• Tidak ada hasil yang ditemukan

Is oxidative coupling the royal road for the valorization of methane to olefines?

N/A
N/A
Protected

Academic year: 2017

Membagikan "Is oxidative coupling the royal road for the valorization of methane to olefines?"

Copied!
50
0
0

Teks penuh

(1)

Unifying Concepts in Catalysis

Cluster of Excellence

Is oxidative coupling the royal road

for the valorization of methane to olefines?

R. Schomäcker, V. Fleischer, S. Parishan, J. Sauer, M. Baldowski,

K. Kwarpien, A. Thomas, S. Mavlyankariev, R. Horn, A. Trunschke,

P. Schwach, R. Schlögl, Y.Cui, N. Nilius, H.J. Freund, F. Rosowski

U. Simon, M. Yildiz, O. Görke, H. Godini, G. Wozny

Presentation at „Changing Landscape…“-Workshop,

(2)
(3)

Oxidative coupling of methane is economically viable, if:

- added value is high

- methane is not wasted

- energy demand is appropriate

- capital expenditure is reasonable

(4)

Pioneering work

1985 1990 1995 2000 2005 2010

Reihe1

G.F. Keller, M.M. Bhasin,

J. Catal. 1982, 73, 9

catalyst

M. Hinsen, M. Baerns,

Chem. Z. 1983, 107, 223

catalyst

A.C. Jones, J.J. Leonardo et al., US patent 4 443644, 1984

periodic feed

strategy

U. Zavyalova, M. Holen, R. Schlögl, M. Baerms, ChemCatChem, 2011, 3, 1935

(5)

Milestone 1: The Lunsford Mechanism of OCM

Optimal loading for initial activity: 0.5 wt% Li/MgO

No stable Li/MgO-catalyst

Still active after Li-Loss

No selectivity

(6)

Z. Stansch, L. Mleczko, M.B. ,

Ind. Eng. Chem. Res. 1997, 36, 2568

LaO2O3 (27at%)/CaO

(7)

Milestone 3: Mn-doped Na

2

WO

4

/SiO

2

U. Simon, O. Görke, A. Bertold, S. Arndt, R. Schomäcker, H. Schubert, Chem. Eng. J.168 (2011) 1352-1359

X.Fang et al, J. Mol. Catal. (China), 6 (1992) 427

H. Liu, X. Wang, D. Yang, R. Gao, Z. Wang, J. Yang, J. Nat. Gas. Chem. 17 (2008) 59

D.J. Wang, M.P. Rosynek, J.H. Lunsford, J. Catal. 155 (1995) 390

200 g batches with spray drying technology

(8)

O

2

O

2-

O

O

-

[1] C. Louis, T.L. Chang, M. Kermarec, T. Le Van, J.M. Tatibuët, M. Che, Colloids Surfaces A Physicochem. Eng. Asp. 72 (1993) 217 [2] T. Levan, M. Che, J.M. Tatibouet, M. Kermarec, J. Catal. 142 (1993) 18

[3] J.-L. Dubois, M. Bisiaux, H. Mimoun, C.J. Cameron, Chem. Soc. Japan Chemistry (1990) 967 [4] M.S. Palmer, M. Neurock, M.M. Olken, J. Am. Chem. Soc. 124 (2002) 8452

[5] C. Lin, K.D. Campbell, J. Wang, J.H. Lunsford, J. Phys. Chem. 90 (1986) 534 [6] Y. Sekine, K. Tanaka, M. Matsukata, E. Kikuchi, Energy and Fuels 23 (2009) 613 [7] C. Au, T. Zhou, W. Lai, C. Ng, Catal. Letters 49 (1997) 53

[8] V.J. Ferreira, P. Tavares, J.L. Figueiredo, J.L. Faria, Catal. Commun. 42 (2013) 50

[9] S. Gadewar, S.A. Sardar, P. Grosso, A. Zhang, V. Julka, P. Stolmanov, Continuous Process for Converting Natural Gas to Liquid Hydrocarbons, U.S. Patent US8921625B2, 2014 (Siluria Technologies)

(9)
(10)

Who is who in OCM

* Web of Science, 25.7.2014

(11)

* table adopted from E. V. Kondratenko, M. Baerns

Handbook of Heterogeneous Catalysis, Vol. 6, Ch. 13.17, 2008

The UNICAT concept

Multi scale approach for atomic to plant level

Model studies for understanding complexity

(12)

Multi scale approach to OCM

J. Sauer

M. Scheffler

R. Horn

R. Schomäcker

R. Schlögl

H.J. Freund

T. Risse

G. Wozny

M. Kraume

H. Schubert

A. Thomas

(13)

Mechanism of Oxidative Coupling of Methane

Origin of low selectivity

- OCM is initiated by oxygen activation (AFM, DFT, Model catalysts)

- Selective and inselective oxygen species at all catalysts (TAP, TPSR)

- Electron donors (dopants, defects) cause oxygen dissociation (AFM, Model catalyst) - Formation of methyl radicals at selective oxygen species (Kinetics, KIE, Model cat.) - Combustion of methane at inselective species (Kinetics, KIE)

- Parallel gas phase combustion at increased oxygen partial pressure (Profile R.)

2 CH

4

+ O

2

→ C

2

H

4

+ 2 H

2

O

(+ CO

2

)

K. Kwapien, J.Paier, J. Sauer, M. Geske, U. Zavyalowa, R. Horn, P. Schwach, A. Trunschke, R. Schlögl, Angew. Chem. Int, Ed. 2014, 53, 11-6 Y. Cui, X. Shao, M. Baldofski, J. Sauer, N. Nilius, H.J. Freund, Angew.Chem.Int.Ed. 2013, 52, 11385

(14)

The Puzzle of Information

How to get started?

Searching for more pieces?

(15)

2

(16)

2

(17)

Experiments in a TAP reactor

(18)

- Increasing delay of CH

4

leads to decrease of CO

2

and C

2

H

6

stays constant

- weakly adsorbed oxygen

leads to total oxidation

* + O

2

*O

2

- strongly adsorbed oxygen

is responsible for methyl

radical formation

* + O *O

- smaller ratio between

weakly and strongly

adsorbed oxygen at

Mn/Na

2

WO

4

/SiO

2

(19)

Dynamic experiment

2

750 °C, 30 nml/min, 1g catalyst S(C2) = 0.89

• C2 Selectivity unexpacted

high in dynamic experiments at constant temperature

• less oxygen species on the

(20)

2

Kwapien, Paier, Sauer, Geske, Zavyalova, Horn,

Schwach, Trunschke, Schlögl, Angew. Chem. Int. Ed., 2014, 53, 8774

HT-MgO S-MgO

Mg oxidation

C-MgO

Ultra pure commercial MgO

SG-MgO

Sol-gel synthesis

Hydrothermal post treatment

MW-MgO

Hydrothermal post treatment in microwave autoclave

(21)

t = 0 h

t = 6 h t = 66 h

t = 230 h

t = 25 h

Deactivation of C-MgO

P. Schwach, M. G. Willinger, A. Trunschke, R. Schlögl ,

Angewandte Chemie International Edition 2013, 52, 11381–11384

(22)

Structure sensitivity of MgO during reaction

Kwapien, Paier, Sauer, Geske, Zavyalova, Horn,

Schwach, Trunschke, Schlögl, Angew. Chem. Int. Ed., 2014, 53, 8774

Eley-Rideal mechanism

• CH4 adsorbes and is activated

• O2 leads to methyl radical formation

(23)

Mechanism of OCM at MgO

Kwapien, Paier, Sauer, Geske, Zavyalova, Horn,

(24)

Mechanism of OCM at MgO

d(O-O)/d(Mg-O)

122/215

127/227

135/253

~O

2

Kwapien, Paier, Sauer, Geske, Zavyalova, Horn,

(25)

Mechanism:

•Mo-donors in CaO transfer charges

into O2 molecules bound to surface

• Formation of pre-disscoiated O2-

species

• Final dissociation via electron tunneling from STM tip

Experimental evidence:

• Work function increase after O2 dosage only in the case of doped films

• no O2 adsorption at 300 K for pristine CaO

Mo-doped CaO films on Mo(001)

(26)

Mo-doped CaO films on Mo(001)

8.0nm

8.0nm

As dosed O

2

: Molecular species

(scanning below 2.5 V sample bias)

After dissociation with STM tip

(electron injection with 3.0 eV energy)

O2 O-O

(27)

Doping of MgO with Fe

(28)

OCM on MgO

[1] K. Kwapien, J. Paier, J. Sauer, M. Geske, U. Zavyalova, R. Horn, P. Schwach, A. Trunschke, R. Schlögl, Angew. Chemie - Int. Ed. 53 (2014) 8774 [2] P. Schwach, M.G. Willinger, A. Trunschke, R. Schlögl, Angew. Chemie - Int. Ed. 52 (2013) 11381

[3] H. Yamamoto, H.Y. Chu, M.T. Xu, C.L. Shi, J.H. Lunsford, 142 (1993) 325

EA 0K [kJ/mol]

Gibbs Free Energy, 1013 K, 0.1 MPa

(29)

Bi-metallic Na

2

WO

4

/Mn/SiO

2

catalysts for OCM

• Provides/stores

lattice oxygen

• Works without gas

phase oxygen

• Deep oxidation

catalyst for methane

• Selective OCM

catalysts

• Needs oxygen

source to form methyl radicals

OCM in transient experiments

(30)

Support variation for Mn

x

O

y

/Na

2

WO

4

/SiO

2

Mn(ac)2 ·4 H2O Na2WO4 · 2 H2O

Calcination

750°C Impregnation

commercial

nanostructured (SBA-15)

pre-catalyst catalyst

silica support

Up-scaling of catalyst synthesis

(31)

Distribution of Mn-Na2WO4 on

Green - W

Red - Mn

nanostructured (SBA-15) commercial

silica supports

Support variation for Mn

x

O

y

/Na

2

WO

4

/SiO

2

M. Yildiz, U. Simon, T. Otremba, K. Kailasam, Y. Aksu, A. Thomas, R. Schomäcker, S. Arndt Catalysis Today2014, 228, 5-14 H.R. Godini, A. Gili, O. Görke, S. Arndt, U. Simon, A. Thomas, R. Schomäcker, G. Wozny, Catalysis Today, 2014, DOI

(32)

X

Mn-Na2WO4/SBA-15

Mn-Na2WO4/commercial silica

Support variation for Mn

x

O

y

/Na

2

WO

4

/SiO

2

Testing in lab scale reactor at 750 °C (C

2

-Yield= 12 %)

X

X

M. Yildiz, Y. Aksu, U. Simon, K. Kailasam, O. Goerke, F. Rosowski, R. Schomäcker, A. Thomas, S. Arndt Chem. Commun. 2014, 50, 14440

(33)

Dynamic Experiments

At reaction temperature the

catalyst is

oxidized by air

Reactor is

purged with Helium

to remove oxygen in gas phase

and weakly adsorbed one

Defined amount of

methane is

dosed

into the reactor

Reaction mixture is analysed

by mass spectroscopy

Catalyst activity can be

analyzed without gas phase

oxidation reactions

(34)

Repetitive dynamic experiments

• Repetitive methane pulses

allow to study the available amount of oxygen

Mol

efra

ction

(%)

Na2WO4 (5%)/Mn(2%)@Quartz Na2WO4 (5%)/Mn(2%)@SBA15

(35)

O

2

O

2,ads

O

2-

HO

[1] B. Beck, V. Fleischer, S. Arndt, M.G. Hevia, A. Urakawa, P. Hugo, R. Schomäcker, Catal. Today 228 (2014) 212 [2] S. Ji, T. Xiao, S. Li, C. Xu, R. Hou, K.S. Coleman, M.L.H. Green, Appl. Catal. 225 (2002) 271

• Infeasibility of various spectroscopic techniques

• mechanism proposed by analogy to other systems

(36)
(37)

OCM in a mini-plant reactor

Fluidized Bed Reactor

37

+

Isothermal reaction

- Sensitive to free gas volume

2%Mn-2.2%Na2WO4/SiO2 catalyst, particle size 250-450 μm Bed height: 10 cm, CH4:O2 = 1.7 to 10,

(38)

OCM membrane reactor set-up

(39)

Performance indicators of the membrane reactor

2%Mn-5%Na2WO4/SiO2 catalyst (4 g), average particle size 250-450 μm

(40)

Reactor concept: Chemical looping

Operation steps:

1. O2 is dosed to oxidize the catalyst

2. Reactor is purged with inert gas to remove gas phase oxygen

3. CH4 dosage to perform

OCM

(41)

Early pulses Late pulses

Continuous operation

Early pulses Late pulses

(42)

Continuous operation

800°C

(43)

Economic Analysis

Simulations with Aspen Plus & Aspen Process Economic Analyzer v8.8

Production capacity is one million tonnes per year

Ethylene price 947 Euro/tone

1. Case I (OCM Reaction Unit + CO

2

separation Unit+Demethanizer

Unit+C

2

-Splitter Unit)

2. Case II (OCM Reaction Unit + CO

2

separation Unit + Demethanizer

Unit + C

2

-Splitter Unit + Ethane Dehydrogenation Unit)

(44)

44

OCM to Ethylene (Case I)

OCM reactor: Mn-Na2WO4/SiO2 catalyst

Membrane reactor (40% conv. & 62% sel.)

<5% N2 , dense membrane, air separation

Amine scrubbing (30%wt MEA)

Energy needed: 8 GJ/t-CO2

Energy cost associated: 14.3 €/t-CO2

Propylene-cryogenic media cycle Energy needed: 4.7 GJ/t-CO2 Cost associated: 8.8 €/t-C2H4

99.8 % Ethylen purity Methane-cryogenic media cycle

Energy needed: 4.8 GJ/t-CO2

(45)

OCM reactor:

Mn-Na2WO4/SiO2 cat.

40% conv. 62% sel. air separation

EDH reactor (60% conv. & 65% sel.) Conventional performance

Propylene-cryogenic media cycle Energy needed: 3.8 GJ/t-C2H4 Cost associated: 7.3 €/t-C2H4

99.9 % Ethylen purity Methane-cryogenic media cycle Energy needed: 6.5 GJ/t-C2H4 Cost associated: 120.5 €/t-C2H4

Amine scrubbing (30%wt MEA)

Energy needed: 5.8 GJ/t-CO2

Energy cost associated: 12.8 €/t-CO2

Compression

Energy needed: 0.4 GJ/t-C2H4 Electricity cost: 8.6 €/t-C2H4

(46)

EDH reactor (58% conv. & 63% sel.) Conventional performance

Amine scrubbing (30%wt MEA)+Membrane (Hybrid)

Energy needed: 10.93 GJ/t-CO2 Energy cost associated: 22 €/t-CO2

OCM reactor:

Mn-Na2WO4/SiO2 cat.

40% conv. 62% sel. air separation

PSA/TSA activated carbon

Energy needed: 1.10 GJ/t-C2H4

Energy cost associated: 11.11 €/t-C2H4

Propylene-cryogenic media cycle Energy needed: 3.38 GJ/t-C2H4 Cost associated: 10.42 €/t-C2H4

(47)

Results of Economic Analysis

Economic Parameter Case I Case II Case III

(Millions € per year)

Project Capital Cost 414 334 398

Operating Cost 962 907 820

Raw Material Cost 485 485 485

Utilities Cost 418 368 247

Product (C2H4) Sales 1020 1136 1208

Desired Rate of Return 15% 15% 15%

(48)

Demethanizer

Further Modifications:

Autothermal Reactor

CO2 Separation Reactor

OCM

OCM integrated with dry reforming of methane

Further Options:

OCM with methanol OCM with styrene

(49)

-

The puzzling informations about OCM are essembled

in a complete picture

- Oxygen activation is the key step in OCM mechanism

- Selectivity is controlled by

different oxygen species

- Implications for new catalyst materials and their synthesis

- single phase, highly conductive, non-reducible, e-donor/acceptor

- New options with chemical looping technology

- Techno-economic analysis shows potential for further optimization

(50)

Acknowledgments

The authors acknowledge the support from the Cluster of Excellence

„Unifying Concepts in Catalysis" coordinated by the Berlin Institute of

Technology - Technische Universität Berlin and funded by the German

research foundation - Deutsche Forschungsgesellschaft

DFG .

ThyssenKrupp Uhde

Thank you for the attention!

Referensi

Dokumen terkait

Demikian Berita Acara Penjelasan Pekerjaan ini dibuat dengan sebenarnya dan ditandatangani bersama wakil penyedia barang/jasa serta Panitia, untuk dipergunakan

[r]

Demikian Pengumuman Pemenang Pelelangan ini dibuat dan ditandatangani pada hari, tanggal dan bulan sebagaimana tersebut di atas untuk dipergunakan sebagaimana

Secara rinci hasil evaluasi penawaran untuk masing-masing penyedia dapat diminta langsung ke Panitia Pengadaan Barang dan Jasa SKPD Dinas Perkebunan Propinsi Sulawesi

Pada hari ini, Selasa tanggal 18 Desember 2012, Panitia Pengadaan Tenaga Cleaning Service telah melakukan pembukaan file dokumen penawaran.. Dari hasil pembukaan file dokumen

Panci, sebagai alat untuk merebus daun jeruju yang telah dibersihkan dari1. duri-duri

Statistik yang dikeluarkan UNICEF didalam beberapa dasawarsa terakhir masih saja menempatkan Indonesia sebagai salah satu negara di dunia yang penduduknya dalam

Berdasarkan hasil dari presentase jawaban terhadap pertanyaan yang diajukan kepada responden (operator bioskop dan pengunjung bioskop) pada pengujian beta dapat