• Tidak ada hasil yang ditemukan

5 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Umum Jaringan Distribusi Tenaga Listrik

N/A
N/A
Protected

Academic year: 2019

Membagikan "5 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Umum Jaringan Distribusi Tenaga Listrik"

Copied!
20
0
0

Teks penuh

(1)

5

BAB II

TINJAUAN PUSTAKA

2.1 Pengertian Umum Jaringan Distribusi Tenaga Listrik

Jaringan Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya listrik besar (Bulk Power Source) sampai ke konsumen. Jadi fungsi distribusi tenaga listrik adalah :

a. Pembagian atau penyaluran tenaga listrik ke beberapa tempat (pelanggan). b. Merupakan sub sistem tenaga listrik yang langsung berhubungan dengan

pelanggan, karena catu daya pada pusat-pusat beban (pelanggan) dilayani langsung melalui jaringan distribusi.

Jaringan distribusi dibedakan atas jaringan distribusi primer dan jaringan distribusi sekunder. jaringan distribusi primer adalah jaringan dari trafo gardu induk ke gardu distribusi, yang dikenal dengan jaringan tegangan menengah, sedangkan jaringan distribusi sekunder adalah jaringan distribusi dari trafo distribusi hingga konsumen atau beban, yang lebih dikenal dengan jaringan tegangan rendah. Di Indonesia tegangan pada jaringan tegangan menengah yang digunakan adalah sebesar 20 kV.[1]

2.2 Pengelompokan Sistem Tenaga Listrik

Untuk kemudahan dan penyederhanaan, lalu diadakan pembagian serta pembatasan-pembatasan.

Daerah I : Bagian Pembangkitan ( Generation )

Daerah II : Bagian penyaluran ( Transmission ), Bertegangan tinggi (HV, UHV, EHV).

Daerah III : Bagian distribusi primer, bertegangan menengah (6 atau 20 kV). Daerah IV : Didalam bangunan pada beban/ konsumen, Instalasi bertegangan rendah.[1]

(2)

dapat dikelasifikasikan menurut beberapa cara, bergantung dari segi apa kelasifikasi itu dibuat.

Dengan demikian ruang lingkup Jaringan Distribusi adalah:

a. SUTM, terdiri dari : Tiang dan peralatan kelengkapannya, konduktor dan peralatan per-lengkapannya, serta peralatan pengaman dan pemutus. b. SKTM, terdiri dari : Kabel tanah, indoor dan outdoor termination, batu

bata, pasir dan lain-lain.

c. Gardu trafo, terdiri dari : Transformator, tiang, pondasi tiang, rangka tempat trafo, LV panel, pipa-pipa pelindung, Arrester, kabel-kabel, transformer band, peralatan grounding, dan lain-lain.

d. SUTR dan SKTR terdiri dari: sama dengan perlengkapan/ material pada SUTM dan SKTM. Yang membedakan hanya dimensinya.[1]

(3)

2.3 Pola Jaringan Distribusi Primer

Pada saluran distribusi dikenal berbagai macam jenis feeder (penyulang), ada yang sebagai feeder primer dan ada yang sebagai feeder sekunder. Jenis-jenis feeder ini sangat diperlukan dalam memenuhi tingkat kontinuitas pelayanan pada pelanggan. Terdapat beberapa macam pola dan konfigurasi jaringan distribusi primer adalah :

a. Jaringan distribusi Radial b. Jaringan distribusi Ring (Loop) c. Jaringan distribusi Spindle d. Jaringan distribusi Cluster

e. Jaringan Distribusi Hantaran Penghubung (Tie Line)

f. Jaringan Distribusi Grid

2.3.1 Jaringan Distribusi Radial

Jaringan distribusi radial merupakan bentuk jaringan yang paling sederhana dan ekonomis. Pada sistem ini terdapat beberapa penyulang yang menyuplai beberapa gardu distribusi secara radial. Diagram satu garis sistem radial dapat dilihat pada gambar 2.2.[1]

Gardu Induk

PMT

PMT

Gardu Distribusi

Gardu Distribusi

Gardu Distribusi JTM

JTR Gambar 2.2 Konfigurasi Jaringan Radial[1]

(4)

menyuplai gardu distribusi, sehingga apabila jalur utama mengalami ganguan, maka seluruh gardu akan ikut mengalami pemadaman.[1]

2.3.2 Jaringan Distribusi Ring dan Loop

Jaringan Distribusi Ring dan Loop yaitu jaringan yang mempunyai alternatif pasokan tenaga listrik jika terjadi gangguan. Susunan penyulang yang membentuk ring memungkinkan titik beban dilayani dari dua arah penyulang, sehingga kontinyuitas pelayanan lebih terjamin, serta kualitas dayanya menjadi lebih baik, karena rugi tegangan dan rugi daya pada saluran menjadi lebih kecil. Diagram satu garis sistem jaringan distribusi ring (loop) dapat dilihat pada gambar 2.3.[1]

Gardu Induk PMT

Gardu Distribusi Gardu Distribusi

Gardu Distribusi Gardu Distribusi

Gardu Induk PMT

PMT

PMT

PMT

PMT Jaringan Distribusi Ring

Gardu Induk PMT

Gardu Distribusi Gardu Distribusi

Gardu Distribusi

Gardu Distribusi Gardu Distribusi PMT

PMT Jaringan Distribusi Loop

(5)

Pada tipe ini, kualitas dan kontinyuitas pelayanan daya memang lebih baik, tetapi biaya investasinya lebih mahal, hal ini dikarenakan dibutuhkan pemutus bebab yang lebih banyak. Bila digunakan dengan pemutus beban yang otomatis (dilengkapi dengan recloser atau AVS) maka pengamanan dapat berlangsung cepat dan praktis, dengan cepat pula daerah gangguan segera beroperasi kembali bila gangguan telah teratasi. Sistem ini cocok digunakan pada daerah beban yang padat dan memerlukan keandalan yang tinggi.[2]

2.3.3 Jaringan Distribusi Spindle

Jaringan distribusi Spindle merupakan suatu pola kombinasi jarinagn dari pola radial dan ring. Spinde terdiri dari beberapa penyulang dengan sumber tegangan yang berasal dari gardu induk distribusi dan kemudian disalurkan pada sebuah gardu hubung.

Pada tipe ini biasanya terdiri dari beberapa penyulang aktif dan sebuah penyulang langsung (express) yang akan terhubung dengan gardu hubung. Pola spindle biasanya digunakan pada jaringan tegangan menengah yang menggunakan kabel tanah/ saluran kabel tanah tegangan menengah (SKTM). Diagram satu garis Jaringan distribusi Spindle dapat

dilihat pada gambar 2.4.[1]

Gardu Induk PMT

PMT

PMT

PMT

Gardu Distribusi

Gardu Distribusi Express Feeder

G

ardu H

ubung

(6)

2.3.4 Jaringan Distribusi Cluster

Jaringan distribusi Cluster banyak dugunakan untuk kota besar yang mempunyai kerapatan beban yang tinggi. Dalam sistem ini terdapat saklar pemutus beban dan penyulang cadangan. Dimana penyulang ini berfungsi bila ada gangguan yang terjadi pada salah satu penyulang konsumen maka penyulang cadangan inilah yang menggantikan fungsi supplai ke konsumen.[1]

Busbar 150 kV

Gardu Induk

PMT 150 kV PMT 20 kV

Busbar 20 kV

PMT 20 kV

PMT 20 kV PMT 20 kV PMT 20 kV

Beban Pemutus Trafo Distribusi

T

ra

fo D

is

tri

bus

i

Gambar 2.5 Konfigurasi Jaringan distribusi Cluster[1]

2.3.5 Jaringan Distribusi Hantaran Penghubung (Tie Line)

Sistem distribusi Tie Line ditunjukkan pada gambar 2.6 digunakan untuk pelanggan penting yang tidak boleh padam (Bandar Udara, Rumah Sakit dan lain-lain).

(7)

Busbar 150 kV

PMT 150 kV PMT 20 kV

Gardu Induk

Busbar 20 kV Pemutus

Tenaga Pemutus Tenaga

PMT 20 kV PMT 20 kV

Busbar 20 kV Penyulang

G

ardu K

ons

um

en

(khus

us)

Gambar 2.6 Konfigurasi Jaringan distribusi Hantaran Penghubung (Tie Line)[1]

2.3.6 Jaringan Distribusi Grid

Jaringan Distribusi Grid ini mempunyai bebarapa rel daya dan antara rel-rel tersebut dihubungkan oleh saluran penghubung (Coupler) yang disebut tie feeder. Maka setiap gardu distribusi dapat menerima atau mengirim daya dari atau ke rel lain. Adapun klebihan kontinuitas pelayananan lebih baik dari pola radial atau loop, fleksibel dalam menghadapi perkembangan beban dan sesuai untuk daerah dengan

kerapatan beban yang tinggi, sementara kekurangannya adalah sistem proteksi yang rumit dan mahal dan biaya investasi yang mahal.

Gardu Induk PMT

Gardu Induk

Gardu Distribusi Gardu Distribusi

Tie Feeder

(8)

2.4 Macam Jaringan Distribusi Primer

Berdasarkan fungsinya, maka suatu sistem jaringan distribusi dengan bagian-bagiannya dapat merupakan suatu bentuk, susunan dan macam yang berbeda disesuaikan dengan tujuan tertentu. Dilihat dari jenisnya maka dikenal dua macam saluran distribusi yaitu :

2.4.1 Saluran Udara

Saluran Udara digunakan pada daerah yang memiliki kerapatan beban yang rendah karena biaya investasi untuk penyediaan tempat dan materialnya cenderung lebih murah adapun keuntungan lainnya yaitu :

a. Mudah melakukan perluasan pelayanan.

b. Mudah melakukan pemeriksaan saat terjadi gangguan. c. Mudah melakukan pemeliharaan jaringan.

d. Tiang-tiang distribusi primer juga dapat digunakan untuk jaringan distribusi sekunder dan untuk tempat pemsangan gardu tiang sehingga dapat mengurangi biaya pemasangan instalasinya.

Saluran udara menyalurkan daya listrik melalui penghantar yang berupa kawat telanjang dan kabel yang digantung pada tiang-tiang dengan peralatan isolator. Gangguan-gangguan akan lebih mudah terjadi pada

saluran udara sehingga mengakibatkan tingginya biaya untuk melakukan pemeliharaan. Adapun jenis tiang yang paling banyak digunakan pada jaringan distribusi primer adalah tiang beton yang lebih kokoh dan tidak mudah terkena korosi seperti halnya penggunaan tiang besi.

2.4.2 Saluran Bawah Tanah

Saluran bawah tanah digunakan pada daerah yang memiliki kerapatan beban yang tinggi seperti pada pusat kota dan daerah industri. Hal ini dikarenakan pada daerah pusat kota dan industri terdapat bangunan-bangunan yang cukup tinggi sehingga dapat membahyakan keselamatan manusia apabila jenis saluran yang digunakan adalah saluran udara.

(9)

menyebabkan bahaya sentuh oleh manusia. Namun saluran bawah tanah memiliki beberapa kelemahan diantaranya :

a. Biaya yang diperlukan relatif mahal.

b. Tidak fleksibel terhadap perubahan jaringan.

c. Gangguan jaringan yang sering terjadi bersifat permanen.

d. Waktu dan biaya yang dibutuhkan untuk melakukan perbaikan saat terjadi gangguan cenderung lebih lama dan lebih mahal.

2.5 Penghantar Pada Jaringan Distribusi

Terdapat beberapa jenis penghantar yang digunakan pada jaringan distribusi tegangan menengah yaitu :

2.5.1 Penghantar AAC

AAC (All Aluminium Conductor), yaitu penghantar yang terbuat dari kawat-kawat aluminium keras yang dipilin, tidak berisolasi dan berinti baja. Penghantar jenis ini bentuknya berurat banyak dengan ukurannya antara 16-1000 mm.[2]

Gambar 2.8 Penghantar Jenis AAC

2.5.2 Penghantar AAAC

AAAC (All Aluminium Alloy Conductor) yaitu penghantar yang terbuat dari kawat-kawat aluminium campuran yang dipilin, tidak berisolasi dan tidak berinti. Penghantar jenis ini mempunyai ukuran diameter antara 1,50-4,50 mm, dengan bentuk fisiknya berurat banyak.[9]

(10)

2.5.3 Penghantar AAACS

AAACS (All Aluminium Alloy Conductor Shielded) merupakan penghantar AAAC yang berselubung polietilen ikat silang (XLPE). Penghantarnya berupa aluminium paduan dipilin bulat tidak dipadatkan. Isolasi kabel AAACS memiliki keutahanan isolasi sampai dengan 6 kV sehingga penghantar jenis ini harus diperlakukan seperti halnya penghantar udara telanjang.[9]

Gambar 2.10 Penghantar jenis AAACS

2.5.4 Penghantar NYFGbY

Penghantar jenis ini berisolasi dan berselubung PVC berperisai kawat baja atau aluminium untuk tegangan kerja sampai dengan 0,6/1 kV. Dengan adanya pelindung kawat pita baja, kabel ini memungkinkan ditanam langsung kedalam tanah tanpa pelindung tambahan.

Gambar 2.11 Penghantar jenis NYFGbY

2.6 Parameter Listrik Saluran Distribusi

(11)

2.6.1 Resistansi Saluran

Resistansi dari penghantar saluran distribusi adalah penyebab yang utama dan rugi daya (power loss) pada saluran distribusi. Resistansi dari suatu konduktor (kawat penghantar) diberikan oleh :

𝑅 = 𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠 𝑑𝑎𝑙𝑎𝑚 𝑘𝑜𝑛𝑑𝑢𝑘𝑡𝑜𝑟(𝐼)2 (Ω) ... 2.1

Resistansi direct-current (RDC) diberikan dengan formula :

RDC = 𝜌 . 𝑙

𝐴 (Ω) ... 2.2

[7]

Dimana :

𝜌 = resistivity konduktor (Ω.m) 𝑙 = panjang konduktor (m) A = cross sectional area (m2)

Nilai resistivity konduktor pada temperatur 20ᵒ C :

- Untuk tembaga, 𝜌 = 10,66 Ω.cmil/ft atau = 1,77 x 10-8Ω.m - Untuk aluminium, 𝜌 = 17 Ω.cmil/ft atau = 2,83 x 10-8Ω.m

Konduktor pilin 3 strand menyebabkan kenaikan resistansi sebesar 1 %. Konduktor dengan strand terkonsentrasi (concentrically stranded

conductors), menyebabkan kenaikan resistansi 2 %.

Pengaruh kenaikan temperatur terhadap resistansi dapat ditentukan dari formula berikut :

𝑅2

𝑅1 =

𝑇+ 𝑡2

𝑇+ 𝑡1 ... 2.3

Dimana R1 dan R2 adalah resistansi masing-masing konduktor pada

temperatur t1 dan t2, dan T adalah suatu konstanta yang nilainya sebagai berikut :

(12)

T = 241 untuk tembaga dengan konduktifitas 97,3 %. T = 228 untuk aluminium dengan konduktifitas 61 %.

2.6.2 Induktansi Saluran

Induktansi saluran menggambarkan besarnya fluks magnet  yang

dihasilkan untuk setiap Ampere arus dari saluran, atau menggambarkan besarnya tegangan induksi untuk setiap perubahan arus terhadap waktu. Karena fluks magnet yang dihasilkan oleh seriap Ampere arus sangat tergantung dari konfigurasi saluran, maka induktansi ditentukan oleh konfigurasi saluran. Induktansi rata-rata per fasa per satuan panjang untuk saluran tiga fasa dirumuskan sebagai :

Gambar 2.12 Konfigurasi Horizontal Tiga Fasa

𝐿 = (0,5 + 4,6 log𝑑−𝑟𝑟 ) × 10−7𝐻/𝑚 ... 2.4[8]

Gambar 2.13 Konfigurasi Delta Tiga Fasa

(13)

Gambar 2.14 Konfigurasi Vertikal Tiga Fasa

𝐿 = (2 𝑙𝑜𝑔0,779 𝑟𝑑 ) × 10−7 𝐻/𝑚 ... 2.6[5]

Dimana :

L = Induktansi Konduktor d = jarak antara konduktor r = radius konduktor

2.6.3 Reaktansi Saluran

Dalam hal arus bolak-balik medan sekeliling konduktor tidaklah konstan melainkan berubah-ubah dan mengait dengan konduktor itu sendiri maupun konduktor lain yang berdekatan oleh karena adanya fluks yang memiliki sifat induktansi. Bila letak konduktor tidak simetris, maka perlu dihitung nilai d (jarak antara konduktor) dengan rumus :

d = 3√(𝑑1𝑑2𝑑3) ... 2.7

Untuk besarnya reaktansi ditentukan oleh induktansi dari kawat dan frekuensi arus bolak-balik yaitu :

(14)

Dimana :

XL = Reaktansi kawat penghantar (Ω) 2𝜋 = Sudut arus bolak-balik

f = Frekuensi sistem (50 Hz) L = Induktansi konduktor (H/km)

2.7 Drop Tegangan

Suatu jaringan distribusi primer dikatakan kondisi tegangannya buruk apabila pada jaringan tersebut variasi tegangannya turun atau naik lebih dari tinggi dari harga yang diizinkan, sehingga mempengaruhi peralatan-peralatan listrik konsumen.

Timbulnya penurunan tegangan pada jaringan diakibatkan oleh adanya drop tegangan pada jaringan/ saluran atau peralatan yang membangun sistem jaringan distribusi primer tersebut. Besarnya drop tegangan pada jaringan distribusi primer didefenisikan sebagai selisih tegangan antara sisi pangkal pengirim (Vs) dengan tegangan pada sisi ujung penerima (VR), atau dapat ditulis sebagai berikut :

V = Vs-VR ... 2.9

Berikut adalah diagram phasor saluran distribusi :

Vs

Vr

IR I

IZ

IX

(15)

Untuk mendapatkan susut tegangan distribusi primer dengan sistem pendekatan seperti pada diagram phasor diatas yaitu dengan mengasumsikan bahwa VS dan VR berhimpitan.

Pada gambar 2.15 dapat diperhatikan bahwa persamaan tegangan yang mendasari diagram phasor tersebut adalah :

VS = VR + I ( R cos 𝜃 + jX sin 𝜃 ) ... 2.10[6]

Karena faktor I ( R cos 𝜃 + X sin 𝜃 ) sama dengan IZ, maka persamaan menjadi:

VS = VR + IZ atau VS - VR = IZ ... 2.11[6]

Sehingga ∆V = IZ

V=𝐼(𝑅 𝑐𝑜𝑠 𝜃 + 𝑗𝑋 𝑠𝑖𝑛 𝜃) ... 2.12[6]

Maka untuk saluran distribusi primer perhitungan besar drop tegangan pada saluran distribusi primer 3 fasa adalah :

V=√3. 𝐼. 𝐿(𝑅 𝑐𝑜𝑠 𝜃 + 𝑗𝑋 𝑠𝑖𝑛 𝜃) ... 2.13[6]

Besar persentase susut tegangan pada saluran distribusi primer dapat dihitung dengan :

%∆𝑉 =∆𝑉𝑉𝑠 × 100% ... 2.14[6]

Dimana :

V = Drop tegangan (Volt)

%∆V= persentase drop tegangan (%) Vs = Tegangan Sumber (V)

(16)

jX = Reaktansi Jaringan (Ω/km) 𝐼 = Arus Saluran (A)

L = Panjang saluran

𝐶𝑜𝑠 𝜃 = 0,85 dan Sin 𝜃= 0,526

2.8 Matlab

2.8.1 Pengertian Matlab

Matlab merupakan singkatan dari matrix laboratory, dimana Matlab merupakan perangkat lunak atau software untuk komputasi teknis dan saintifik. Matlab merupakan integrasi komputasi, visualisasi dan pemograman yang mudah digunakan. Sehingga Matlab banyak digunakan sebagai :

a. Kalkulator, ketika bertindak sebagai kalkulator, Matlab memberikan hasil seketika setelah perintah operasi diberikan.

b. Bahasa Pemrograman, Matlab yang merupakan bahasa pemograman

tingkat tinggi berbasis pada matriks sering digunakan untuk teknik komputasi numerik, yang digunakan untuk menyelesaikan masalah-masalah yang melibatkan operasi matematika elemen, matrik, optimasi, aproksimasi dan lain-lain. Sehingga Matlab banyak digunakan pada :

- Matematika dan Komputansi. - Pengembangan dan Algoritma.

- Pemrograman modeling, simulasi dan pembuatan prototipe. - Analisa data, eksplorasi dan visualisasi.

- Analisis numerik dan statistik. - Pengembangan aplikasi teknik.

Adapun macam-macam operasi yang dapat dilakukan oleh Matlab adalah sebagai berikut :

(17)

2.8.2 Window-window pada Matlab

Ada beberapa macam window yang tersedia dalam Matlab yang merupakan window untuk memulai penggunaan Matlab.

Gambar 2.16 Tampilan awal Matlab Adapun beberapa macam window pada matlab diantaranya :

a. Command Window

Pada command window, semua perintah matlab dituliskan dan diekskusi. Kita dapat menuliskan perintah perhitungan sederhana, memanggil fungsi, mencari informasi tentang sebuah fungsi dengan aturan penulisannya (help), demo program, dan sebagainya.[4]

Setiap penulisan perintah selalu diawali dengan prompt ‘>>’. Misal,

(18)

Gambar 2.17 Tampilan Command Window

b. Command History

Pada Command History berisi informasi tentang perintah yang pernah dituliskan sebelumnya. Kita dapat mengambil kembali perintah dengan menekan tombol panah ke atas atau mengklik perintah pada jendela

histori, kemudian melakukan copy‐paste ke command window.[4]

(19)

c. Workspace

Workspace merupakan window data-data yang dibuat pada Command

Window dengan kata lain Workspace berisi informasi pemakaian variabel

di dalam memori matlab. [4]

Gambar 2.19 Tampilan Workspace

2.8.3 Pemrograman M-File

M‐file merupakan sederetan perintah matlab yang dituliskan secara

berurutan sebagai sebuah file. Nama file yang tersimpan akan memiliki ekstensi .m yang menandakan bahwa file yang dibuat adalah file matlab.

M‐file dapat ditulis sebagai sebuah script atau dapat pula ditulis sebagai

sebuah fungsi yang menerima argument atau masukan yang menghasilkan output.[4]

(20)

Gambar 2.20 Contoh script sederhana dari matlab

Jika di running, hasilnya akan terlihat di command window seperti berikut:

Gambar

Gambar 2.1 Lay out Sistem Distribusi Tegangan Menengah[5]
Gambar 2.2 Konfigurasi Jaringan Radial[1]
Gambar 2.3 Konfigurasi Jaringan Distribusi Ring dan Loop[1]
Gambar 2.4 Konfigurasi Jaringan distribusi Spindle[1]
+7

Referensi

Dokumen terkait

Analisis dari uji anava menghasilkan hipotesis yang menyatakan penggunaan gula dan ubi jalar ungu tidak berpengaruh nyata terhadap kesukaan permen leather

Oleh karena jadwal preventive maintenance yang dibuat adalah berdasarkan pada selang waktu penggantian komponen gabungan yang optimal dan dikerjakan di luar jam produksi

maintenance ini Berbeda dengan corrective maintenance, perbedaan yang dapat dari system ini dimana preventive maintenance ini memperkecil waktu down time pada mesin

330 09056002711403 ELOK TRIMIYARNI NON PNS SD NEGERI BANJARSUGIHAN II117

Effect of weekly zinc supplements on incidence of pneumonia and diarrhoea in children younger than 2 years in an urban, low income population in Bangladesh: randomised

[r]

Dengan skema pembayaran bertahap tersebut, perseroan kemungkinan besar akan memerlukan pinjaman bank lebih besar di tahun ini atau melakukan right issue untuk