• Tidak ada hasil yang ditemukan

Directory UMM :Data Elmu:jurnal:J-a:Journal of Computational And Applied Mathematics:Vol105.Issue1-2.1999:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Data Elmu:jurnal:J-a:Journal of Computational And Applied Mathematics:Vol105.Issue1-2.1999:"

Copied!
3
0
0

Teks penuh

(1)

Journal of Computational and Applied Mathematics 105 (1999) 367–369

The Landau problem for bounded nonvanishing functions

Zdzis law Lewandowski, Jan Szynal∗

M. Curie-Sklodowska University, 20-031 Lublin, Poland

Received 28 October 1997; revised 10 February 1998

Dedicated to Professor Haakon Waadeland on the occasion of his 70th birthday

Abstract

The problem of nding sup|a0+a1+· · ·+an|for holomorphic bounded and nonvanishing functionsf(z) =a0+a1z+· · · in the unit disk |z|¡1 is discussed. c1999 Published by Elsevier Science B.V. All rights reserved.

MSC:30C50

Keywords:Bounded nonvanishing function; The Landau problem; Krzy˙z conjecture

1. Let H(D) denote the set of holomorphic functions in the unit disk

D={zC:|z|¡1}:

We consider the following families of the functions:

B:={fH(D): f(z) =a0+a1z+· · ·; |f(z)|¡1; zD};

B0:={fB:f(z)6= 0; zD};

:={!∈B:!(z) =c1z+c2z2+· · ·; zD}: (1)

With no loss of generality we may assume that for f∈B

0 we have the normalization

a0= e

−t; t ¿0: (2)

The problem of determining maxf∈B0|an| is very hard to handle and only a partial solution to the so-called Krzy˙z conjecture is known (see e.g. [4]). The function

F(t;z) = exp

−t1 +z

1−z

= e−t+

X

n=1

An(t)zn (3)

Corresponding author.

(2)

368 Z. Lewandowski, J. Szynal / Journal of Computational and Applied Mathematics 105 (1999) 367–369

plays an important role in this problem. In [2] (see also [5]) Landau proved that

sup univalent (say f∈Bs) then Fejer [1], Szeg˝o [6] and Levin [3] proved subsequently, that for every

n∈N:

sup

f∈Bs

|a0+a1+· · ·+an|¡ K ≃1:6: : : : (5)

However this result is not sharp.

2. Considering the Landau problem for B0 we nd the following partial result:

Theorem 1. If fB

Both upper bounds (6) and (7) are sharp.

Proof. Using the representation formula for the function fB0 [4, p. 258]:

f(z) = exp

Applying the well-known inequalities:|c1|61; |c2|61−|c1|2 after elementary but tedious calculations

of several extrema we arrive at the following inequalities:

|a0+a1|6e

from which (6) and (7) follows.

In (6) the extremal function has the form f1(z) =F(12;−z): In (7) the extremal function is more

(3)

Z. Lewandowski, J. Szynal / Journal of Computational and Applied Mathematics 105 (1999) 367–369 369 Remark. We conjecture that for anyfB0 andnN there exists an absolute constant L ¿1 such

that

sup

f∈B0

|a0+a1+· · ·+an|6L:

Observe that the function (3) could not be extremal because of the fact that

A0(t) +A1(t) +· · ·+An(t) = n

X

k=0

e−tL(−1)

k (2t) = e −tL(0)

n (2t); A0(t) = e −t

and

e−t|L(0)

n (2t)|61; [7];

where L()

n denotes the Laguerre polynomial of order :

References

[1] L. Fejer, Uber die Koezientensumme einer beschrankten und schlichten Potenzreihe, Acta Math. 49 (1926) 183–190. [2] E. Landau, Abschatzung der Koezientensumme einer Potenzreihe, Arch. Math. Phys. 21 (1913) 42–50.

[3] V. Levin, Uber die Koezientensumme einiger Klassen von Potenzreihe, Math. Z. 38 (1934) 565–590.

[4] Z. Lewandowski, J. Szynal, On the Krzy˙z conjecture and related problems, in: Laine, Martio (Eds.), XVIth Rolf Nevanlinna Colloquim, Walter de Gruyter, Berlin, 1996, pp. 257–268.

[5] O. Szasz, Ungleichungen fur die Koezienten einer Potenzreihe, Math. Zeit. 1 (1918) 163–183. [6] G. Szeg˝o, Zur Theorie der schlichten Abbildungen, Math. Ann. 100 (1928) 188–211.

Referensi

Dokumen terkait

Kirchhof, G., So, H.B., (Eds.) 1996. Management of clay soils for rainfed lowland rice-based cropping systems. In: ACIAR Proceedings of the International Workshop. Australian Center