• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:BJGA:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:BJGA:"

Copied!
6
0
0

Teks penuh

(1)

of a complex projective space

Yoshio Matsuyama

Abstract. In the present paper we show that if Mn is a compact

ir-reducible (resp. ir-reducible) Einstein Kaehler submanifold of a complex projective space, then M is parallel and totally geodesic in CPn+p(c),

CPn(cr), p = n+rCr − 1 −n, the complex quadric Qn(c) in the

to-tally geodesic submanifold CPn+1(c) ofCPn+p(c), SU(n2 + 2)/SU(n2

U(2), n > 6, p = n(n8−6); SU(10)/U(5), n= 10, p = 5 or E6/Spin(10)×

S1, n= 16, p= 10 (resp. P

n1(c)×Pn1(c), n= 2n1).

M.S.C. 2000: 53C40, 53B25

Key words: complex projective space, Einstein Kaehler submanifold, second funda-mental form, parallel submanifold.

1

Introduction

LetPn+p(c) (resp.Dn+p) be an (n+p)-dimensional complex projective space with the

Fubini-Study metric (resp. Bergman metric) of constant holomorphic sectional curva-turec. LetCn+pbe an (n+p)-dimensional complex Euclidean space. LetMn+p(c) be

an (n+p)-dimensional complex space form with constant holomorphic sectional cur-vaturec. We remark that ifc >0 (resp.c <0, c= 0), thenMn+p(c) =Pn+p(C) (resp.

Dn+p, Cn+p). LetMn be ann-dimensional complex Kaehler submanifold ofMn+p(c).

There are a number of conjecture for Kaehler submanifolds inPn+p(c) suggested by

K. Ogiue ([5]); some have been resolved under a suitable topological restriction (e.g. Mn is complete) (cf. [1], [5], [6] and [7]). In this direction, one of the open problems

so far is as follows.

Conjecture(K. Ogiue). LetMnbe ann-dimensional Kaehler submanifold immersed

in Mn+p(c), c > 0. If M is irreducible (or Einstein) and if the second fundamental

form is parallel, is M one of the following ? Mn(c), Mn(2c) or locally the complex

quadricQn(c).

In the case that Mn is an Einstein Kaehler submanifold of the codimension two

immersed inPn+2(c), it was proved in [1] and [6] that such a submanifoldMnis totally

geodesic inPn+2(c) or the complex quadricQn(c) in the totally geodesic hypersurface

Balkan Journal of Geometry and Its Applications, Vol.14, No.1, 2009, pp. 40-45. c

(2)

Pn+1(c) of Pn+2(c). Moreover, ifMn is an Einstein Kaehler submanifolds immersed

in a complex linear or hyperbolic space, thenMn is totally geodesic ([7]).

In the present paper we would like to consider thatMnis compact and Einstein,

so that the above conjucture is resolved partially. The main result is the following:

TheoremLetMn be ann-dimensional compact irreducible (resp. reducible) Einstein

Kaehler submanifold immersed inPn+p(c).ThenMn is parallel and totally geodesic

in Pn+p(c), CPn(rc), p = n+rCr−1−n, the complex quadric Qn(c) in the totally

geodesic submanifoldCPn+1(c) of CPn+p(c), SU(n2 + 2)/SU(n2)×U(2), n > 6, p = n(n−6)

8 ; SU(10)/U(5), n = 10, p = 5 or E6/Spin(10)×S1, n = 16, p = 10 (resp.

Pn1(c)×Pn1(c), n= 2n1).

2

Preliminaries

LetMn be ann-dimensional compact Riemannian manifold. We denote byU M the

unit tangent bundle overM and byU Mxits fibre overx∈M. Ifdx, dvanddvxdenote

the canonical measures onM, U M and U Mx, respectively, then for any continuous

functionf :U M →R, we have: Z

U M

f dv= Z

M

{ Z

U Mx

f dvx}dx.

IfT is a k-covariant tensor onM and∇T is its covariant derivative, then we have: Z

U M

{

n

X

i=1

(∇T)(ei, ei, v,· · · , v)}dv= 0,

wheree1,· · ·, en is an orthonormal basis ofTxM, x∈M.

Now, we suppose thatMn is ann-dimensional compact Kaehler submanifold of

com-plex dimensionn, immersed in the complex projective spacePn+p(c). We denote by

J and <, >the complex structure and the Fubini-Study metric. Let∇andhbe the Riemannian connection and the second fundamental form of the immersion, respec-tively.Aand∇⊥ are the Weingarten endomorphism and the normal connection. The

first and the second covariant derivatives of the normal valued tensorhare given by

(∇h)(X, Y, Z) =∇⊥

X(h(Y, Z))−h(∇XY, Z)−h(Y,∇XZ)

and

(∇2h)(X, Y, Z, W) = ∇⊥

X((∇h)(Y, Z, W))−(∇h)(∇XY, Z, W)

− (∇h)(Y,∇XZ, W)−(∇h)(Y, Z,∇XW),

respectively, for any vector fieldsX, Y, Z andW tangent toM.

LetR andR⊥ denote the curvature tensor associated with and , respectively.

Thenhand∇hare symmetric and for∇2hwe have the Ricci-identity

(∇2h)(X, Y, Z, W)−(∇2h)(Y, X, Z, W) (2.1)

(3)

We also consider the relations

h(JX, Y) =Jh(X, Y) andAJ ξ =JAξ =−AξJ,

whereξis a normal vector toMn.

Now, letv∈U Mx, x∈M. Ife2, . . . , e2n are orthonormal vectors inU Mx orthogonal

to v, then we can consider {e2, . . . , e2n} as an orthonormal basis of Tv(U Mx). We

remark that {v = e1, e2, . . . , e2n} is an orthonormal basis of TxM. We denote the

Laplacian ofU Mx∼=S2n−1 by ∆.

If S and ρ is the Ricci tensor of M and the scalar curvature of M, respectively, and since M is a complex Kaehler submanifold in in Pn+p(c), then from the Gauss

equation we have

S(v, w) = n+ 1

2 c < v, w >−

2n

X

i=1

< Ah(v,ei)ei, w >, (2.2)

ρ = n(n+ 1)c− |h|2. (2.3)

Define a functionf1 onU Mx, x∈M, by

f1(v) =|h(v, v)|2,

f2(v) = 2n

X

i=1

< Ah(v,ei)ei, v >,

Using the minimality ofM we can prove that

(∆f1)(v) = −4(2n+ 2)f1(v)2+ 8 2n

X

i=1

< Ah(v,ei)ei, v > (2.4)

(∆f2)(v) = −4nf2(v) + 2|h|2

(2.5)

Since

1 2

2n

X

i=1

(∇2f1)(ei, ei, v) = 2n

X

i=1

<(∇2h)(ei, ei, v, v), h(v, v)>

+

2n

X

i=1

<(∇h)(ei, v, v),(∇h)(ei, v, v)>,

we have the following (See [2] and [3]):

LemmaLet M be ann-dimensional complex Kaehler submanifold ofPn+p(c). Then

(4)

1

3

Proof of Theorem

SinceM is Einstein, we have

(3.1) S= n+ 1

where I denotes the identity transformation. From (2.2) and (2.3) the equation (3.1) yields

From (3.3) we have

1

Integrating overU Mx and using (3.2) , we have

(5)

On the other hand, we get

Integrating this equation overU Mx, we have

0 =

(6)

References

[1] Y. Matsuyama,On a2-dimensional Einstein Kaehler submanifolds of a complex space form, Proc. Amer. Math. Soc. 95 (1985), 595-603.

[2] Y. Matsuyama, On totally real submanifolds of a complex projective space, Ni-honkai Math. J. 13 (2002), 153-157.

[3] S. Montiel, A. Ros and F. Urbano, Curvature pinching and eigenvalue rigidity for minimal submanifolds, Math. Z. 191 (1986), 537-548.

[4] H. Naitoh,Totally real parallel submanifolds ofPn(C), Tokyo J. Math. 4 (1981),

279-306.

[5] K. Ogiue,Differential geometry of Kaehler submanifolds, Adv. Math. 13 (1974), 73-114.

[6] K. Tsukada,Parallel Kaehler submanifolds of Hermitian symmetric spaces, Math. Z. 190 (1985), 129-150.

[7] M. Umehara, Kaehler submanifolds of complex space forms, Tokyo J. Math. 10 (1987), 203-214.

Author’s address:

Yoshio Matsuyama

Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku,Tokyo 112-8551, Japan.

Referensi

Dokumen terkait

Penelitian ini diharapkan dapat menjawab permasalahan, bagaimana hubungan hukum antara Sistem Otonomi Daerah dengan Hukum Pertanahan Indonesia, bagaimana upaya untuk

Menentukan aspek ekonomi atau aspek hukum yang lebih dominan dalam melakukan penegakan hukum merupakan hal penting untuk menyelesaikan permasalahan secara objektif

Dharma Praja No.01 Gunung Tinggi Kode Pos 72271 Kabupaten Tanah Bumbu - Kalimantan Selatan.. PENGUMUMAN PEMENANG Nomor

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Pekerjaan Pembangunan Ruang Perpustakaan SDN Kersik Putih Kec.. Aldi

Dengan memperjanjikan dan memasang hak tanggungan – dulu hipotik- maka kreditur menjadi preferent atas hasil penjualan benda tertentu milik debitur - atau milik

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Pekerjaan Pembangunan Ruang Perpustakaan SDN Karang Sari Kec.. Simpang

Apabila kesatuan sila-sila Pancasila yang memiliki susunan hierarkhis piramidal ini, maka sila Ketuhanan Yang Maha Esa menjadi basis dari sila Kemanusiaan yang

Berdasarkan kondisi tersebut rentan menimbulkan masalah dalam masyarakat, berdasarkan informasi yang didapatkan dari informan mengatakan bahwa, praktik prostitusi di Kabupaten