air, Jorong Lubuk Selasih, Kenagarian Batang Barus, Kecamatan Gunung

Talang, Kabupaten Solok, in West Sumatra. Design of Hydroelectric Power Machines

(Turbines) cross flow consisting of pipes and runner as media-driven water, the movement is transmitted to rotate electric generators.The workings of the turbine water from the dam is like a sedative which will rapidly piped pound runner (cross flow), which can lead lap and lap forwarded to the generator shaft through transmission using V-belts. Turbine efficiency and performance is strongly influenced by the position and angle of the blade (director of water). From the survey results obtained high water fall (head) of 9.5 m, a discharge 0.1 m3/ s, After calculation of the runner diameter is 300 mm, and a width of 120 mm of water intake, and electrical energy can be generated turbine is at 5 KW and can be result the electricity needs of the residents in the area stretcher. From these data it is designed according to the specifications of the turbine base.

Keywords: Cross flow Turbines , Power Plant

1. PENDAHULUAN 1.1 Latar Belakang.

Dusun Mudiak Aia Simp. Tigo, Jorong Lubuk Selasih, Kanagarian Bt. Barus, Kecamatan Gunung

Talang, Kabupaten Solok, Sumatera Barat

merupakan daerah pedesaan yang belum terjangkau jaringan listrik nasional (PLN). Di Dusun ini terdapat 16 rumah dan satu sarana ibadah dan dihuni oleh lebih kurang 18 kepala keluarga, dimana lokasi rumah yang saling berjauhan satu sama lainnya sehingga secara ekonomis tidak memungkinkan PLN memasang jaringan.

Ketiadaan listrik tersebut merupakan suatu masalah bagi pembangunan dan pengembangan masyarakat

pedesaan. Kebutuhan energi masyarakat untuk

memasak, penerangan dll, umumnya berasal dari energi fosil (bahan bakar minyak, kayu bakar) yang selalu habis, dalam bentuk lain tidak dapat diolah kembali. Adapun kebutuhan daya untuk peralatan elektronik seperti radio, televisi dipenuhi dengan menggunakan baterai atau aki yang dalam jangka waktu tertentu harus diisi ulang (recharge), sehingga membutuhkan waktu dan biaya yang besar.

Dari hasil survey, di Dusun Mudiak Aia Simp. Tigo,

Jorong Lubuk Selasih, Kanagarian Bt. Barus,

Kecamatan Gunung Talang, Kabupaten Solok,

Sumatera Barat terletak pada daerah pegunungan terdapat aliran air sungai yang mempunyai potensi energi yang sangat memadai untuk membangun sebuah pembangkit listrik tenaga mikrohidro. Atas dasar itu maka dilakukan penelitian Rekayasa Turbin Air yang akan dapat dipakai untuk penggerak generator listrik dalam skala mini atau pembangkit listrik tenaga mikrohidro (PLTMH) yang sesuai dengan potensi air yang ada di daerah tersebut.

Survey dan Pembuatan Turbin Air untuk PLTMH ini

dilakukan secara bersama antara dosen dan

mahasiswa Politeknik Unand Padang, dalam rangka aplikasi ilmu pengetahuan dan Tridarma Perguruan Tinggi.

1.2 Tujuan dan Manfaat

Penelitian ini akan memberikan kontribusi sebagai berikut:

2. Dapat menerapkan teknologi tepat guna bagi

masyarakat pedesaan dalam bentuk turbin air

yang dapat digunakan untuk penggerak

generator listrik.

3. Dengan melibatkan mahasiswa maka dapat

(2)

Kabupaten Solok (Yusri)

yang didapat di bangku perkuliahan ke dalam aplikasi dilapangan.

4. Dengan dihasilkannya listrik maka diharapkan

dapat meningkatkan taraf kehidupan masyarakat pedesaan.

5. Dengan adanya kegiatan ini maka Politeknik

sebagai lembaga pendidikan terapan akan

memberikan kontribusi dalam pengembangan kehidupan masyarakat, sehingga akan lebih

mengenalkan dan melambungkan nama

polteknik dimata masyarakat.

6. Hasil penelitian akan memberikan mamfaat

langsung terhadap perkembangan pengetahuan dan perekonomian masyarakat, karena dengan adanya listrik anak-anak akan dapat belajar lebih

baik. Dengan adanya listrik akan dapat

dimamfaatkan oleh masarakat untuk

pengembangan usaha, pengolahan hasil panen dan lain sebagainya.

7. Selain dari itu masyarakat juga akan sadar

tentang pentingnya pelestarian lingkungan untuk menjamin ketersediaan air demi lancarnya listrik mikrohidro tersebut.

2. TINJAUAN TEORITIK.

Prinsip kerja pembangkit listrik tenaga mikrohidro (PLTMH) yang paling utama adalah memanfaatkan semaksimal mungkin energi air yang dapat ditangkap oleh peralatan utamanya yang disebut turbin atau kincir air.

Sebagai suatu turbin aliran radial atmosferik, yang berarti bekerja pada tekanan atmosfir, turbin cross

flow menghasilkan daya dengan mengkonversikan

energi kecepatan pancaran air. Turbin cross flow terdiri atas dua bagian utama, nozel dan runner. Tiga buah piringan sejajar disatukan pada lingkar luarnya oleh sejumlah sudu membentuk konstruksi yang

disebut runner. Nozel berpenampang persegi,

mengelurkan pancaran air ke selebar runner dan

masuknya dengan sudu 160 terhadap garis singgung

lingkar luar runner.

Dengan demikian, ia merupakan turbin pancaran ke dalam karena pada dasarnya aliran air adalah radial, diameter runner tidak tergantung pada besarnya

tumbukkan air sedang panjang runner dapat

ditentukan tanpa tergantung sejumlah air.

Gambar 1 Rencana disain mekanikal mikrohidro Untuk menghitung daya keluaran turbin, yaitu

sebagai berikut:

a. Power air (Pa) = Q . H . g (Kw)

b. Daya Turbin (Pt) = Pa × ήt (Kw)

c. Daya Listrik (PI) = Pt × ήt × ήg (Kw)

dimana :

Power air (Pa) (kw) Debit air (Q) (liter/dtk). Gravitasi (g) (9, 81 m/detik) Tinggi air jatuh (H) (m)

Efisiensi Turbin (ήt) (%) Efisiensi Generator (ήg) (%)

Luasan Pemasukan Aliran/Lebar Runner

(3)

74 Luas pemasukan aliran adalah hasil kali lebar runner

, bo, dengan panjang busur pemasukan , L.

A = b0l … (1)PRTA jld 2 hal 21

dimana :

A = Luas pemasukan aliran (m2).

bo = Lebar runner (mm).

L = Panjang busur pemasukan.

L ditentukan oleh busur pemasukan, [°], dan

diameter runner, D1= 2 R1.

L = … (2)PRTA jld 2 hal 21

Dengan tinggi terjun tertentu, luas pemasukan tergantung kepada kebutuhan debit aliran.

Q = A. v … (3)PRTA jld 2 hal 21

dimana :

Q = Debit air masuk turbin [m3/ det].

A = Luas pemasukan aliran [m2].

V = Kecepatan aliran [m/det], tegak lurus terhadap luas pemasukan.

Komponen kecepatan yang berarah tegak lurus

terhadap luasan pemasukan adalah komponen

kecepatan mutlak diarah bujur, cm. Sehingga dengan

demikian maka:

Q = A. Cm … (4)

PRTA jld 2 hal 21

Komponen kecepatan di arah bujur ini dapat dinyatakan sebagai :

Cm= c . sin … (5)

PRTA jld 2 hal 21

dimana :

c = Kecepatan mutlak. α = Sudut kecepatan mutlak.

Bila dikecepatan pancar bebas, dengan

mengabaikan kerugian tinggi terjun akibat gesekan aliran, menggantikan kecepatan mutlak, maka :

C = … (6)PRTA jld 2 hal 21

dimana :

g = Percepatan gravitasi. H = Tinggi terjun bersih.

Menggunakan hubungan tersebut diatas, debit air masuk turbin dapat dinyatakan dengan :

Q = A . cm

Q = bo. L . cm

Q =

Q =

Q = … (7)PRTA jld 2 hal 21

Persamaan ini memuat semua besaran yang

berpengaruh terhadap debit aliran masuk turbin, yaitu:

= Lebar Pemasukan. = Jari-Jari runner.

= Sudut Busur Pemasukan. = Akar tinggi terjun netto.

= Sinus sudut kecepatan mutlak disisi masuk runner.

Cm =Komponen kecepatan mutlak diarah bujur.

3. METODOLOGI PENELITIAN

Karena data lapangan sebagai dasar dalam

perancangan turbin yang akan dibuat maka Penelitian dilakukan dengan menggunakan beberapa tahapan sebagai berikut:

1. Studi Potensi Air.

Survey dilakukan untuk mengetahui potensi air dan keberadaan air secara berkelanjutan, potensi energi kinetik air dapat dihitung berdasarkan debit, tinggi jatuh air dan komponen komponen lain yang terkait agar turbin dapat digerakkan.

2. Tahap Perencanaan

Disain sebuah turbin akan dipengaruhi oleh data potensi lapangan seperti tinggi jatuh air (H), besar debit air (Q), kondisi kontur atau kemiringan tanah yang ada. Dimensi turbin yang akan didisain disesuaikan dengan kapasitas dan head yang ada yang selalu dirancang maksimal sebesar potensi yang tersedia.

3. Tahap Pelaksanaan

Proses manufaktur turbin dan kelengkapannya yang akan dikerjakan di bengkel mesin Politeknik Negeri Padang yang masuk ke dalam kelompok pekerjaan mekanikal.

4. HASIL DAN PEMBAHASAN 1. Survey Potensi Air

Dusun Mudiak Aia, Jorong Lubuk Selasih,

Kanagarian Batang Barus, Kecamatan Gunung

Talang, Kabupaten Solok, Sumatera Barat. Mudiak

Aia, Desa Lubuk Selasih, merupakan salah satu

(4)

Kabupaten Solok (Yusri) Muaro Labuah S o lo k S u ng ai B a tan gS u ma n i Intake/bendungan Rumah Turbin sawah sawah sawah Bak Penenang

banda Mudiak Aia daerah mudiak b uk itb a ri as a n P a d a n g

Gambar 3 Peta lokasi survey

Dusun ini dialiri oleh sebuah sungai kecil yang potensi airnya dapat dimamfaatkan sebagai sumber energi.

Setelah dilakukan survey terhadap sumber air dan dilakukan observasi lokasi turbin maka di dapat data-data sebagai berikut :

Jarak (s) = 8 meter Waktu (t) = 9,57 dtk

Kecepatan air (v) = = = 0,836 m/dtk

Lebar saluran (l) = 0,7 m

Kedalaman air pada saluran (h)= 0,3 m

Luas penampang air (A)= lxh =0,7m x 0,3m =0,21m2

Tinggi jatuh air = 9, 5 m Konsumen = 18 rumah

Kebutuhan daya = 18 x 200 watt = 3600 Watt Perkiraan Daya desain = 5 KW

Tabel 1 Daerah spesifikasi jenis turbin terhadap ketinggian (head).

Jenis Turbin Range ketinggian (head)(m) Kaplan dan Propeller 2 < H < 40

Francis 10 < H < 350

Pelton 50 < H < 1300

Banki / Crossflow 3 < H < 250

Turgo 50 < H < 250

Tabel.Spesifikasi Jenis Turbin (Sumber: Of Fatty 1996)

Dari tabel di atas maka turbin yang cocok untuk daerah tersebut adalah jenis Cross flow.

2. Tahap Perancangan Turbin.

Dari hasil survey lapangan didapat data-data sebagai dasar perencanaan guide vane dan adaptor pada turbin crosflow. Debit air diperoleh dengan cara

pengukuran luas penampang air dikali dengan kecepatan rata-rata air, dengan data-data sebagai berikut :

Jarak (s) = 8 meter Waktu (t) = 9,57 dtk

Kecepatan air (v) = = = 0,836 m/dtk

Lebar saluran (l) = 0,7 m

Kedalaman air pada saluran (h) = 0,3 m

Luas penampang air (A)=lxh= 0,7m x 0,3m = 0,21m2

Jadi didapatkan debit air terukur sebesar :

Q = V x A = 0,836 m/dtk x 0,21m2 = 0,175 m3/dtk

= 175 l / dtk (Musim Hujan)

Untuk menjamin ketersediaan air sepanjang tahun, perhitungan daya dilakukan pada 50 – 80 % dari debit terukur, maka debit desain sebagai berikut :

Debit desain ( = 100 l/dtk = 0,1 m3/dtk

Tinggi air jatuh ( = 9,5 m

= = 0,22 . = 0,008 m

dimana : = koefisien rugi

= = 9,5 m 0,008 m = 9,492 m ditetapkan : a. gravitasi (g) = 9,81 m/ b. efisiensi total ( ) = 75 % c. efisiensi turbin ( = 75 % d. efisiensi Generator ( g) = 82 % Daya Keluaran Turbin

Pa = Q . h . g = 0,1 . 9.5 . 9,81 = 9,31 kW Pt = Pa . = 9,31. 0,75 = 6,99 kW Pi = Pt . g = 6,99 . 0,75 . 0,82 = 4,29 kW 5 kW dimana : Pa = Power Air (kW) Pt = Daya Turbin (kW) Pi = Daya Listrik (kW) Luas pemasukan aliran (b0).

(5)

76

Gambar 4 Luas pemasukan aliran

Data yang diperoleh di lapangan :

- Debit desain ( = 100 l/dtk = 0, 1 m3/dtk

- Tinggi air jatuh ( = 9, 5 m

b0 = 3,623

= 3,623 = 0,118 m

= 118 mm 120 mm

Jadi ukuran efektif b0 ditetapkan menjadi 120 mm

yang merupakan lebar dari guide vane atau lebar dari runner turbin dan diameter runner 300 mm.

Betolak dari ukuran b0 maka dilakukan perhitungan

untuk dimensi komponen turbin lainnya serta

pembuatan gambar kerja seperti gambar berikut:

Gambar 5 Rancangan Turbin Cross flow 3. Tahap Pembuatan Turbin.

Dari gambar desain kegiatan dilanjutkan ke proses manufatur turbin. Rangkaian kegiatan terdiri dari: 1. Pembelian material dan komponen

2. Proses permesinan antara lain:

a. Pemotongan Material

b. Proses Permesinan

c. Proses Pengelasan dan Assembling.

d. Proses Finishing.

Gambar 6 Proses pembuatan alat

3. Turbin Sudah Selesai

Gambar 7 Sistem turbin selesai dibuat

5. KESIMPULAN DAN SARAN 5.1 Kesimpulan

Berdasarkan dari data dan perhitungan yang telah dilaksanakan, dapat diambil beberapa kesimpulan, diantaranya sebagai berikut :

1. Dari data dilapangan maka turbin yang cocok

untuk potensi air di dusun Mudiak Aia tersebut adalah turbin jenis cross flow.

2. Fungsi turbin crossflow adalah mengubah energi

ketinggian air menjadi daya putaran poros. Pemilihan jenis turbin air yang dipakai pada

PLTMH tergantung pada karakteristik site

tempat lokasi PLTMH tersebut, terutama tinggi

head serta besar aliran air yang tersedia.

3. Debit dari hasil survey didapat data tinggi jatuh

9,5 meter, debit yang didapat adalah sebesar

175 liter/detik

4. Daya Keluaran Turbin menurut perhitungan

yang dilakukan, maka daya yang dihasilkan turbin Crossflow ini adalah sebesar 6, 99 kW.

(6)

Kabupaten Solok (Yusri)

5. Efisiensi Turbin (ηt). Pada perhitungan yang

telah dilakukan, maka efisiensi Turbin

Crossflow ini di diambil lebih kurang sebesar

75%.

6. Daya turbin yang dapat dikonversikan menjadi

daya listrik adalah 75% dari daya perhitungan yaitu 5 kW.

7. Ukuran turbin sesuai hasil perhitungan adalah

b0= 200 mm dan dia. Runner 300 mm

5.2 Saran-saran

1. Lakukan perawatan yang rutin dalam setiap

pekerjaan, baik sebelum maupun setelah

pengoperasian.

2. Penulis berharap agar desa-desa yang belum

mendapatkan layanan listrik dan mempunyai sumber air yang potensial agar dapat memilih

Turbin Crossflow sebagai alternatif.

3. Harapan penulis agar Turbin Crossflow ini dapat

dikembangkan menjadi lebih sempurna sehingga

hasil yang didapatkan lebih efisien dan

memuaskan.

4. Penulis dan tim selaku perancang dan pembuat

Turbin Crossflow ini berharap agar dalam

penggunaan dan pengoperasian turbin ini

dilakukan pengamatan dengan seksama guna membantu dalam pengembangan turbin ini dimasa yang akan datang.

5. Dalam melaksanakan rancang bangun turbin

crossflow kerjakan secara timwork sesuai dengan

gambar kerja dan net work planning.

6. Lakukan survey potensi air terlebih dahulu

sebelum menentukan jenis turbin yang ingin di rencanakan.

7. Konsultasikan secepatnya dengan dosen

pembimbing, jika terdapat hal-hal yang di ragukan dalam proses perencanaan pembuatan turbin.

UCAPAN TERIMA KASIH

Ucapan terima kasih disampaikan kepada :

1. DP2M Dikti yang telah mendanai kegiatan

penelitian ini melaluai dana DIPA Politeknik negeri Padang dengan kontrak no. 187/K3.1-PG/2011, tanggal 22 Juni 2011.

2. Direktur Politeknik c.q UPT. PPKM yang telah

mengizinkan kami melakukan kegiatan

penelitian ini.

3. Tokoh masyarakat Dusun Mudiak Aia Simp.

Tigo, Jorong Lubuk Selasih, Kanagarian Bt. Barus, Kecamatan Gunung Talang, Kabupaten

Solok, yang telah bekerjasama dalam

pelaksanaan kegiatan ini.

4. Kepala bengkel jurusan teknik mesin yang telah

mengizinkan kami bekerja di bengkel.

5. Teman-teman sesama Tim peneliti, khusunya

adik-adik mahasiswa jurusan teknik mesin

dengan kerjasmanya yang baik.

PUSTAKA

1. Hery Sonawan, Perancangan Elemen Mesin.

Alfabeta, Bandung, 2010.

2. Sularso. kiyokatsu. Suga, Dasar Perencanaan

Dan Pemilihan Elemen Mesin, Pradya

Paramita;Jakarta, 1997.

3. Frizt Dietzel, Turbin, pompa, dan kompresor.

Jakarta: Erlangga, 1992.

4. Sunarto Edy. M, aretr Alex, Meier, Pedoman

rekayasa tenaga air seri 2. Jakarta, 1991.

5. Arter, Alex, Meier.eli, Pedoman Rekayasa

Tenaga Air. SKAT (Pusat Teknologi Tepat

Guna). Swiss, 1991.

6. Mitchell Spence Hill Dygdon Novak, Giesecke, Gambar Teknik edisi ke sebelas Jilid

2. Erlangga. Jakarta, 1990.

7. Linsley, Pratinzi dan Djoko sasongko, Teknik

Sumber Daya Air. Jakarta: Erlangga, 1986.

8. Harvey, Adam, Micro-Hydro Design Manual a

guide to small-scale water power schemes,

Intermediate Technology, Great Britain. 1993. 9. Departemen Energi dan Sumber Daya

Mineral & Pusdiklat Energi dan Ketenagalistrikan, Panduan Pembangunan Pembangkit Tenaga Listrik Tenaga Mikrohidro.

Jakarta.

10. O. F. Patty. Tenaga Air . Erlangga. Jakarta, 1995.

Gambar

Gambar 1 Rencana disain mekanikal mikrohidro Untuk menghitung daya keluaran turbin, yaitu
Tabel 1 Daerah spesifikasi jenis turbin terhadap ketinggian (head).
Gambar 6 Proses pembuatan alat 3. Turbin Sudah Selesai

Referensi

Dokumen terkait

1 Unit LONG HUBUNG Program Wajib Belajar Pendidikan Dasar Sembilan Tahun Program Wajib Belajar Pendidikan Dasar Sembilan Tahun

Pada perhitungan arc flash dengan menggunakan metode kurva batasan energi, untuk level tegangan lebih dari 15 kV persamaan yang digunakan adalah dengan menggunakan metode

Pendidikan merupakan salah satu faktor utama yang turut ambil bagian dalam pembangunan bangsa sehingga, setiap lapisan masyarakat berhak menerima pendidikan yang

Dengan demikian, metode Knowledge Graph (KG) dan Concept Mapping (CM) akan digunakan sebagai teknik menangkap pengetahuan dari teks yang hasilnya berupa representasi

Priyatno (2010:61) menjelaskan analisis koefisien determinasi digunakan untuk mengetahui besarnya persentase sumbangan variabel independen secara serentak terhadap

Dari hasil wawancara yang dilakukan oleh penulis kepada beberapa informan dapat disimpulkan bahwa kendala yang dialami siswa dalam melakukan penelusuran informasi

Dalam Pasal 9 UUPA, secara jelas menyebutkan bahwa hanya Warga Negara Indonesia saja yang boleh mempunyai hubungan yang sepenuhnya.. dengan bumi, air dan ruang

konsentrasi 25%, baik pada perlakuan pertama maupun pada perlakuan kedua, jika dibandingkan dengan tabung nomor 4-9 yang semakin keruh mendekat tingkat kekeruhan