• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
6
0
0

Teks penuh

(1)

ON A SPECIAL DIFFERENTIAL INEQUALITY

by

Gh. Oros and Georgia Irina Oros

Abstract. We find conditions on the complex-valued functions A, B, C defined in the unit disc

U and the real constants α, β, γ, δ such that the differential inequality

( ) ( ) ( ) ( ) ( ) ( )

(

( )

)

(

( )

)

( )

[

A z p4 z + B z p3 z +C z p2 zzpz 3 − β zpz 2 +γzpz

]

Re >0,

implies Re p

( )

z > 0, where p H [1,n].

AMS Classification Numbers: 30C80

Keywords: Differential subordination, dominant.

1. Introduction and preliminaries

We let H[U] denote the class of holomorfic functions in the unit disc

{

∈ <1

}

= z C z

U : .

For a C andn ∈N∗we let

H [a,n] = {ƒ∈ H [U], ƒ(z)=a + an z n

+ an+1 z n+1

+ …, z∈ U } and

An = {ƒ∈ H [U], ƒ(z)= z + an+1 z n+1

+ an+2 z n+2

+ …, z∈ U } with A1 = A.

In order to prove the new results we shall use the following lemma, which is a particular form of Theorema 2.3.i [1, p. 35].

Lemma A. [1, p. 35]Letψ : C U C a function which satisfies Re ψ(ρi,σ, z)≤ 0,

where ρ,σ∈R,

(

1

)

2

2 ρ

σ ≤−n + , z U and n ≥1. If p H [1,n] and

Reψ (p(z), zp′(z); z) > 0 then

Re p(z) > 0.

2. Main results

Theorem. Let

2 4 8

0 0 0

2

3 n n

n β γ

α δ γ β

(2)

i) Re A (z)≤ 0

ii)ReC (z)≥ 0

(1)

iii) Im2 B (z) ≤ 4

( )

( )

    

  

+ + +

    

  

− +

2 2 8 3 Re

Re 4 8

3 3 2 n3 n2 n

z C z

A n

n β α β γ

α .

If p H [1,n] and

( ) ( ) ( ) ( ) ( ) ( )

(

( )

)

[

( )

(

)

( )

]

0

Re

2

3 2

3 4

> + ′ + ′ −

− ′ + +

+

δ

γ

β

α

z p z z

p z

z p z z

p z C z p z B z p z A

(2)

then

Re p(z) > 0.

Proof. We let ψ : C U C be defined by

( ) ( ) ( ) ( ) ( ) ( )

(

( )

)

( )

(

zp z

)

zp

( )

z

z p z z p z C z p z B z p z A z z p z z p

′ + ′ −

− ′ + +

+ =

γ β

α ψ

2

3 2

3 4

) ); ( ), ( (

(3)

From (2) we have

Reψ (p(z), zp′(z); z) > 0, for z U. (4)

For σ,ρ∈R satisfying

(

1

)

2

2 ρ

σ≤−n + , and z U, by using (1), we obtain: Reψ(ρi,σ, z)=

( ) ( ) ( ) ( ) ( ) ( )

(

( )

)

(

( )

)

( )

[

Az p4 z +Bz p3 z +C z p2 zzpz 3−β zpz 2+γzpz

]

Re =

=Re

[

A

( )

z p4 − p3iB

( )

zp2C

( )

z +ασ 3 − βσ 2 +γσ +δ

]

=
(3)

( )

( )

( )

(

)

(

) (

)

( )

( )

( )

( )

( )

( )

0

2 4 8 2 2 8 3 Re Im Re 4 8 3 8 2 4 8 2 4 8 3 Re Im Re 4 8 3 8 1 2 2 1 4 3 3 1 8 Re Im Re 2 3 2 3 2 3 2 2 6 3 2 3 2 3 2 3 2 3 4 6 3 2 4 2 2 6 4 2 3 2 3 4 ≤ + − − −   + + + + + −        + − − ≤ ≤ + − − −       + + + − − +       + − − ≤ ≤ + + − + + − − + + + − − − ≤

δ

γ

β

α

γ

β

α

β

α

α

δ

γ

β

α

γ

β

α

β

α

α

δ

γ

β

α

n n n n n n z C z B p z A n n p p p n n n n n n n z C p z B p z A n n p p n p n p p n p p p n z C p z B p z A p

By using Lemma A we have that Re p(z) > 0. If

2 2 8

n3 βn2 γn

δ = + + , then theorem can be rewritten as follows:

Corollary 1. Let α ≥ 0,β ≥ 0,γ ≥ 0, and n be a positive integer. Suppose that the function A, B, C : U C satisfies:

i) Re A (z)≤ 0 ii)ReC (z)≥ 0

iii) Im2 B (z) ≤ 4

( )

( )

        + + +         − + 2 2 8 3 Re Re 4 8

3 3 2 n3 n2 n

z C z

A n

n β α β γ

α .

If p H [1,n] and

( ) ( ) ( ) ( ) ( ) ( )

(

( )

)

[

(

( )

)

( )

0

2 2 8 3 Re 2 3 2 3 2 3 4 >   + + + + ′ + + ′ − ′ + + + n n n z p z z p z z p z z p z C z p z B z p z A γ β α δ γ β α then

Re p(z) > 0.

If

( )

z i,B

( )

z z,C

( )

z i,n , , , , ,
(4)

Example 1. If p H [1,1] and

(

) ( ) ( ) ( ) (

) ( )

(

( )

)

(

( )

)

( )

[

1 3 1 5 4 2 5 3 3

]

0

Re − − i p4 z + −z p3 z + − i p2 z + zpz 3− zpz 2+ zpz + >

then

Re p(z) > 0.

If α

0, then theorem can be rewritten as follows: Corollary 2. Let

2 4 0

0

2

n n

,

,γ δ β γ

β ≥ ≥ ≤ + and n be a positive integer. Suppose that the function A, B, C : U C satisfies:

i) Re A (z)≤ 0 ii)ReC (z)≥ 0

iii) Im2 B (z) ≤ 4

( )

( )

    

  

+ + 

   

  

2 2 Re

Re 4

2

2 n n

z C z

A

n β γ

β .

If p H [1,n] and

( ) ( ) ( ) ( ) ( ) ( )

[

(

( )

)

( )

]

0

Re A z p4 z +B z p3 z +C z p2 z − β zpz 2 +γ zpz +δ > then

Re p(z) > 0.

If A

( )

z =−3+i,B

( ) (

z =i 2 + z

) ( )

,C z = 4−i,n=3,β = 2,γ = 4,δ =5, then in this case from Corollary 2 we deduce:

Example 2. If p H [1,3] and

(

) ( ) (

) ( ) ( ) ( )

(

( )

)

( )

[

3 2 4 2 4 5

]

0

Re − +i p4 z +i +z p3 z + −i p2 zzpz 2 + zpz + > then

Re p(z) > 0.

If β

0, then Theorem can be rewritten as follows:

Corollary 3. Let

2 8 0

0

3 n

n ,

,γ δ α γ

α ≥ ≥ ≤ + and n be a positive integer. Suppose that the function A, B, C : U C satisfies:

i) Re A (z)≤ 0 ii)ReC (z)≥ 0

iii) Im2 B (z) ≤ 4

( )

( )

    

  

+ +

    

  

2 8 3 Re

Re 8

3 3 n3 n

z C z

A

n α γ

α .

(5)

( ) ( ) ( ) ( ) ( ) ( )

(

( )

)

[

( )

]

0

Re A z p4 z + B z p3 z +C z p2 zzpz 3 +γ zpz +δ > then

Re p(z) > 0.

If

( )

( ) (

) ( )

,

5 1 , 7 , 2 3 ,

4 , 2 ,

1 ,

4

5+ = + = + = = = =

= i B z z C z i n

β

γ

δ

z A

then in this case from Corollary 3 we deduce:

Example 3. If p H [1,4] and

(

) ( ) ( ) ( ) ( ) ( )

(

( )

)

( )

0

3 1 7

2 3 2

1 4

5

Re 4 3 2 2 >

  

+ i p z + +z p z + +i p z zpz + zp z +

then

Re p(z) > 0.

If γ

0, then Theorem can be rewritten as follows:

Corollary 4. Let

4 8

0 0

2 3

n n

,

,β δ α β

α ≥ ≥ ≤ + and n be a positive integer.

Suppose that the function A, B, C : U C satisfies:

i) Re A (z)≤ 0 ii)ReC (z)≥ 0

iii) Im2 B (z) ≤ 4

( )

( )

    

  

+ +

    

  

− +

2 8

3 Re

Re 4 8

3 3 2 n3 n2

z C z

A n

n β α β

α .

If p H [1,n] and

( ) ( ) ( ) ( ) ( ) ( )

(

( )

)

[

(

( )

)

]

0

Re A z p4 z +B z p3 z +C z p2 zzpz 3 − β zpz 2 +δ >

then

Re p(z) > 0.

If

( )

z = −1+ 2i,B

( )

z = +4+ z,C

( )

z =5−i,n =5,α = 4, β =1,δ =7

A then in this

case from Corollary 4 we deduce:

(6)

(

) ( ) (

) ( ) ( ) ( )

(

( )

)

[

1 2 4 5 4 7

]

0

Re − + i p4 z + +z p3 z + −i p2 z + zpz 2 + > then

Re p(z) > 0.

References.

[1] S.S. Miller and P.T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc. New York, Basel, 2000.

Authors:

Gh. Oros – University of Oradea, Romania

Referensi

Dokumen terkait

2) Faculty of Electrical Engineering, Mathematics and Computer Sciences, Department of Software Technology, Algorithms Group, Delft University of Technology, Mekelweg 4, 2628..

Department of Mathematics Education and the Research, Institue of Natural Sciences, College of Education, Gyeongsang National University, Chiju 660-701, Korea. E-mail

Department of Mathematics and Computer Science, TC ˙Istanbul K¨ ult¨ ur University, 34156 ˙Istanbul, Turkey e-mail: [email protected].

Gunardi : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta, Indonesia.

Indah Emilia Wijayanti : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta, Indonesia.

Thanks to the Crop and Soil Sciences Department, College of Agricultural and Environmental Sciences, University of Georgia and the Agronomy Department, Faculty of Agriculture, Chiang

Fahmi Indrayani1*, Henny Pramoedyo2, Atiek Iriany2 1Master Program of Mathematics, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang, Indonesia

Treasury Faculty of Mathematics and Natural Sciences, Brawijaya University Indonesia Muhammad Ghufron, M.Si Secretariat Coordinator Department of Physics, Faculty of Mathematics and