• Tidak ada hasil yang ditemukan

syllabi dmath sem1 10 11

N/A
N/A
Protected

Academic year: 2017

Membagikan "syllabi dmath sem1 10 11"

Copied!
7
0
0

Teks penuh

(1)

Rencana Perkuliahan

Jurusan : Matematika

Mata Kuliah : Matematika Diskrit Semester/SKS/JS : III/3/3

Kelas : A,B,C,D,E

Masa Perkuliahan : 20 Sept 2010 – 8 Jan 2011 Ujian tengah semester : 8 – 13 Nov 2010

Ujian akhir semester : 10 – 20 Jan 2011

Pengajar : Yus Mochamad Cholily

1. Pendahuluan.

Secara umum obyek di matematika dapat diklasifikasikan menjadi dua golongan yaitu diskrit dan kontinu. Amati obyek-obyek di sekitar kita. Banyak sekali obyek-obyek masuk dalam kategori diskrit, misalnya jumlah mahasiswa, banyaknya buku, banyaknya komputer dll. Obyek ini jelas berbeda dengan obyek misalnya tinggi badan manusia. Berkaitan dengan obyek diskrit tersebut kita melakukan membilang (counting), yaitu 1, 2, 3, …. Hal ini jelas berbeda dengan tinggi badan manusia yang berbentuk kontinu. Berkenaan dengan hal tersebut terdapat satu topik pembelajaran di matematika yang fokus pada kajian obyek yang semacam ini yaitu Matematika Diskrit.

2. Tujuan.

Setelah mengikuti perkuliahan ini mahasiswa mampu/menguasai tentang. a. Menggunakan macam-macam teknik pembuktian di matematika. b. Memahami tentang fungsi dan relasi.

c. Memhami sifat-sifat dan operasi-operasi pada bilangan bulat. d. Menguasai prinsip pada permutasi, kombinasi dan piegeonhole. e. Memahami tentang fungsi pembangkit.

f. Memahami tentang relasi rekursif. g. Memahami tentang algoritma.

3. Strategi Perkulihan.

Perkuliahan ini akan dilaksanakan dengan menggunakan beberapa metode yaitu (i) ceramah (ii) diskusi (kelas dan kelompok) dan (iii) online course. Metode ceramah akan digunakan untuk menjelaskan konsep di awal topik sebagai pengenalan konsep. Untuk pendalaman konsep dilanjutkan melalui diskusi dan diteruskan dengan pemberian tugas. Terdapat dua bentuk diskusi yaitu diskusi kelompok (5-10 orang) dan diskusi kelas (diikuti satu kelas). Untuk melengkapi dua strategi tersebut diberikan juga materi/tugas secara online yang dapat diakses melalui blog di: ymcholily1.wordpress.com.

(2)

Perkuliahan ini mempunyai empat komponen dalam evaluasi akhir yaitu: a. Keaktifan (K) dengan bobot 10%.

Keaktifan ini lebih diarahkan pada partsisipasi mahasiswa dalam proses belajar mengajar di kelas. Keatifan tersebut meliputi diskusi, mengemukakan pendapat, ide dll.

b. Tugas (T) dengan bobot 20%.

Tugas merupakan komponen kedua dalam evaluasi belajar mata kuliah ini. Tugas di sini diharapkan memberikan pembelajaran pada mahasiswa di luar kelas. Kegiatan ini diarahkan kepada pengayaan materi dengan mengambil bahan-bahan yang ada diluar pembahasan di kelas. Tugas lebih diarahkan dalam penggunaan sumber belajar yang ada di internet.

c. Ujian tengah semester (UTS) dengan bobot 30%.

Ujian tengah semester diharapkan memberikan evaluasi belajar mahasiswa di pertengahan semester. Dari hasil evaluasi ini diharapkan mahasiswa mengetahui/ mengukur tentang tingkat penyerapan materi selama setengah semeseter. Materi ini tidak hanya terbatas pada materi perkuliahan di kelas namun juga termasuk tugas-tugas yang ada.

d. Ujian akhir semester (UAS) dengan bobot 40%.

Evaluasi di akhir semester disebut dengan Ujian Akhir Semester. Evaluasi ini mempunyai bobot paling besar karena mengukur kemampuan siswa dalam keseluruhan pemahaman selama satu semester.

Nilai akhir (NA) = 0.1K + 0.2T + 0.3UTS + 0.4UAS

Kriteria penilian dikelompokkan menurut aturan sebagai berikut. Nilai A jika : 85 ≤ NA ≤ 100

Nilai B+ jika : 80 ≤ NA < 85 Nilai B jika : 70 ≤ NA < 80 Nilai C+ jika : 65 ≤ NA < 70 Nilai C jika : 55 ≤ NA < 65 Nilai D jika : 40 ≤ NA < 55 Nilai E jika : NA < 40

5. Rujukan.

Berikut adalah buku referensi yang bisa dipakai sebagai rujukan dalam perkuliahan ini yaitu:

a. Balakrishnan, V.K., Introductory Discrete Mathematics, Prentice Hall, 1991. b. Biggs, N.L., Discrete Mathematics, second edition, Oxford University, 2002. c. Goodaire dan Parmenter, Discrete Mathematics with Graph Theory, 2th, Prentice

Hall, 2003.

d. Grimaldi R.P., Discrete and Combinatorial Mathematics an Applied Introduction, Thirth edition, Addison-Wesley, 1994.

(3)

f. Rosen K.H., Discrete Mathematics and Its Application, Second edition, McGraw-Hill Inc, 1991.

g. Sarkar S.K, A text book of Discrete Mathematics, S.Chand & Company Ltd, 2007.

(4)

6. Silabus.

Deskripsi Mata Kuliah :

Matematika diskrit sesuai dengan namanya fokus kepada obyek-obyek matematka yang bersifat diskrit.

Standar Kompetensi :

Mahasiswa menguasai tentang teknik-teknik pembuktian matematika berkenaan dengan permasalahan diskrit. Selain itu mahasiswa juga memahami permasalahan permutasi dan kombinasi.

No Kompetensi

dasar

Indikator Poko Bahasan Kegiatan Pembelajaran Penilaian #pertemuan Rujukan/Sumber

1 Memahami teknik-teknik pembuktian

- Bisa menggunakan

teknik pembuktian

langsung, tak

langsung, Induksi

Matematika

- Bukti langsung.

- Bukti dengan kontrapositif. - Bukti dengan pengandaian. - Bukti dengan Induksi

Matematika.

Awal.

Brainstorming tentang logika mate-matika, kebenaran pernyataan. Inti.

Pembahasan pembuktian matematika. Akhir.

Merangkum macam-macam pembuk-tian dan memberikan contohnya.

Partisipasi aktif di kelas.

1x

LCD+Komputer [a] hal 1 – 25. [b] hal 3 – 15. [c] hal 2 – 99. [f] hal 2 – 74. [g] hal 32 – 33, 117 – 150.

2 Memahami

relasi dan

fungsi

- Memahami Relasi.

- Memahami fungsi. - Himpunan dan operasinya - Relasi

- Fungsi.

Awal.

Brainstorming tentang hubungan yang ada pada fenomena sehari-hari. Inti.

Diskusi tentang fungsi dan relasi. Masing-masing kelompok terdiri 5 mahasiswa.

Presentasi hasil diskusinya. Akhir.

Merangkum kembali pengertian fungsi dan relas serta memberikan

-Keaktifan dalam diskusi.

2x LCD-Komputer [a] hal 1 – 25. [b] hal 3 – 15. [c] hal 2 – 99. [f] hal 2 – 74. [g] hal 32 – 33,

(5)

contohnya.

Pemberian pekerjaan rumah. 3 Memahami

tentang

bilangan bulat

- Memahami Pemba-gian dan algoritma Euclid.

- Memahami bilangan Prima

- Memahami kongruen-si.

Himpunan bilangan bulat. Sistim pada bilangan bulat. Pembagian pada bilangan bulat Bilangan prima.

Kongruensi.

Awal.

Brainstorming tentang macam-macam bilangan.

Inti.

Diskusi kelompok (@ 5 orang). Akhir.

Merangkum sistim bilangan bulat.

Keaktifan diskusi

1x [b] hal 56 – 75. [c] hal 97 – 146. [g] hal 222 – 253.

4

Memahami

kombinatorik

- Memahami tentang permutasi.

- Memahami kombinasi - Memahami prinsip

pada piegeonhole.

Kombinatorik.

1. Aturan membilang. 2. Permutasi.

3. Kombinasi

4. Prinsip pigeonhole.

5. Pinsip inklusif dan eksklusif.

Awal.

Brainstorming fenomena kombinasi dan permutasi dalam keseharian. Inti.

Menjelaskan pengetian permutasi dan kombinasi.

Diskusi tentang sifat-sifat permutasi dan kombinasi.

Mengkaji kejadian permutasi dan kombinasi dalam kehidupan keseharian.

Menjelaskan prinsip-prinsip piegeon hole dan membahas fenomena keseharian tentang prinsip ini.

Akhir.

Membuat rangkumam tentang sifat-sifat permutasi dan kombinasinya.

Kuis dan tugas1 3x LCD - Komputer [a] hal 35 – 71. [b] hal 91 – 103. [c] hal 187 – 237. [d] hal 403 – 428. [f] hal 223 – 281. [g] hal 356 – 363.

5 UTS (Proyek) 6

Memahami Memahami fungsi Fungsi Pembangkit.

Awal.

(6)

fungsi pembangkit

pembangkit umum. Memahami fungsi pembangkit eksponen

1. Fungsi pembangkit umum. 2.Fungsi pembangkit eksponen.

fungsi eksponen. Inti.

Menjelaskan fungsi pembangkit umum.

Kerja kelompok membahas soal-soal fungsi pembangkit.

Menjelaskan fungsi pembangkit eks-ponen.

Kerja kelompok membahas soal-soal. Akhir.

Membuat rangkuman fungsi pem-bangkit dan pemberian tugas peker-jaan rumah.

kelas [a] hal 80 – 90.

[d] hal 433 – 460. [g] hal 376 – 393.

7 Memahami relasi rekursif

- Memahami relasi re-kursif.

- Memahami relasi re-kursif dengan fungsi pembangkit

Relasi Rekursif.

1.Relasi rekursif homogen. 2.Relasi rekursif tidak homogen. 3.Relasi rekursif dan fungsi

pembangkit.

Awal.

Mengulas kembali fungsi dan relasi. Inti.

Menjelaskan pengertian relasi rekur-sif.

Memberikan contoh-contoh.

Mahasiswa mengerjakan tugas dalam kelompok. Presentasi hasil kerja kelompok.

Menjelaskan relasi rekursif dengan fungsi pembangkit.

Mahasiswa mengerjakan tugas dan presentasi.

Akhir.

Merangkum tentang fungsi pem-bangkit.

Tugas 2 3x [a] hal 94 – 116. [d] hal 461 – 500. [f] hal 295 – 330. [g] hal 367 – 375.

(7)

tentang Algoritma

algoritm.

-Memahami prinsip efi-siensi dalam algoritma.

1.Algoritma.

2.Bahasa dan algoritma pemrograman.

3.Pengecekan dan Efisiensi algoritma.

Mengulas tetang pernacangan kegiatan.

Inti.

Menjelaskan pengertian algoritma. Pemakaian algoritma dalam bahasa pemrogram.

Menjelaskan efisinesi dalam algoritma.

Mahasiswa berdiskusi pada permasalahan pembuatan program.

Akhir.

Pemberian tugas proyek.

kelas [b] 159 – 176.

[d] 239 – 276. [g] 601 – 632.

9 UAS

Malang, 20 September 2010 Pengajar

Referensi

Dokumen terkait

Setelah mengikuti perkuliahan mahasiswa diharapkan dapat memahami dan mempraktekkan ketrampilan menggambar dengan teknik serta obyek sederhana (teknik pinsil dan tinta) obyek

Setelah mengikuti perkuliahan ini, mahasiswa diharapkan mampu menemukan topik untuk artikel dan penelitian serta mampu menulis artikel dan penelitian dalam bahasa

PETUNJUK PRAKTIKUM DOKUMENTASI KEBIDANAN Topik 1 : Konsep Dokumentasi: Pengertian, Tujuan dan Fungsi, Manfaat Setelah mahasiswa mengikuti perkuliahan topik Konsep Dokumentasi

PETUNJUK PRAKTIKUM KOMUNIKASI DALAM PRAKTIK KEBIDANAN Topik Enam : Ketrampilan Membina Hubungan Baik Setelah mahasiswa mengikuti perkuliahan dengan topik Ketrampilan Observasi

PETUNJUK PRAKTIKUM DOKUMENTASI KEBIDANAN Topik 2 : Konsep Dokumentasi: Prinsip, Aspek Legal Dan Syarat Pendokumentasian Setelah mahasiswa mengikuti perkuliahan topik Konsep

PETUNJUK PRAKTIKUM DOKUMENTASI KEBIDANAN Topik 3 : Teknik Dokumentasi Setelah mahasiswa mengikuti perkuliahan topik Teknik Dokumentasi Naratif dan Flowsheet/Checklist pada praktikum

PETUNJUK PRAKTIKUM KOMUNIKASI DALAM PRAKTIK KEBIDANAN Topik 14 : Ketrampilan memberi nasehat Setelah mahasiswa mengikuti perkuliahan dengan topik pemberian nasehat diharapkan

PETUNJUK PRAKTIKUM KOMUNIKASI DALAM PELAYANAN KEBIDANAN Topik Dua : Merancang komunikasi efektif Setelah mahasiswa mengikuti perkuliahan dengan topik Komunikasi Efektif diharapkan