• Tidak ada hasil yang ditemukan

Pengelolaan Limbah Cair Rumah Sakit

N/A
N/A
Protected

Academic year: 2018

Membagikan "Pengelolaan Limbah Cair Rumah Sakit"

Copied!
81
0
0

Teks penuh

(1)

PENGELOLAAN LIMBAH CAIR

RUMAH SAKIT

(2)
(3)

Latar Belakang

• Limbah Rumah Sakit merupakan salah satu sumber atau penyebab potensial pencemaran lingkungan.Keberadaan Rumah Sakit di tengah komunitas masyarakat seringkali menimbulkan konflik akibat adanya kerusakan atau

permasalahan lingkungan seperti tercemarnya sungai yang

vital bagi kehidupan penduduk.

• Oleh karena itu, Pemerintah mewajibkan Rumah Sakit untuk menyediakan Instalasi Pengolahan Air Limbah melalui

kebijakan – kebijakan yang mengatur upaya pengamanan dampak limbah terhadap lingkungan, seperti :

a. UU No. 36/2009 tentang Kesehatan

b. UU No.32/2009 tentang Perlindungan dan Pengelolaan Lingkungan Hidup

c. PP No 101 Tahun 2014 tentang Pengelolaan Limbah B3

d. Kep Men LH Nomor 5 TAHUN 2014 tentang Baku Mutu Air Limbah e. PerMen Kes nomor1204/MENKES/PerXI/2004 tentang

(4)

PERSYARATAN KESEHATAN LINGKUNGAN RUMAH SAKIT

(KEPMENKES RI No. 1204 /SK/X/2004)

1. Penyehatan ruang bangunan dan halaman rumah sakit. 2. Persyaratan hygiene dan sanitasi makanan dan

minuman.

3. Penyehatan air.

4. Pengelolaan limbah.

5. Pengelolaan tempat penyucian linen.

6. Pengendalian serangga, tikus dan binatang pengganggu lain.

7. Dekontaminasi melalui disinfeksi dan sterilisasi. 8. Persyaratan pengamanan radiasi.

(5)

Persyaratan

pengelolaan limbah.

1. Limbah medis

padat.

2. Limbah non medis

padat.

3. Limbah cair.

4. Limbah gas.

(minimasi,

tempat pencucian linen.

1. Suhu air panas

untuk pencucian.

2. Penggunaan jenis

deterjen dan

disinfektan.

(6)
(7)

PERMASALAHAN

1. Jumlah, Kualifikasi, Kompetensi SDM

2. Perencanaan IPAL yang salah/tidak sesuai

3. IPAL sudah tua dan tidak handal

4. Operasi dan Pemeliharaan Tidak Benar

5. Sumber Air Limbah Berubah Kapasitas dan

Kualitas

6. IPAL tidak efektip, efisiensi rendah

7. Tidak didukung manajemen dalam OP

8. Tidak memiliki SOP IPAL

9. Sarana Laboratorium tidak memadai

(8)
(9)

Characterization of Hospital Wastewater, Risk Waste Generation

and Management Practices in Lahore, Muhammad Imran Meo1, Sajjad Haydar2, Obaidullah Nadeem3, Ghulam Hussain2 and Haroon Rashid2

(10)
(11)
(12)
(13)
(14)
(15)
(16)

Pengolahan

Limbah Cair

Rumah Sakit

1.

Pengolahan Fisik :

sedimentasi, flotasi,

sentrifugasi,

penyaringan,

pengeringan,

insinerasi, penapisan

2.

Pengolahan Kimia :

netralisasi, koagulasi

& Flokulasi, Oksidasi,

Reduksi

3.

Pengolahan Biologi :

aerasi, lumpur aktif,

lagoon

(17)

BAGAN ALIR PENGOLAHAN AIR LIMBAH RSUD KOTA BATAM

Laboratorium, Poli Gigi,

Kamar bedah, Radiologi

Bak Kontrol

Saringan +

Comminutor Pengolahan Biologis

Dibuang ke badan air Pre treatment

(Pemisah Lemak)

Saluran air limbah

Bak Kontrol kembali (re Use)

Bak Kontrol

Pre treatment (Defoaming)

Lemak

Insinerasi

Saluran air limbah

Penyiraman Taman dan kebutuhan lain

Pompa

Saluran air limbah

Pompa

Saluran air limbah

Bak Kontrol

Pompa

Pompa

Perpipaan air limbah

(18)
(19)
(20)

PENDEKATAN PERENCANAAN WWTP

a. Strength and characteristics of wastewater b. Flow rates and their fluctuations

c. Mass loading d. Design Criteria :

1. Hydraulic flow diagram 2. Detention period or time 3. Flow through velocity

4. Settling velocity

5. Surface loading rate @ over flow rate 6. Weir loading rate

7. Organic loading (BOD @ COD @ VSS loading) 8. Food to Microorganism ratio, F/M

9. Mean cell Residence Time 10. Hydraulic Loading

11. Volumetric Loading

(21)

Krakteristik Input air limbah :

1. BOD5 = 80 – 125 mg/lt, COD = 100 –200 mg/lt 2. Debit = 60 l/dt (disain pengembangan)

Pertimbangan lahan tersedia dan pemanfaatan sarana yg ada 1. Vol Loading = 0,2 – 0,3 kg BOD5/m3.d

(22)
(23)

Reminder: Important treatment technologies

Process Technical options Reason for popularity in ecosan

Composting Composting plants for secondary treatment

Composting toilet

Suitable for faecal matter and organic solid waste treatment

Produces valuable end product (compost) Low energy demand

Pathogen destruction (if thermophilic)

Anaerobic

Suitable for faecal sludge, blackwater, faeces (e.g. together with manure), organic solid waste

Preserves nitrogen (unlike aerobic wastewater treatment)

Produced biogas for cooking, lighting, heating

“Natural

systems” (low -rate biological systems)

Constructed wetlands Aerobic or facultative ponds/lagoons

Waste stabilisation ponds

Suitable for greywater treatment Low energy use

Cheap if land available

Can have aesthetic and environmental benefits (e.g. increased bird life)

High-rate biological or physical systems

Package plants using attached growth processes

Membrane bioreactor Trickling filter

Suitable for greywater treatment in urban areas (limited space)

(24)

Example of On-Site Wastewater Treatment for a Large

Composting, landfilling, land reclamation, silviculture, or

other uses (depending on levels of heavy metals, toxic

organics and pathogens)

Bar Screen Grit Chamber Equalization Tank

Aeration Tank

Clarifier

Filter

(pressed sand or carbon filter)

(25)

Pathogen Reductions Vary from: low (<90%) to Very High

(>99.99+%)

Secondary Treatment Using Activated Sludge Process

(26)
(27)

27

Operasi

SUATU PROSES PEMANFAATAN SUMBER DAYA

UNTUK MENGHASILKAN PRODUK (BARANG

DAN JASA) YANG BERGUNA UNTUK MENCAPAI

TUJUAN DAN SASARAN ORGANISASI.

Pemeliharaan

UPAYA UNTUK MENJAGA SUPAYA SARANA

PRODUKSI & DISTRIBUSI MAMPU BERFUNGSI

SECARA MEMUASKAN SESUAI RENCANA.

(28)

SIKLUS DEMING

plan

do

check

action

continual

(29)

29

SISTEM

MANAJEMEN OPERASI & PEMELIHARAAN

KEBUTUHAN SUMBER DAYA DAN ANGGARAN

RENCANA PROGRAM KERJA & PENJADWALAN

PENGORGANISASIAN PEBYUSUNAN DOKUMEN (sop & instrksi kerja)

IDENTIFIKASI KEBUTUHAN O&M

ANALISIS PENYEBEB PENYIMPANGAN PELAPORAN

PENGUKURAN KINERJA

PEMANTAUAN

EVALUASI TERHADAP PENYIMPANGAN KINERJA DAN

PROSEDUR

SIKLUS SISTEM MANAJEMEN OPERASI DAN PEMELIHARAAN

PELATIHAN STAFF

PELAKSANAAN OPERASI & PEMELIHARAAN

EVALUASI KINERJA OPERASI DAN PEMELIHARAAN USULAN TINDAKAN KOREKSI

(30)

30

1.

DUKUNGAN PENUH DARI MANAJEMEN PUNCAK

2.

KEPEMIMPINAN YANG KOMPETEN

3.

TANGGUNG JAWAB YANG JELAS

4.

DESENTRALISASI / PENDELEGASIAN WEWENANG

5.

PENYEDIAAN SUMBER DAYA

6.

DAPAT DIPERTANGGUNG JAWABKAN

7.

KESEDERHANAAN

8.

KELENGKAPAN

9.

KELENTURAN

10.

ARUS INFORMASI YANG CEPAT

(31)
(32)
(33)
(34)
(35)
(36)

Food to microorganism ratio (F/M)

• Represents the daily mass of food supplied to the microbial biomass, X, in the mixed liquor suspended solids, MLSS

(37)

Since the hydraulic retention time,

q

= V/Qo,

(38)

Typical range of F/M ratio in activated sludge units

Treatment Process

F/M

Kg BOD

5

/Kg MLSS/day

Extended aeration

0.03 - 0.8

Conventional

0.8 - 2.0

(39)

Design parameters for activated sludge processes

Process q c (d) q (h) F/M Qr/Q X (mg/L)

Conventional 5-15 4-8 0.2-0.4 0.25-5 1,500-3,000

Complete-mix 5-15 3-5 0.2-0.6 0.25-1 3,000-6,000

Step-aeration 5-15 3-5 0.2-0.4 0.25-0.75 2,000-3,500

Modified-0.2-0.6 0.25-1 1,000-3,000 4,000-10,000

Extended-aeration

20-30 18-36 0.05-0.15 0.75-1.5 3,000-6,000

High-rate aeration

5-10 0.5-2 0.4-1.5 1-5

4,000-10,000

(40)

Operational characteristics of activated sludge processes

Process Flow model Aeration system BOD5 removal efficiency (%) Conventional Plug-flow Diffused air,

mechanical aerators

85-95

Complete-mix Complete-mix Diffused air,

mechanical aerators

85-95

Step-aeration Plug-flow Diffused air 85-95

Modified-aeration Plug-flow Diffused air 60-75

Contact-stabilization

Plug-flow Diffused air,

mechanical aerators

80-90

Extended-aeration Complete-mix Diffused air,

mechanical aerators

75-95

High-rate aeration Complete-mix Diffused air,

mechanical aerators

75-90

(41)
(42)

Technologies

• Chemical methods

Coagulation, flocculation, combined with flotation and filtration, precipitation, ion exchange, electroflotation, electrokinetic coagulation.

• Physical methods

Membrane-filtration processes (nanofiltration, reverse osmosis, electrodialysis, . . .) and adsorption techniques.

• Biological treatments

(43)

Advantages and disadvantages

Chemical methods

Advantages :

Rapid and efficient process

Removes all pollutants types, produce a

high-quality treated effluent

No loss of sorbent on regeneration and effective

Disadvantages :

Expensive, and although the pollutants are

removed, accumulation of concentrated sludge

creates a disposal problem

(44)

Advantages and disadvantages

Physical methods

Advantages :

The most effective adsorbent, great, capacity,

produce a high-quality treated effluent

No sludge production, little or no consumption of

chemicals.

Disadvantages :

(45)

Advantages and disadvantages

Biological treatments

Advantages :

Economically attractive, publicly acceptable

treatment

Disadvantages :

Slow process, necessary to create an optimal

favorable environment, maintenance and

(46)

COAGULATION

Definition

Destabilisation of colloid particles by the

addition of chemicals (coagulant)

Applications

Industrial waste containing colloidal and

(47)
(48)

Coagulant type

Metal coagulants :aluminium-based

coagulants, Fero-based coagulants

magnesium chloride (MgCl

2

)

Organic polymer coagulants : Polyacrylamide,

Chitosan,

Moringa olifeira

Alginates (brown

(49)

Coagulant agent

Alum

Magnesium chloride

Polyacrylamide

Chitosan

(50)

Coagulant - Reaction

• Some of the coagulants used include:

 Aluminium sulphate

 Ferric chloride

 Ferric sulphate

 Lime (not true coagulant)

 Polymer as coagulant aid eg cationic, anionic, non-ionic.

 PAC – new types

Al2(SO4)3.18H20+ 3Ca(HCO3) 2AI(OH)3+ 3CaSO4+ 6C02 + 18H20

(51)
(52)

Flocculation

is a process of forming aggregate of flocs to

form larger settleable particle. The process

can be described as follows:

Mutual collision of small floc resulting in bigger

size.

Usually slow speed or gentle mixing is used so

as not to break the large flocs due to shear.

Polymer or large molecular wt compound is

(53)
(54)
(55)

Flocculation

The benefits of flocculation are:

To improve settling of particles in

sedimentaion tank

To increase removal of suspended

solids and BOD

To improve performance of settling

(56)

Differences

• Coagulation: is a chemical technique which is directed towards the destabilisation of the charged colloidal

particals.

• Flocculation: is the slow mixing technique which

(57)

CHEMICAL PRECIPITATION

Definition:

Removal of metal ions from

solution by changing the

solution composition, thus

causing the metal ions to

form

insoluble

metal

(58)
(59)

CHEMICAL PRECIPITATION

(Applications)

Removal of metals from waste stream

– e.g. plating and polishing operations, mining, steel manufacturing, electronics manufacturing

– include arsenic, barium, chromium, cadmium, lead, mercury, silver

Treat e t of hard water –

removal of Mg

2+

and Ca

2+

Phosphorus removal

Making pigments

(60)

CHEMICAL PRECIPITATION

(Theoretical Background)

Due to dilute concentration,

Ksp = [A+] [B-]

= solubility product constant

where [ ] refer to molar concentration

(61)

CHEMICAL PRECIPITATION

(Basic Principles)

A. Add chemical precipitants to waste stream B. Mix thoroughly C. Allow solid

precipitates to form floc by slow mixing

(62)

CHEMICAL PRECIPITATION

(Types of Precipitation)

Heavy metals removal

Hydroxide precipitation (OH

-

)

Sulphide precipitation (S

2-

)

Carbonate precipitation (CO

32-

)

Phosphorus removal

(63)

CHEMICAL PRECIPITATION

(Hydroxide Precipitation)

• Add lime (CaO) or sodium hydroxide (NaOH) to waste stream to precipitate heavy metals in the form of metal hydroxides.

Cd2+ + Ca(OH)2  Cd (OH)2  + Ca2+

• CaO in the form of slurry (Ca(OH)2) while NaOH in the form of solution.

• NaOH is easier to handle but is very corrosive.

(64)

CHEMICAL PRECIPITATION

(Sulphide Precipitation)

• Use of sulphide in the form of FeS, Na2S or NaHS

• Better metal removal as sulphide salt has low solubility limit

Cu2+ + FeS CuS + Fe2+ • Limitation: can produce H2S (g) at low pH

2H+ + FeS H

2S + Fe2+

(65)
(66)

Reaction rate

Reaction rate

is a measure of how fast a reaction

occurs, or how something changes during a given

time period.

Consider the oxidation of glucose, C

6

H

12

O

6

:

C

6

H

12

O

6

(s) + 6 O

2

g → 6 CO

2

(g) + 6 H

2

O(g)

One of the things that happens during this reaction is

simply that glucose gets used up as it reacts with

(67)

A common measure of reaction rate is to express

how the

concentration

of a reaction participant

changes over time. It could be how the

concentration of a reactant decreases, or how the

concentration of a product increases. This is the

standard method we will be using.

Now that we have something that changes to

measure, we must consider the second key aspect

of determining rate -

time

. Rate is a measure of

how something changes over time.

Change in concentration

(68)

OXIDATION

a method by which wastewater is treated by using oxidizing agents.

Generally, two forms viz.

• Chemical oxidation and

• UV assisted oxidation using chlorine, hydrogen peroxide,

fe to ’s reage t, ozo e, or potassiu per a ga ate are used

(69)

ION EXCHANGE

• Definition

Ion exchange is basically a reversible chemical process

wherein an ion from solution is exchanged for a similarly charged ion attached to an immobile solid particle.

Removal of undesirable anions and cations from solution through the use of ion exchange resin

• Applications

– Water softening

– Removal of non-metal inorganic

(70)

ION EXCHANGE

(Medium - resin)

• Consists of an organic or inorganic network structure with attached functional group

• Synthetic resin made by the polymerisation of organic

compounds into a porous three dimensional structure

(71)

ION EXCHANGE

(Type of Resin)

a. Cationic resin - exchange positive ions b. Anionic resin – exchange negative ions

(72)

ION EXCHANGE

(Exchange Reactions)

• Cation exchange on the sodium cycle:

Na

2

· R + Ca

2+

Ca · R + 2Na

+

where R represents the exchange resin. When all exchange sites are substantially replaced with calcium, resin is regenerated by passing a concentrated solution of sodium ions (5-10%) through the bed:

(73)

ION EXCHANGE

(Exchange Reactions)

• Anion exchange replaces anions with hydroxyl ions:

SO

42-

+ R · (OH)

2

R · SO

4

+ 2OH

-where R represents the exchange resin. When all exchange sites are substantially replaced with sulphate, resin is regenerated by passing a concentrated solution of hydroxide ions (5-10%) through the bed:

(74)

ION EXCHANGE

(Basic Principles)

Cation Resin

Cr3+, CN

-H+, CN

-Anion Resin

H+, OH

(75)

ION EXCHANGE

Note: The least preferred has the shortest retention time, and appears first in the effluent and vice versa for the most

(76)
(77)

SLUDGE TREATMENT

1.

Thickening : pemekatan lumpur secara gravity,

centrifugasi, rotary screens, gravity belt

2.

Stabilization : aerboic digestion, anaerobic digestion,

lime, heat treatment.

3.

Dewatering : Centrifugasi, Belt-press, vacuum

filtration, Filter-press

4.

Drying

(78)

FUNDAMENTALS OF TREATMENT TECHNOLOGIES PRACTICAL APPLICATIONS

----1. Various water treatment processes

Sreening

Solid – liquid

separation Precipitation Clarifier

Floatation Filtration

Conventional type Slurry recirculation type Sludge blanket type Pelletized sludge UF (Ultra Filter)

RO (Reverse osmosis) ED (Elektrodialysis) Dewatering Rotary vacuum filter

Filter Press Belt Press

(79)

Phisicochemical

treatment Neutralization

Coagulation and Flocculation Oxidation and/

or Reduction Chemical oxidation/reduction

Aeration Electrolysis Ozonization UV

Adsorption Activated carbon Activated alumina

Ion exchange Cation excange resin Anion excange resin Chelate resin

(80)
(81)

Mikroorganisma di IPAL

Bakteri (seperti spesies Acinetobacter,

nitrosomonas, nitrobacter dan Zoogloea

ramigera)

Protozoa (seperti Aspidisca, Carchesium,

Opercularia, Trachelophyllum, Vorticella)

Amoeba (seperti Cochliopodium dan Euglypha )

Organisme lain yang ada antara lain jamur,

Referensi

Dokumen terkait

Dari studi banding yang dilakukan kepada beberapa rumah sakit, dapat diidentifikasikan bahwa PKU Muhammadiyah Kutoarjo perlu mengembangkan instalasi pengolahan

Untuk mengetahui ouput dari pengelolaan limbah cair rumah sakit X kota Medan, memenuhi syarat atau tidak dengan melakukan peneriksaan terhadap Total Coliform, suhu, pH,

Untuk mengetahui ouput dari pengelolaan limbah cair rumah sakit X kota. Medan, memenuhi syarat atau tidak dengan melakukan

Sistem lumpur aktif pada proses pengolahan sekunder limbah cair ini, kecepatan aktivitas bakteri ditingkatkan dengan cara memasukkan udara dan lumpur yang

Optimasalisasi Manajemen Pengelolaan Limbah Cair Rumah Sakit Sebagai Upaya Peningkatan Level Higiene Sanitasi Rumah Sakit dan Lingkungan.. Program Ilmu Kesehatan

Berapa dana yang diperlukan untuk pengelolaan limbah cair rumah sakit ?.?. limbah cair

Menurut Kusnoputranto, lumpur aktif dari proses aerasi yang telah mengendap dalam bak pengendapan tidak semuanya dibuang tetapi kurang dari setengahnya dimasukkan kembali ke

Pengamatan dan penelitian dilakukan pada penggunaan air dari instalasi rawat jalan,laboratorium, laundry, dapur, kamar jenazah pada lantai I, instalasi rawat inap perempuan dan