• Tidak ada hasil yang ditemukan

Paper2-Acta25-2011. 133KB Jun 04 2011 12:03:16 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper2-Acta25-2011. 133KB Jun 04 2011 12:03:16 AM"

Copied!
10
0
0

Teks penuh

(1)

CERTAIN DIFFERENTIAL SUPERORDINATIONS USING A

GENERALIZED S ˘AL ˘AGEAN AND RUSCHEWEYH OPERATORS

Alb Lupas¸ Alina

Abstract. In the present paper we define a new operator using the generalized S˘al˘agean and Ruscheweyh operators. Denote by DRmλ the Hadamard product of the generalized S˘al˘agean operator Dλm and the Ruscheweyh operator Rm, given by DRmλ : A → A, DRmλf(z) = (Dmλ ∗Rm)f(z) and An = {f ∈ H(U), f(z) = z+an+1zn+1+. . . , z∈U}is the class of normalized analytic functions withA1 =A. We study some differential superordinations regarding the operator DRmλ.

2000Mathematics Subject Classification: 30C45, 30A20, 34A40.

Keywords: Differential superordination, convex function, best subordinant, dif-ferential operator.

1. Introduction and definitions

Denote byU the unit disc of the complex plane U ={z∈C:|z|<1}andH(U) the space of holomorphic functions in U.

Let

An={f ∈ H(U), f(z) =z+an+1zn+1+. . . , z∈U} with A1=Aand

H[a, n] ={f ∈ H(U), f(z) =a+anzn+an+1zn+1+. . . , z ∈U} fora∈Cand nN.

Iff andgare analytic functions inU, we say thatf is superordinate tog, written

g≺f, if there is a function wanalytic inU, withw(0) = 0,|w(z)|<1, for allz∈U

such that g(z) =f(w(z)) for all z ∈U. If f is univalent, theng ≺f if and only if

f(0) =g(0) and g(U)⊆f(U).

Let ψ : C2 ×U → C and h analytic in U. If p and ψ(p(z), zp′

(z) ;z) are univalent inU and satisfies the (first-order) differential superordination

h(z)≺ψ(p(z), zp′

(2)

then pis called a solution of the differential superordination. The analytic function

q is called a subordinant of the solutions of the differential superordination, or more simply a subordinant, if q ≺p for all p satisfying (1). An univalent subordinant qe that satisfiesq ≺qefor all subordinantsq of (1) is said to be the best subordinant of (1). The best subordinant is unique up to a rotation of U.

Definition 1 (Al Oboudi [4]) For f ∈ A, λ ≥ 0 and m ∈ N, the operator Dm λ is

defined by Dmλ :A → A,

D0λf(z) = f(z)

D1λf(z) = (1−λ)f(z) +λzf′

(z) =Dλf(z)

...

Dmλf(z) = (1−λ)Dm−1

λ f(z) +λz(Dλmf(z))

=Dλ Dλm−1f(z), f or z ∈U.

Remark 1If f ∈ Aand f(z) =z+P∞

j=2ajzj, thenDλmf(z) =z+

P∞

j=2[1 + (j−1)λ]majzj, forz∈U.

Remark 2 For λ = 1 in the above definition we obtain the S˘al˘agean differential operator [7].

Definition 2 (Ruscheweyh [6]) For f ∈ A, m ∈N, the operator Rm is defined by

Rm :A → A,

R0f(z) = f(z)

R1f(z) = zf′

(z)

...

(m+ 1)Rm+1f(z) = z(Rmf(z))′

+mRmf(z), z∈U.

Remark 3 Iff ∈ A,f(z) =z+P∞

j=2ajzj, then Rmf(z) =z+ P∞

j=2Cmm+j−1ajz

j, z∈U.

Definition 3([5]) We denote byQthe set of functions that are analytic and injective on U\E(f), where E(f) = {ζ ∈ ∂U : lim

z→ζ

f(z) = ∞}, and f′

(ζ) 6= 0 for ζ ∈

∂U\E(f). The subclass of Q for which f(0) =a is denoted byQ(a).

We will use the following lemmas.

Lemma 1 (Miller and Mocanu [5]) Let h be a convex function with h(0) =a, and let γ ∈C\{0} be a complex number withRe γ 0. Ifp∈ H[a, n]Q, p(z) +1

γzp

(z)

is univalent in U and

h(z)≺p(z) + 1

γzp

(z), for z∈U,

then

(3)

where q(z) = γ

nzγ/n Rz

0 h(t)tγ/n

−1

dt, for z ∈ U. The function q is convex and is the best subordinant.

Lemma 2 (Miller and Mocanu [5]) Let q be a convex function in U and let h(z) =

q(z) +γ1zq′

(z),for z∈U,where Re γ ≥0. If p∈ H[a, n]∩Q, p(z) +1γzp′

(z) is univalent inU and

q(z) + 1

γzq

(z)≺p(z) + 1

γzp

(z), for z∈U,

then

q(z)≺p(z), for z∈U,

whereq(z) = γ

nzγ/n Rz

0 h(t)tγ/n

1

dt,forz∈U.The functionq is the best subordinant.

2. Main results

Definition 4 ([2]) Let λ≥ 0 and m ∈ N. Denote by DRm

λ the operator given by

the Hadamard product (the convolution product) of the generalized S˘al˘agean operator

Dmλ and the Ruscheweyh operator Rm, DRλm:A → A,

DRλmf(z) = (Dλm∗Rm)f(z).

Remark 4If f ∈ Aand f(z) =z+P∞

j=2ajzj,then DRmλf(z) =z+P∞

j=2Cmm+j−1[1 + (j−1)λ]

ma2

jzj, forz∈U.

Remark 5 For λ = 1 we obtain the Hadamard product SRn [1] of the S˘al˘agean operatorSn and Ruscheweyh operator Rn.

Theorem 1Lethbe a convex function,h(0) = 1.Letλ≥0, m∈N, f ∈ Aand

sup-pose that (m+1+1)zDRλm+1f(z)− m(1−λ)

(mλ+1)zDRmλf(z) is univalent and (DRmλf(z))

∈ H[1,1]∩Q. If

h(z)≺ m+ 1 (mλ+ 1)zDR

m+1

λ f(z)−

m(1−λ) (mλ+ 1)zDR

m

λf(z), for z∈U, (2)

then

q(z)≺(DRλmf(z))′

, for z∈U,

where q(z) = m+ 1 λ

zm+ 1λ Rz

0 h(t)tm

1+1

λdt. The function q is convex and it is the best

subordinant.

Proof. With notationp(z) = (DRmλf(z))′

= 1+P∞

j=2Cmm+j−1[1 + (j−1)λ]

m·

ja2jzj−1

and p(0) = 1, we obtain forf(z) =z+P∞

(4)

p(z) +zp′

(z) = mλz+1DRmλ+1f(z)− m−1 +1λ(DRmλf(z))′

−m(1λz−λ)DRmλf(z) and p(z) +λ+1zp′

(z) = (m+1+1)zDRmλ+1f(z)−(m(1+1)−λ)zDRmλf(z).

Evidently p∈ H[1,1]. Then (2) becomes

h(z)≺p(z) + λ

mλ+ 1zp

(z), for z∈U.

By using Lemma 1 forγ =m+1λ and n= 1, we have

q(z)≺p(z), for z∈U, i.e. q(z)≺(DRmλf(z))′

, for z∈U,

where q(z) = m+ 1 λ

zm+ 1λ Rz

0 h(t)tm

1+1

λdt. The function q is convex and it is the best subordinant.

Corollary 1 ([3]) Let h be a convex function, h(0) = 1. Let n ∈ N, f ∈ A

and suppose that 1zSRn+1f(z) + nn+1z(SRnf(z))′′

is univalent and (SRnf(z))′

∈ H[1,1]∩Q. If

h(z)≺ 1

zSR

n+1f(z) + n

n+ 1z(SR

nf(z))′′

, for z∈U, (3)

then

q(z)≺(SRnf(z))′

, for z∈U,

where q(z) = 1zR0zh(t)dt. The function q is convex and it is the best subordinant.

Theorem 2Let q be convex inU and lethbe defined by h(z) =q(z) +λ+1zq′

(z),

λ≥0, m∈N. Iff ∈ A, suppose that m+1

(mλ+1)zDR m+1

λ f(z)−

m(1−λ)

(mλ+1)z· DRmλf(z) is univalent, (DRmλf(z))′

∈ H[1,1]∩Q and satisfies the differential su-perordination

h(z) =q(z)+ λ

mλ+ 1zq

(z)≺ m+ 1 (mλ+ 1)zDR

m+1

λ f(z)−

m(1−λ) (mλ+ 1)zDR

m

λf(z), (4)

for z∈U,then

q(z)≺(DRλmf(z))′

, for z∈U,

where q(z) = m+ 1 λ

zm+ 1λ Rz

0 h(t)t

m−1+1

λdt. The functionq is the best subordinant.

Proof. Letp(z) = (DRmλf(z))′

= 1 +P∞

j=2Cmm+j−1[1 + (j−1)λ]

mja2

jzj

1

. Differentiating, we obtainp(z) +zp′

(z) = mλz+1DRmλ+1f(z)− m−1 +1λ· (DRmλf(z))′

− m(1λz−λ)DRnλf(z) and p(z) + λ+1zp′

(5)

m(1−λ)

(mλ+1)zDRmλf(z),forz∈U and (4) becomes q(z) + λ

mλ+ 1zq

(z)≺p(z) + λ

mλ+ 1zp

(z), for z∈U.

Using Lemma 2 forγ =m+λ1 and n= 1, we have

q(z)≺p(z), for z∈U, i.e. q(z) = m+ 1

λ zm+λ1

Z z

0

h(t)tm−1+1

λdt≺(DRm

λf(z))

,

forz∈U,and q is the best subordinant.

Corollary 2 ([3]) Let q be convex in U and let h be defined by h(z) = q(z) +

zq′

(z).Ifn∈N,f ∈ A, suppose that 1

zSRn+1f(z) +nn+1z(SRnf(z))

′′

is univalent,

(SRnf(z))′

∈ H[1,1]∩Qand satisfies the differential superordination

h(z) =q(z) +zq′

(z)≺ 1

zSR

n+1f(z) + n

n+ 1z(SR

nf(z))′′

, for z∈U, (5)

then

q(z)≺(SRnf(z))′

, for z∈U,

where q(z) = 1zR0zh(t)dt. The function q is the best subordinant.

Theorem 3 Let h be a convex function, h(0) = 1. Let λ ≥0, m ∈ N, f ∈ A and suppose that (DRλmf(z))′

is univalent and DRmλf(z)

z ∈ H[1,1]∩Q. If h(z)≺(DRmλf(z))′

, for z∈U, (6)

then

q(z)≺ DR

m λf(z)

z , for z∈U,

where q(z) = 1zR0zh(t)dt. The function q is convex and it is the best subordinant. Proof. Considerp(z) = DRmλf(z)

z =

z+P∞

j=2Cm+jm −1[1+(j−1)λ] ma2

jzj

z =

1 +P∞

j=2Cmm+j−1[1 + (j−1)λ]

ma2

jzj

1

.Evidently p∈ H[1,1]. We have p(z) +zp′

(z) = (DRmλf(z))′

, forz∈U. Then (6) becomes

h(z)≺p(z) +zp′

(z), for z∈U.

By using Lemma 1 forγ = 1 and n= 1, we have

q(z)≺p(z), for z∈U, i.e. q(z)≺ DR

m λf(z)

(6)

where q(z) = 1zR0zh(t)dt. The functionq is convex and it is the best subordinant. Corollary 3 ([3]) Let h be a convex function, h(0) = 1. Let n ∈ N, f ∈ A and

suppose that (SRnf(z))′

is univalent and SRnzf(z) ∈ H[1,1]∩Q. If

h(z)≺(SRnf(z))′

, for z∈U, (7)

then

q(z)≺ SR

nf(z)

z , for z∈U,

where q(z) = 1zR0zh(t)dt. The function q is convex and it is the best subordinant.

Theorem 4 Let q be convex in U and let h be defined by h(z) =q(z) +zq′

(z).If

λ≥0,m∈N,f ∈ A, suppose that(DRm λf(z))

is univalent, DRλmf(z)

z ∈ H[1,1]∩Q

and satisfies the differential superordination

h(z) =q(z) +zq′

(z)≺(DRmλf(z))′

, for z∈U, (8)

then

q(z)≺ DR

m λf(z)

z , for z∈U,

where q(z) = 1zR0zh(t)dt. The function q is the best subordinant. Proof. Letp(z) = DRmλf(z)

z =

z+P∞

j=2Cm+jm −1[1+(j−1)λ] ma2

jzj

z =

1 +P∞

j=2Cmm+j−1[1 + (j−1)λ]

ma2

jzj

−1.

Evidently p∈ H[1,1]. Differentiating, we obtain p(z) +zp′

(z) = (DRmλf(z))′

, for z ∈ U and (8) be-comes

q(z) +zq′

(z)≺p(z) +zp′

(z), for z∈U.

Using Lemma 2 forγ = 1 and n= 1, we have

q(z)≺p(z), for z∈U, i.e. q(z) = 1

z

Z z

0

h(t)dt≺ DR

m λf(z)

z , for z∈U,

and q is the best subordinant.

Corollary 4 ([3]) Letq be convex inU and lethbe defined byh(z) =q(z)+zq′

(z).

If n∈ N, f ∈ A, suppose that (SRnf(z))is univalent, SRnf(z)

z ∈ H[1,1]∩Q and

satisfies the differential superordination

h(z) =q(z) +zq′

(z)≺(SRnf(z))′

, for z∈U, (9)

then

q(z)≺ SR

nf(z)

(7)

where q(z) = 1zR0zh(t)dt. The function q is the best subordinant.

Theorem 5 Let h(z) = 1+(2β−1)z

1+z be a convex function in U, where 0 ≤ β < 1.

Let λ≥0, m∈N, f ∈ Aand suppose that (DRmλf(z))′

is univalent and DRmλf(z)

z ∈

H[1,1]∩Q. If

h(z)≺(DRmλf(z))′

, for z∈U, (10)

then

q(z)≺ DR

m λf(z)

z , for z∈U,

where q is given by q(z) = 2β−1 + 2(1−β)ln(1+z z), for z ∈ U. The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem and considering

p(z) = DRmλf(z)

z , the differential superordination (10) becomes h(z) = 1 + (2β−1)z

1 +z ≺p(z) +zp

(z), for z∈U.

By using Lemma 1 forγ = 1 and n= 1, we have q(z)≺p(z), i.e.,

q(z) = 1

z

Z z

0

h(t)dt= 1

z

Z z

0

1 + (2β−1)t

1 +t dt= 2β−1+2(1−β)

1

zln(z+1)≺

DRmλf(z)

z ,

forz∈U.

The function q is convex and it is the best subordinant.

Theorem 6 Let h be a convex function, h(0) = 1. Let λ ≥0, m ∈ N, f ∈ A and suppose that

zDRm+1λ f(z)

DRm λf(z)

is univalent and DRm+1λ f(z)

DRm

λf(z) ∈ H[1,1]∩Q. If

h(z)≺ zDR

m+1

λ f(z) DRmλf(z)

!′

, for z∈U, (11)

then

q(z)≺ DR

m+1

λ f(z)

DRmλf(z) , for z∈U,

where q(z) = 1zR0zh(t)dt. The function q is convex and it is the best subordinant. Proof. Considerp(z) = DR

m+1 λ f(z)

DRm

λf(z) =

z+P∞

j=2Cm+jm+1[1+(j−1)λ]m+1a2jzj

z+P∞

j=2Cm+jm −1[1+(j−1)λ] ma2

jzj = 1+P∞

j=2Cm+jm+1[1+(j−1)λ]m+1a2jzj

−1 1+P∞

j=2Cm+jm −1[1+(j−1)λ] m

a2 jzj

(8)

We have p′

(z) = (DR m+1 λ f(z))

DRm

λf(z) −p(z)· (DRm

λf(z))

DRm λf(z) .

Then p(z) +zp′

(z) =

zDRm+1λ f(z)

DRm λf(z)

.

Then (11) becomes

h(z)≺p(z) +zp′

(z), for z∈U.

By using Lemma 1 forγ = 1 and n= 1, we have

q(z)≺p(z), for z∈U, i.e. q(z)≺ DR

m+1

λ f(z)

DRmλf(z) , for z∈U, where q(z) = 1zR0zh(t)dt. The functionq is convex and it is the best subordinant. Corollary 5 ([3]) Let h be a convex function, h(0) = 1. Let n ∈ N, f ∈ A and suppose that zSRSRn+1nf(fz()z)

is univalent and SRSRn+1nff(z()z) ∈ H[1,1]∩Q. If

h(z)≺

zSRn+1f(z)

SRnf(z)

, for z∈U, (12)

then

q(z)≺ SR

n+1f(z)

SRnf(z) , for z∈U,

where q(z) = 1zR0zh(t)dt. The function q is convex and it is the best subordinant.

Theorem 7 Let q be convex in U and let h be defined by h(z) = q(z) +zq′

(z).

If λ ≥ 0, m ∈ N, f ∈ A, suppose that

zDRm+1λ f(z)

DRm λf(z)

is univalent, DRm+1λ f(z)

DRm

λf(z) ∈ H[1,1]∩Q and satisfies the differential superordination

h(z) =q(z) +zq′

(z)≺ zDR

m+1

λ f(z) DRmλf(z)

!′

, for z∈U, (13)

then

q(z)≺ DR

m+1

λ f(z)

DRmλf(z) , for z∈U,

where q(z) = 1zR0zh(t)dt. The function q is the best subordinant. Proof. Letp(z) = DRm

+1 λ f(z)

DRm

λf(z) =

z+P∞

j=2Cm+jm+1[1+(j−1)λ]m+1a2jzj

z+P∞

j=2Cm+jm −1[1+(j−1)λ] ma2

jzj = 1+P∞

j=2Cm +1

m+j[1+(j−1)λ]m +1

a2 jzj

−1 1+P∞

j=2Cmm+j−1[1+(j−1)λ] ma2

jzj

(9)

Differentiating, we obtain p(z) +zp′

(z) =

zDRm+1λ f(z)

DRm λf(z)

, for z ∈ U and (13) becomes

q(z) +zq′

(z)≺p(z) +zp′

(z), for z∈U.

Using Lemma 2 forγ = 1 and n= 1, we have

q(z)≺p(z), for z∈U, i.e. q(z) = 1

z

Z z

0

h(t)dt≺ DR

m+1

λ f(z)

DRmλf(z) , for z∈U, and q is the best subordinant.

Corollary 6 ([3]) Letq be convex inU and lethbe defined byh(z) =q(z)+zq′

(z).

If n ∈ N, f ∈ A, suppose that zSRSRn+1nf(fz()z) ′

is univalent, SRSRn+1nff(z(z)) ∈ H[1,1]∩Q

and satisfies the differential superordination

h(z) =q(z) +zq′

(z)≺

zSRn+1f(z)

SRnf(z)

, for z∈U, (14)

then

q(z)≺ SR

n+1f(z)

SRnf(z) , for z∈U,

where q(z) = 1zR0zh(t)dt. The function q is the best subordinant.

Theorem 8 Let h(z) = 1+(2β−1)z

1+z be a convex function inU, where 0≤β <1. Let λ ≥ 0, m ∈ N, f ∈ A and suppose that

zDRm+1λ f(z)

DRm λf(z)

is univalent, DRm+1λ f(z)

DRm λf(z) ∈ H[1,1]∩Q. If

h(z)≺ zDR

m+1

λ f(z) DRmλf(z)

!′

, for z∈U, (15)

then

q(z)≺ DR

m+1

λ f(z)

DRmλf(z) , for z∈U,

where q is given by q(z) = 2β−1 + 2(1−β)ln(1+z z), for z ∈ U. The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem and considering

p(z) = DRm +1 λ f(z)

DRm

λf(z) , the differential superordination (15) becomes

h(z) = 1 + (2β−1)z

1 +z ≺p(z) +zp

(10)

By using Lemma 1 for γ = 1 and n= 1, we haveq(z)≺p(z), i.e.,

q(z) = 1

z

Z z

0

h(t)dt= 1

z

Z z

0

1 + (2β−1)t

1 +t dt= 2β−1+2(1−β)

1

zln(z+1)≺

DRmλ+1f(z)

DRmλf(z) , forz∈U.

The function q is convex and it is the best subordinant. References

[1] Alina Alb Lupa¸s, Adriana C˘ata¸s, Certain differential subordinations using S˘al˘agean and Ruscheweyh operators, Proceedings of International Conference on Complex Analysis and Related Topics, The 11th Romanian-Finish Seminar, Alba Iulia, 2008, (to appear).

[2] Alina Alb Lupa¸s,Certain differential subordinations using a generalized S˘al˘agean operator and Ruscheweyh operator, submitted 2009.

[3] Alina Alb Lupa¸s, Certain differential superordinations using S˘al˘agean and Ruscheweyh operators, Analele Universit˘at¸ii din Oradea, Fascicola Matematica, Tom XVII, Issue no. 2, 2010, 201-208.

[4] F.M. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean operator, Ind. J. Math. Math. Sci., 2004, no.25-28, 1429-1436.

[5] S.S. Miller, P.T. Mocanu,Subordinants of Differential Superordinations, Com-plex Variables, vol. 48, no. 10, 2003, 815-826.

[6] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

[7] G.St. S˘al˘agean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.

Alb Lupa¸s Alina

Department of Mathematics University of Oradea

Referensi

Dokumen terkait

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Meja Bhs Jepang Nada Isu Bhs Indonesia Dini Gomibako Bhs Inggris Daniel Randosēru Bhs Inggris Etienne Kabin Bhs Inggris Nobita Karend ā Bhs Jawa Sugiman.. Pencil case (box) Bhs

Penetapan hasil kualifikasi (Short List)g. Pengumuman hasil kualifikasi 11

Pejabat Pembuat Komitmen SMARTD mengundang para Peserta Lelang yang memenuhi syarat untuk menyampaikan surat penawaran dalam amplop tertutup untuk pelaksanaan pekerjaan

Berdasarkan hasil evaluasi penawaran administrasi dan teknis pekerjaan Konstruksi PEMBANGUNAN RSUD KOTA BANJARBARU, Panitia Pengadaan menetapkan daftar peringkat teknis

Hal itu juga terlihat dari kegiatan perusahaan dimana perusahaan menerima retur barang yang diberikan konsumen dan kemudian mengganti barang tersebut dengan

Memahami pemrograman visual berbasis desktop 6.1 Menjelaskan IDE aplikasi bahasa pemograman. 6.2 Menjelaskan objek aplikasi

Ada beberapa teori motivasi kerja yang dikemukakan oleh para ahli, salah satunya adalah Teori kebutuhan yang dikemukakan oleh Clayton Alderfer yang dikenal dengan