• Tidak ada hasil yang ditemukan

effects of energy level and leucaena leucocephala leaf meal

N/A
N/A
Protected

Academic year: 2017

Membagikan "effects of energy level and leucaena leucocephala leaf meal"

Copied!
9
0
0

Teks penuh

(1)

ContentslistsavailableatSciVerseScienceDirect

Animal

Feed

Science

and

Technology

journalhomepage:www.elsevier.com/locate/anifeedsci

Effects

of

energy

level

and

Leucaena

leucocephala

leaf

meal

as

a

protein

source

on

rumen

fermentation

efficiency

and

digestibility

in

swamp

buffalo

S.

Kang, M.

Wanapat

, P.

Pakdee, R.

Pilajun, A.

Cherdthong

TropicalFeedResourcesResearchandDevelopmentCenter(TROFREC),DepartmentofAnimalScience,FacultyofAgriculture,KhonKaenUniversity,Khon Kaen40002,Thailand

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14June2011

Receivedinrevisedform7March2012 Accepted12March2012

Keywords:

Leucaenaleucocephalaleafmeal Heattreatment

Energylevel Digestibility Rumenecology Swampbuffalo

a

b

s

t

r

a

c

t

FourThai–rumenfistulatedmaleswampbuffaloes(Bubalusbubalis),about3yearsoldwith 360±18kgliveweight,wererandomlyassignedaccordingtoa2×2factorialarrangement ina4×4Latinsquaredesigntoreceivefourdietarytreatments.Thetreatmentswereas follows:acassavabasedsupplement(CS)at1g/kgBWandLeucaenaleucocephalaleafmeal (LLM)at300g/d(T1);CSat2g/kgBWwithLLMat300g/d(T2);CSat1g/kgBWandheat treatedLLM(HLLM)at300g/d(T3);andCSat2g/kgBWandHLLMat300g/d.Duringthe experiment,urea–calciumhydroxidetreatedricestrawwasgivenonadlibitumbasis.The resultsrevealedanincreaseinroughageandtotaldrymatter(DM)intake(P<0.05)byCSat 2g/kgBW(T2andT4)ascomparedwithCSat1g/kgBW(T1andT3).Digestioncoefficients ofDM,organicmatter(OM),andcrudeprotein(CP)wereincreasedbyCSat2g/kgBW, whileneutraldetergentfiber(aNDF)andaciddetergentfiber(ADF)weresimilaramong treatments.However,therewasnoeffectofneitherenergylevelnorHLLMonruminal pHandtemperature(P>0.05).Concentrationofruminalammonianitrogen(NH3-N)was

decreasedbyHLLMascomparedwithLLM(P<0.05),whilebloodurea–nitrogenwasnot altered.Therewasanincrease(P<0.05)intotalvolatilefattyacid(TVFA),aceticacid(C2), propionicacid(C3),andbutyricacid(C4)concentrationsandthehighestwerefoundin CSat2g/kgBWwithHLLM(T4),whilethelowestwasinT1andT3.However,nochanges inC2–C3ratiowerefoundinthisstudy.Totalbacterialdirectcountswerefounddifferent (P<0.05),whereasfungalzoosporesandprotozoalpopulationsweresimilaramong treat-ments.Nevertheless,viablebacterialcountswerefoundaffectedbybothconcentratelevel andHLLM.ThetreatmentswithHLLMwerelowerthanthoseinLLMandCSat2g/kgBW werehigherthanthosesupplementedatCSat1g/kgBW(P<0.05).Inaddition,efficiencyof rumenmicrobialCPsynthesistendedtobehigherintreatmentwithhigherlevelofenergy andHLLM.Basedonthisstudy,itcouldbeconcludedthatLLMcouldbeusedasaprotein source,whilethecombinationofHLLMandCSat2g/kgBWcouldenhancethevoluntary feedintake,nutrientdigestibilityandrumenfermentationinswampbuffalofedontreated ricestraw(urea–calciumhydroxidetreatment).

© 2012 Elsevier B.V. All rights reserved.

Abbreviations: BW,bodyweight;LLM,Leucaenaleucocephalaleafmeal;HLLM,heattreatedLeucaenaleucocephalaleafmeal;DM,drymatter;OM, organicmatter;CP,crudeprotein;ADF,aciddetergentfiber;aNDF,neutraldetergentfiber;TVFA,totalvolatilefattyacid;C2,aceticacid;C3,propionic acid;C4,butyricacid;NH3-N,ammonianitrogen;CS,acassavabasedsupplement.

∗ Correspondingauthor.Tel.:+6643202368;fax:+6643202368.

E-mailaddress:metha@kku.ac.th(M.Wanapat).

(2)

1. Introduction

Ruminantsraisedinthetropicslargelydependonseasonalfeedresourceswhicharerelativelylowinqualityintermsof lowCPbuthighincrudefiber(CF);hence,themanipulationofrumenefficiencythroughtheusesoflocalfeedresourceswould beanadvantage(Wanapat,2000).FoliagesfromlocallygrownshrubsandtreessuchasLeucaena(Leucaenaleucocephala) havebeensuccessfullyinvestigatedasproteinasupplementforruminants(Sahaetal.,2008).Leucaenaleafmeal,withits richprotein,mineralsandvitamincontent,isalsobecomingapopularingredientinpoultryfeedsinthetropics(D’Mello andTaplin,1978).Itsproteincontentisathighlevelsof292g/kgCPinleafmealand220.3g/kgCPinforage(Garciaetal., 1996).Moreover,itcontainscondensedtannincontentof10.1–10.5g/kgthatcanprotectproteinfromrumenmicrobial degradationandreducemethaneproduction.

Theruminantanimalsderivetheiraminoacidssupplyjointlyfromdietaryproteinwhichescapesrumendegradationand microbialproteinsynthesizedintherumen.Theamountofproteinandaminoacidsthatescapesrumendegradationvaries greatlyamongdifferentfeeds,dependingontheirsolubilityandtherateofpassagetothesmallintestine.Itisoftenthecase insomesituationthatanimal’srequirementsforaminoacidsarenotfullymetfromthenormalsourcesofdietaryprotein. Rapidandextensivedegradationofvaluableproteinsintherumenleadresearchtodeveloptheconceptofproteinprotection fromruminaldegradationwiththeprincipalobjectiveofenhancingthesupplyofessentialaminoacidstotheproductive animal,furtherreducewastefulammoniaproductionintherumenandreductionofnitrogenlossesasureaintheurine (Annison,1981).HeattreatmentoffeedstuffscandecreasedegradationofDMandCPbyblockingreactivesitesformicrobial proteolyticenzymes(BroderickandCraig,1980)andincreasethesupplyofdietaryproteintotheduodenum(Tagarietal., 1986).Severalstudies(FaldetandSatter,1991)onvariousproteinsourceshaveshownacorrelationbetweendecreased ruminaldegradationofproteinandincreasedmilkproduction. Heattreatmenthastheadvantageofbeingsafe,rather inexpensiveandeasilyavailable(notrequestingcomplexequipment).However,theknowledgeontheoptimalconditionof heattreatmentsofL.leucocephalaleafmealisscarce.WhereasdataontheeffectoftheL.leucocephalaleafmealheattreating, itwasyetbeenfoundnodataoftheeffectonfeedintakeandrumenecologyinswampbuffalo.Therefore,theobjectivesof thisstudyweretoinvestigatetheeffectofenergylevelwithheatedandunheatedtreatmentonL.leucocephalaleafmealon feedintake,nutrientdigestibility,rumenfermentationandmicrobialpopulationinswampbuffalo.

2. Materialsandmethods

2.1. Animals,dietsandexperimentaldesign

L.leucocephala(LL)washarvestedfromthetreewithaverageplantingageof4–5yearsandsundried.OnlytheleafofLL wassundriedandground,usedfortheexperiment.Afterthat,theleafmealwaskeptandhalfoftheleafmealwasheated intheovenattemperature100◦Cfor60min.Theurea–calciumhydroxidetreatedricestrawwaspreparedbyadding2kg ureaand2kgCa(OH)2(hydratedlime)in100landpouredoverto100kgairdry(910g/kgDM)straw.Therelevantvolume

ofureaandcalciumhydroxidesolutionwassprayedontoastackof5wholestrawbales(approximately20kg)andthen coveredthestackwithaplasticsheetforaminimumof10daysbeforefeedingdirectlytotheanimals(Wanapatetal.,2009). FourThai–rumenfistulatedmaleswampbuffaloes(Bubalusbubalis),about3yearsoldwith360±18kgliveweight,were randomlyassignedaccordingtoa2×2factorialarrangementina4×4Latinsquaredesigntoreceivedietarytreatments.The treatmentswereasfollows:acassavabasedsupplement(CS)at1g/kgBWandL.leucocephalaleafmeal(LLM)at300g/d(T1); CSat2g/kgBWwithLLMat300g/d(T2);CSat1g/kgBWandheattreatedLLM(HLLM)at300g/d(T3);andCSat2g/kgBW andHLLMat300g/d.Eachofthefourperiodslastedfor21days,withthefirst14daysasstrawintakemeasurement,while thelast7daysforsamplecollection.Ingredientcompositionsofconcentratemixture,LLMandroughage(urea–calcium hydroxidetreatedricestraw)areshowninTable1.Allanimalswereindividuallypennedandwaterandmineralblockwere availableatalltimes.Allanimalswerefedonurea–calciumhydroxidetreatedricestrawadlibitum.

2.2. Datacollectionandsamplingprocedures

FeedofferedandrefusalswererecordeddailythroughouttheexperimentalperiodforDMintakecalculationandfeed sampleswererandomlycollectedtwiceaweekforDManalysis.Samplesofconcentratemixture,LLMandtreatedricestraw includingrefusalswerecollecteddailyduringthecollectionperiod.Samplesofricestrawwerecompositedbyperiodaswell assampleofconcentratemixture.LLMandfeedrefusalswerecompositedbyperiodandbyanimalandstoredat−20◦Cfor laterchemicalanalyses.

RumenpH,temperatureandfermentationcharacteristicsweremeasuredatthelastdayofeachperiodpostmorning feeding.Approximately200mlofrumenfluidweretakenfromthemiddlepartoftherumenbyusinga60mlhandsyringeat eachtime.RumenfluidwasmeasuredforpHandtemperatureandthefluidsampleswerethenstrainedthroughfourlayers ofcheeseclothanddividedintothreeparts.Thefirst45mlofrumenfluidsamplewascollectedandkeptinaplasticbottle towhich5mlof1MH2SO4wasaddedtostopfermentationprocessofmicrobeactivityandthencentrifugedat3000×gfor

10min.About20–30mlofsupernatantwascollectedandanalyzedforNH3-NandVFA.Thesecondportionof1mlrumen

(3)

Table1

Feedingredientsandnutritivevaluesusedintheexperiment.

Item Cona LLMb HLLMc Urea–calciumhydroxidetreatedricestraw

Ingredients,g/kgdrymatter

Cassavachip 750

Ricebran 70

Coconutmeal 70

Palmkernelmeal 50

Molasses 15

Urea 15

Mineralmixture 10

Salt 10

Sulfur 10

Chemicalcomposition

Drymatter,g/kg 923 862 946 542

Organicmatter 907 916 917 862

Crudeprotein 108 273 271 58

Neutraldetergentfiber 182 354 364 765

Aciddetergentfiber 125 163 172 562

aConcentrate.

bLeucaenaleucocephalaleafmeal.

cHeattreatedLeucaenaleucocephalaleafmeal.

formalin)wasaddedandstoredat4◦Cformeasuringmicrobialpopulationbyusingtotaldirectioncounts.Thethirdportion wasforthetotalviablebacteriacount(cellulolytic,proteolytic,andamylolytic)andtotalviablebacteria.

Abloodsample(about10ml)wasdrawnfromthejugularveinatthesametimeasrumenfluid.Bloodsampleswere immediatelyplacedontheiceandtransportedtothelaboratoryforseparatingplasmafromthewholeblood.Sampleswere refrigeratedfor1handthencentrifugedat3500×gfor20min.Theplasmawereremoved,storedat−20◦Candanalyzedfor bloodureanitrogen(BUN)composition.UrinesampleswereanalyzedfortotalNandanalyzedforallantoinconcentration.

2.3. Analyticalprocedure

Thesamplesweredividedintotwoparts,firstpartforDManalyses,whilethesecondpartkeptandpooledattheendof eachperiodforanalysesofAsh,CP,aNDFandADF.Feeds,refusalsandfecalsamplesweredriedat60◦Candground(1mm screenusingtheCyclotechMill,Tecator,Sweden)andanalyzedusingstandardmethodsofAOAC(1995)forDM(ID967.03) andash(ID942.05).ADFwasdeterminedaccordingtoanAOACmethod(1995;ID973.18)andwasexpressedinclusiveof residualash.aNDFinsampleswasestimatedaccordingtoVanSoestetal.(1991)withadditionof␣-amylasebutwithout sodiumsulphiteandresultsareexpressedwithresidualash.Totalnitrogen(N)wasdeterminedaccordingtoAOAC(1995; ID984.13).

RumenfluidwasimmediatelymeasuredforpHandtemperatureusingaportablepHtemperaturemeter(HANNA Instru-mentsHI8424microcomputer,Singapore)andNH3-NbyKjeltechAuto1030Analyzer(AOAC,1995;ID973.18).VFAwere

analyzedusingHighPressureLiquidChromatography(HPLC,InstrumentsbyWaterandNovapakmodel600E;watermode l484UVdetector;columnnovapakC18;columnsize3.9mm×300mm;mobilephase10mMH2PO4[pH2.5])accordingto Samueletal.(1997).Rumenfluidwasusedfordirectcountsofbacterial,protozoaandfungalzoosporesusingmethods ofGalyean(1989)byhaemocytometer(Boeco,Singapore).Groupsofbacteria(i.e.,cellulolytic,proteolytic,amylolyticand totalviablecountsbacteria)weremeasuredusingtheHungate(1969)roll-tubetechnique.BUNwasmeasuredaccordingto

Crocker(1967).

Urinesamples wereanalyzed for total N(AOAC,1995; ID984.13)and allantoin inurine was determinedby HPLC asdescribedbyChenetal.(1993).Theamountofmicrobialpurinesderivativeabsorptionwascalculatedfrompurine derivative(PD)excretionbasedontherelationshipderivedbytheequationofLiangetal.(1994):Y=0.12X+(0.20BW0.75).

Thesupply ofmicrobial N(MN)wasestimatedbyurinary excretionofPDaccordingtoChenand Gomes(1995): MN (g/d)=70X/(0.116×0.83×1000)=0.727X;whereXandYare,respectively,absorptionandexcretionofPDinmmol/d. Effi-ciencyofmicrobialNsynthesis(EMNS)wascalculatedusingthefollowingformula:EMNS=microbialN(g/d)/DOMR;where DOMR=digestibleOMapparentlyfermentedintherumen(assumingthatrumendigestionwas650g/kgOMofdigestionin totaltract,DOMR=DOMI×0.65;DOMI=digestibleorganicmatterintake).

2.4. Statisticalanalysis

(4)

Table2

EffectofenergylevelandLLMonvoluntaryfeedintakeandnutrientdigestibility.

Item LLMb HLLMc SEM Interaction

1a 2a 1a 2a LLMb Cona LLMb×Cona

Drymatterintake Roughageintake

kg/day 6.1 6.5 5.9 6.4 0.06 ns ** ns

g/kgBW0.75 69.9 73.5 67.4 72.8 0.76 ns ** ns

Concentrateintake

kg/day 0.4 0.7 0.4 0.7 0.01 ns *** ns

g/kgBW0.75 4.1 8.2 4.1 8.2 0.01 ns *** ns

LLMintake

kg/day 0.26 0.26 0.28 0.28 0.004 ** ns ns

g/kgBW0.75 3.0 3.0 3.2 3.2 0.06 ** ns ns

Totalintake

kg/day 6.7 7.4 6.6 7.3 0.06 ns * ns

g/kgBW0.75 77.0 84.7 74.7 84.2 0.78 ns * ns

Apparentdigestibility

Drymatter 0.61 0.70 0.62 0.66 0.02 ns * ns

Organicmatter 0.64 0.73 0.66 0.69 0.02 ns * ns

Crudeprotein 0.51 0.60 0.53 0.60 0.006 * * ns

Neutraldetergentfiber 0.58 0.66 0.60 0.63 0.02 ns ns ns

Aciddetergentfiber 0.54 0.61 0.51 0.55 0.04 ns ns ns

aConcentrate(g/kgBW).

b Leucaenaleucocephalaleafmeal.

c HeattreatedLeucaenaleucocephalaleafmeal.

* P<0.05.

** P<0.01.

***P<0.001.

3. Results

3.1. Chemicalcompositionofdiet

ExperimentalfeedandtheirchemicalcompositionsareshowninTable1.Themixtureofconcentrate,consistingof availablelocalfeedresourcessuchasenergysource(cassavachips),proteinsouces(ricebran,coconutmeal,andpalm kernelmeal)andnon-proteinnitrogen(urea),hadahigherqualityintermsofCPandlowinfiber(108,and182g/kgofDM, respectively).ThemeanlevelofCPofLLMandHLLMusedintheexperimentwere273and271g/kgofDM,respectively. Moreover,fibrousfractions,aNDFandADFwerenotdiferentbetweenLLMandHLLM.Ricestrawqualitywasimprovedin CPbythetreatmentwithurea–calciumhydroxide.

3.2. Feedintakeandnutrientdigestibility

Table2presentsdataofdailyfeedintakesandnutrientdigestibility.Feedintakeswereenhanced(P<0.05)byCSat2g/kg BW.Moreover,supplementationatCSat2g/kgBWincreasedricestrawintake,thusresultinginanincreaseintotalintake. ApparentdigestibilityofDM,OMandCPwerealsofoundincreased(P<0.05)inbuffaloesconsumeddietwithCSat2g/kgBW andLLM,thehighestwasinT2(0.70,0.73,and0.60kg/kg,respectively).TheCPdigestibilitywasincreasedbybothfactors CSat2g/kgBWandHLLM.Incontrast,noeffectondigestibilityofaNDFandADFbyenergylevelandLLMsupplementation wasfound(P>0.05).

3.3. Rumenfermentationandbloodmetabolites

Ruminaltemperature,pH,andBUNweresimilaramongtreatmentsandthevalueswerequitestableat39.1-39.3◦C, pH(6.5–6.7),andBUNat13.6–16.6mg/dl,respectively(Table3).However,BUNinthetreatmentswithLLM(T1=11.9and T2=11.4mg/dl)tendedtobehigherthanthosewithHLLM(T3=10.4andT4=10.0mg/dl).TreatmentswithHLLMwerefound lowerinconcentrationofruminalNH3-NthanwithLLM.BothtreatmentswithHLLMhavelowerconcentrationofNH3-N

(T3=13.6andT4=14.5mg/dl)thaninthetreatmentswithLLM(T1=16.0andT2=16.6mg/dl).Inaddition,theconcentrate levelhasenhancedrumenNH3-Nconcentration.TheavailablerumenNH3-Nwouldbeusedinmicrobialproteinsynthesis

(5)

Table3

EffectofenergylevelandLLMonruminalfermentationandbloodureanitrogen.

Item LLMb HLLMc SEM Interaction

1a 2a 1a 2a LLMb Cona LLMb×Cona

RuminalpH 6.7 6.5 6.6 6.5 0.07 ns ns ns

Temperature,◦C 39.2 39.2 39.3 39.1 0.11 ns ns ns

NH3-N,mg/dl 16.0 16.6 13.6 14.5 0.45 *** ns ns

Bloodureanitrogen,mg/dl 11.9 11.4 10.4 10.0 1.71 ns ns ns

TotalVFA,mmol/l 82.9 95.6 82.2 99.5 1.22 ns ** ns

VFA,mol/100mol

Aceticacid(C2) 59.3 67.4 58.7 68.8 0.90 ns ** ns

Propionicacid(C3) 16.4 18.2 15.3 20.1 1.16 ns * ns

Butyricacid(C4) 7.2 10.0 8.2 10.6 0.67 ns ** ns

C2:C3 3.6 3.7 3.8 3.4 0.62 ns ns ns

aConcentrate(g/kgBW).

bLeucaenaleucocephalaleafmeal.

cHeattreatedLeucaenaleucocephalaleafmeal.

*P<0.05.

**P<0.01. ***P<0.001.

Table4

EffectofenergylevelandLLMonmicrobialpopulationintherumenofswampbuffaloes.

Item LLMb HLLMc SEM Interaction

1a 2a 1a 2a LLMb Cona LLMb

×Cona

Ruminalmicrobes×cell/ml

Bacteria,×109 3.3 4.4 2.9 3.2 0.10 ** ** **

Protozoa,×105 8.1 7.9 8.3 7.9 0.38 ns ns ns

Fungi,×105 2.6 3.9 2.8 2.6 0.35 ns ns ns

Viablebacteria,CFU/ml

Amylolytic,×108 4.6 5.1 4.3 4.4 0.75 ns ns ns

Proteolytic,×108 2.8 3.1 2.3 2.7 0.15 * * ns

Cellulolytic,×108 10.0 10.5 8.6 9.5 0.49 * * ns

Total,×109 4.9 5.6 4.0 4.8 0.43 * * ns

aConcentrate(g/kgBW).

bLeucaenaleucocephalaleafmeal.

cHeattreatedLeucaenaleucocephalaleafmeal.

*P<0.05.

**P<0.01.

3.4. Rumenmicroorganismpopulation

AsshowninTable4,totalbacteriacountswerefounddifferent(P<0.05).TreatmentswithCSat2g/kgBWandLLMhad thehighestat4.4×109cell/mlandthelowestwasintreatmentwithCSat1g/kgBWandHLLM,2.9×109cell/ml.Total

countsofbacteriawereaffectedbybothofconcentratelevelandLLM,whileprotozoalandfungalzoosporepopulation werenotdifferent.Totalviablebacteriacounts,cellulolyticbacteria,andproteolyticbacteriacountswerefounddifferent (P<0.05),whileamylolyticbacteriacountswasnotdifferentamongtreatments.ThetreatmentwithCSat2g/kgBWandLLM wasthehighestintotalviablebacteriacounts,cellulolyticbacteria,andproteolyticbacteriacounts(5.6×109,10

×108,and

3.1×108CFU/ml,respectively).ThetreatmentswithLLMwerehigherthanthosewithHLLM.

3.5. Nitrogenutilizationandefficiencyofmicrobialproteinsynthesis

(6)

Table5

EffectofenergylevelandLLMonNutilization,purinederivations(PD)andmicrobialcrudeproteinsupply(MCP).

Item LLMb HLLMc SEM Interaction

1a 2a 1a 2a LLMb Cona LLMb×Cona

Nutilization,g/day

Nintake 74.4 83.9 73.8 83.8 0.77 ns *** ns

Nexcretion

Feces 49.4 44.1 45.0 43.9 0.89 * * *

Urine 8.4 8.7 10.6 9.0 1.12 ns ns ns

Total 57.8 52.8 55.6 52.9 1.41 ns ns ns

Nbalance

Absorption 25.0 39.8 28.0 40.0 2.33 ns *** ns

Retention 16.6 31.1 17.4 30.9 2.56 ns *** ns

PD,mmol/d

Allantoinexcretion 27.8 31.6 29.0 33.2 3.14 ns ns ns

Allantoinabsorption 89.7 116.2 94.6 120.4 4.94 ns ** ns

Microbialnitrogensupply,gN/d 65.2 84.5 68.8 87.6 3.59 ns ** ns

Microbialcrudeprotein,g/d 407.7 528.2 429.9 547.3 7.82 * *** 0.08

EMNSd,gN/kgOMDRe 28.0 28.6 30.5 32.0 2.16 ns ns ns

aConcentrate(g/kgBW).

b Leucaenaleucocephalaleafmeal.

c HeattreatedLeucaenaleucocephalaleafmeal.

d Efficiencyofmicrobialnitrogensynthesis.

eDigestibleOMapparentlyfermentedintherumen.

* P<0.05. ** P<0.01.

***P<0.001.

4. Discussion

4.1. Chemicalcompositionofdiet

Concentrateingredientswerebasedonlocalresources,consistingofcassavachip,ricebran,coconutmealandpalmkernel meal,whichhadahigherqualityintermofCPandlowinfiber.Thisconcentratewaswellconsumedbyanimalsduringthe experimentalperiods.Thenutritivevalueofricestrawhasbeenimprovedbythetreatment.CPcontentofurea–calcium hydroxidetreatedricestrawwas58g/kg.Moreover,ureaandcalciumhydroxidecoulddecreasetheproportionofaNDFand ADFcontentinricestrawto765g/kgand562g/kg,respectively.ThisvaluewassimilartothosevaluesreportedbyWanapat etal.(2009)whousedurea–calciumhydroxidetreatedricestraw.Underthisstudy,therewerenodifferencesbetween chemicalcompositionofHLLMandLLM.ItwasalsoreportedbyFathiNasiretal.(2008)andMahalaandGomaa(2007),who usedheatedwholesoybeanandsesamecake,thattherewasnoeffectonchemicalcompositionbyheating.Itwassimilar tothevalueofYousufetal.(2007)whoreportedthevalues;302,302,173g/kgand247,320,211g/kg,CP,aNDFandADF, respectively.

4.2. Feedintakeandnutrientdigestibility

TheresultsrevealedanincreaseinroughageandtotalDMintake(P<0.05)byCSat2g/kgBW(T2andT4)ascompared withCSat1g/kgBW(T1andT3),butnotbyLLM.RoughageandtotalDMintakesrangedfrom5.9–6.5and6.6–7.4kg/d, respectively,andthehighestwasinCSat2g/kgBWtreatment.However,itwassuggestedthatsupplementationofsmall amountby-passproteintolowqualitydietoftenresultsinahigherintakethanwithout.AsshownbySinghetal.(2009),

Thangetal.(2010),andSahooandWalli(2008),whoreportedthatwhenincreasedlevelofenergyintake,therewasan increaseinDMintake.Moreover,underthisstudy,itwasshownthatlowintakewasfoundintheheatedtreatment.This couldbeexplainedbytheeffectofhighrumenundegradableprotein.AccordingtoSwartzetal.(1991)whofoundthesame effectthattherewasaslightdecreaseinDMintakewhenmoreundegradableproteinwasconsumed.Itwasalsofoundin heatedsoybeanmealwithaslightdecreaseofDMintake(AhrarandSchingoethe,1979).

(7)

ofapparentdigestibilitycoefficientsofOM,grossenergy(GE),aNDFandADFwereobservedinthecattlefedthehighenergy diet(32MJ/day)ascomparedtothelowlevel(25MJ/day).

4.3. Rumenfermentationandbloodmetabolites

TherewerenoeffectofenergylevelandLLMonruminalpHandtemperature(P>0.05).However,ruminalpHand tempera-turewereinnormalrangeat6.5–6.7and39.1–39.3◦C,respectively.AhrarandSchingoethe(1979),whousedheatedsoybean meal,foundnoeffectonpHbyheattreatment.Moreover,Robinsonetal.(1991)andDuttaetal.(2009)foundthesame resultswhensupplementedwithdifferentenergyratioandrumenundegradableprotein.However,NH3-Nwasaffectedby

energylevelandLLM,butnotforBUN.RuminalNH3-Nconcentrationisacrudepredictorofefficiencyofdietarynitrogen

conversionintomicrobialnitrogen(Firkinsetal.,2007;BroderickandMuck,2009).Inthisstudy,NH3-NinHLLMwaslower

thanLLMtreatment;16.0–16.6and13.6–14.5mg/dl,respectively,andinhighconcentratelevelgroupswerehigherthanin lowerlevel.Thiscouldbeduetoheattreatmentoffeedstuffsinwhichcandecreasecrudeproteindegradationbyblocking reactivesitesformicrobialproteolyticenzymes(BroderickandCraig,1980)and/orincreasedthesupplyofdietaryprotein totheduodenum(Tagarietal.,1986).Robinsonetal.(1991)reportedthatwhenincreasedintakeofrumenundegradable proteinresultedinlowNH3-Nconcentration,similarlytotheresultreportedbyDuttaetal.(2009).Althoughthereisahighly

differenceonNH3-Nconcentrationbyheating,however,noeffectwasfoundonBUNconcentration.However,Ahrarand Schingoethe(1979)foundthatBUNwasaffectedbyheatingsoybeanmeal(HSBM).ThiswasconsistentlywithHudsonetal. (1970),whichindicatedthatconcentrationsofplasmaureafromruminantanimalsfedHSBMremainedbelowthosefedthe unheatedsoybeanmeal(SBM).ThissuggestedthattheproteinintheHSBMwasdegradedataslowerratebytheruminal microorganismsthanproteinfromunheatedmealorthatammonialiberatedfromHSBMwasutilizedmoreefficientlyfor microbialproteinsynthesis.Itmayduetodigestibleproteininthedietofruminantsiseitherdegradedintherumenor escapestotheabomasumandsmallintestinewhereitisdegradedtoaminoacidsandsmallpeptidesthenabsorbedintothe portalbloodsystem.ThatmaybethereasoninthisstudyresultedinlowerBUNintreatmentswithHLLMwhichwaslower degradethanLLMassimilartotheresultofMabjeeshetal.(1998)whoconductedwithheatwholecottonseed(HWCS)in dairycows.

Thereweredifference(P<0.05)inTotalVFA(TVFA),C2,C3andC4whenbuffaloeswerefedwithdifferentlevelofenergy andLLM.Thisincreasewasstronglyrelatedwiththenumberofruminalcellulolyticbacterialspecies.Fibrobactersuccinogenes mainlyproducesprimarilysuccinate,themajorprecursorofpropionateintherumenwhileRuminococcusalbusismainly aspecieswhichproducesacetate.Therefore,withanincreaseinnumberofF.succinogenes,R.albus,bothpropionateand acetateconcentrationwereincreased.Incontrasttothepresentresult,accordingtoDuttaetal.(2009),TVFAconcentration intherumenliquorwasstatisticallysimilaramongtreatmentsgroupswithdifferentratioofenergyandprotein.Moreover, theTVFAconcentrationinruminalfluidwasnotinfluencedbythelevelofenergyinthedietofsheep(Merchenetal.,1986; Carroetal.,2000).Moreover,rumenVFAconcentrationsweresimilarforcowsfedSBMandHSBMrationsreportedbyAhrar andSchingoethe(1979).However,thetreatmentswithHSBMtendedtobehigherthanthosewithSBM.Thiswasexpected sincevaryingaproteinsourceintherationshouldnotaffectrumenVFAgreatlyunlesssuchachangecausesagreatdeficiency innitrogenavailabletotherumenmicroorganisms.AccordingtoMabjeeshetal.(1998),theproportionofpropionatewas thelowestforHWCSdietcomparedtounheatedtreatmentsandtheacetate/propionateratioswerehigheratallsampling timesforthisdiet.ThisisincontrastwiththepresentstudywhichshownthemeanvaluesofTVFA,C2,C3,andC4werethe highestinCSat2g/kgBWwithHLLM(99.5,68.8,20.1,and10.6mmol/l,respectively),whilethelowestwasinT1andT3.

4.4. Rumenmicroorganismpopulation

TotalbacterialdirectcountswerefounddifferentbyconcentratelevelandLLM,whereasfungalzoosporesandprotozoal populationsweresimilaramongtreatments.ThetreatmentwithCSat2g/kgBWwithLLMwasthehighest,whiletheothers threeweresimilar.AccordingtoVerbic(2002),energysupplyisusuallythefirstlimitingfactorformicrobialgrowthinthe rumen.Morethanthat,thiscouldbeexplainedthatNH3-Nisanessentialsourceofnitrogenformicrobialproteinsynthesis.

TherangeofNH3-Nlevelforoptimalrumenecologyhasbeenreportedtobe15.0–30.0mg/dl(Leng,1999).Treatmentswith

CSat2g/kgBWandLLMhadthehighestrangedat4.4×109cell/mlandthelowestwasintreatmentwithCSat1g/kgBW

andHLLM,2.9×109cell/ml.Thiscouldbeexplainedbydecreasingprotozoalpopulation.VanSoest(1994)suggestedthat

(8)

fromDacronbagsincubatedintherumenofsteers(Yangetal.,1993).Makkaretal.(1995)indicatedthattheefficiencyof microbialproteinsynthesiswasgreaterinforagescontainingsaponinandtannins,whichreduceruminalNdegradability.In thisstudy,thetreatmentwithCSat2g/kgBWandLLMwasthehighestintotalviablebacteriacounts,cellulolyticbacteria, andproteolyticbacteriacountsandthelowestwasintreatmentwithCSat1g/kgBWandHLLM(T3).

4.5. Nutilizationandefficiencyofmicrobialproteinsynthesis

EffectofenergylevelandLLMinswampbuffaloesonNutilizationisshowndifferentamongtreatmentsintermsofN intake,Nfeces,Nabsorptionandretention,whilenodifferencewerefoundonNurineandtotalNexcretion(Table5).TotalN intakeandNbalancewerefoundhighestinCSat2g/kgBWsupplementation.Thisindicateshigherproteinavailableforuse bythebuffaloes.However,Nexcretionthroughfeceswashigherinhighenergy–highproteinfedgroup,buturinaryNwas nodifferencebetweenenergyandproteinlevel.Consistencytothepresentresult,AhrarandSchingoethe(1979)reported thattherewerenodifferencesinNbalancehowever;NwasutilizedslightlymoreefficientlybycowsfedHSBM.Nlossesin fecesandurinewereslightlylesswithHSBM.ThisagreedwithGlimpetal.(1967)andLittleetal.(1963)whichindicated thatheattreatmentdecreasedurinaryexcretioninruminantanimals.Resultsofanotherstudy(SherrodandTillman,1962) showedthatasheatingincreasedandsolubilitydecreased,thepercentageofNintakeretainedincreased.

Urinaryexcretionofpurinederivativeisconsideredtobeanindicatorofmicrobialproductioninrumen.Protein degra-dationintherumenisoneofthemainreasonsfortheinefficientutilizationofproteininruminants.Itseemsthatproteins whichhavelowerratesofruminaldegradationtendtoimprovetheefficiencyofmicrobialproteinsynthesis,probably becauseofthebettercaptureofreleasedNbyrumenmicrobes(Russell,2001).Similartothepresentstudy,itwasfound thatthetreatmentwithHLLMhaveahighermicrobialcrudeprotein(MCP)thanLLM.Itmaybeduetoheatedtreatment couldprotectrumendegradationintherumen.Moreimportantthanthat,inthisresult,allantoinabsorptionandMCPwere foundhigherintreatmentwithhigherinenergy.ThiswasreportedbyRussell(2001)thatenergysupplyisusuallythefirst limitingfactorformicrobialgrowthintherumen.Themaximumpotentialofrumenmicrobestoproducemicrobialprotein canbeexploredonlybytheprovisionofhighqualityforage.Inaddition,matchingthereleaseofammonia-Nfromdietary proteinwiththereleaseofusableenergymayimproveNutilization.Inordertoincreasemicrobialyield,itseemsthatthe manipulationofenergyandNfermentationintherumenshouldfirstbeaimedatobtainingthemostevenruminalenergy supplypatternpossiblewithinaparticulardietaryregimen.

5. Conclusions

Basedonthisstudy,itcouldbeconcludedthatLLMcouldbeusedasaproteinsource,whilethecombinationofHLLM andconcentratelevelat2g/kgBWenhancedvoluntaryfeedintake,nutrientdigestibility,rumenfermentationand microor-ganismsinswampbuffalosupplementationwithurea–calciumhydroxidetreatedricestraw.

Acknowledgments

TheauthorswouldliketoexpressourmostsinceregratitudetotheTropicalFeedResourcesResearchandDevelopment Center(TROFREC),DepartmentofAnimalScience,FacultyofAgriculture,KhonKaenUniversity,andtheNorwegian Pro-grammefordevelopment,ResearchandEducation(NUFUProject)fortheirfinancialsupportforthefirstauthor’sstudyat M.Sc.degreelevelandfortheuseoftheresearchfacilities,respectively.

References

Ahrar,M.,Schingoethe,D.J.,1979.Heattreatedsoybeanmealasaproteinsupplementforlactatingcows.J.DairySci.62,932–940.

Annison,E.F.,1981.Theroleofproteinwhichescapesruminaldegradation.In:Farrell,D.J.(Ed.),ResentAdvancesinAnimalNutritioninAustralia,Armidale, Australia.UniversityofNewEnglandPublishingUnit,pp.40–41.

AOAC,1995.OfficialMethodofAnalysis,16thed.AnimalFeeds:AssociationofOfficialAnalyticalChemists,VA,USA.

Broderick,G.A.,Craig,W.M.,1980.Effectofheattreatmentonruminaldegradationandescape,andintestinaldigestibilityofcottonseedmealprotein.J. Nutr.1,2381–2389.

Broderick,G.A.,Muck,R.E.,2009.Effectofalfalfasilagestoragestructureandrumenprotectedmethionineonproductioninlactatingdairycows.J.Dairy Sci.92,1281–1289.

Carro,M.D.,Valdes,C.,Ranilla,M.J.,Gonzalez,J.S.,2000.Effectofforagetoconcentrateratiointhedietonruminalfermentationanddigestaflowkinetics insheepofferedfoodatafixedandrestrictedlevelofintake.J.Anim.Sci.70,127–134.

Chen,X.B.,Gomes,M.J.,1995.EstimationofMicrobialProteinSupplytoSheepandCattleBasedonUrinaryExcretionofPurineDerivative—AnOverviewof theTechniqueDetails.OccasionalPublication1992.InternationalFeedResourcesUnit,RowettResearchInstitute,Aberdeen,UK.

Chen,X.B.,Kyle,D.J.,Orskov,E.R.,1993.Measurementofallantoininurineandplasmabyhighperformanceliquidchromatographywithpre-column derivatization.J.Chromatogr.617,241–247.

Crichton,N.,1999.InformationPoint:TukeyMultipleComparisonTest,vol.8.BlackwellScienceLtd,pp.299–304.

Crocker,C.L.,1967.Rapiddeterminationofureanitrogeninserumorplasmawithoutdeproteinization.Am.J.Med.Technol.33,361–365. D’Mello,J.P.E.,Taplin,D.E.,1978.Leucaenaleucocephalainpoultrydietsforthetropics.WorldRev.Anim.Prod.14,41–47.

Dutta,T.K.,Agnihotri,M.K.,Sahoo,P.K.,Rajkumar,V.,Das,A.K.,2009.Effectofdifferentprotein-energyratioinpulseby-productsandresiduebasedpelleted feedsongrowth,rumenfermentation,carcassandsausagequalityinBarbarikids.SmallRumin.Res.85,34–41.

Faldet,M.A.,Satter,L.D.,1991.Feedingheattreatedfullfatsoybeanstocowsinearlylactation.J.DairySci.74,3047–3054.

(9)

Firkins,J.L.,Yu,Z.,Morrison,M.,2007.Ruminalnitrogenmetabolism:perspectivesforintegrationofmicrobiologyandnutrientfordairy.J.DairySci.90, 1–16.

Galyean,M.,1989.LaboratoryprocedureinAnimalNutritionResearch.DepartmentofAnimalandRangeScience.NewMexicoStateUniversity,USA. Garcia,G.W.,Ferguson,T.U.,Neckles,F.A.,Archibald,K.A.E.,1996.ThenutritivevalueandforageproductivityofLeucaenaleucocephala.Anim.FeedSci.

Technol.60,29–41.

Glimp,H.A.,Karr,M.K.,Little,C.V.,Woolfolk,P.G.,Mitchell,G.E.,Hudson,L.W.,1967.Effectofreducingsoybeanproteinsolubilitybydryheatontheprotein utilizationofyounglambs.J.Anim.Sci.26,858–861.

Hervas,G.,Frutos,P.,Giraldez,F.J.,Mantecon,A.R.,Pino,M.C.A.D.,2003.Effectofdifferentdosesofquebrachotanninsextractonrumenfermentationin ewes.Anim.FeedSci.Technol.109,65–78.

Hudson,L.W.,Glimp,H.A.,Little,C.O.,Woolfolk,P.G.,1970.Ruminalandpostruminalnitrogenutilizationbylambsfedheatedsoybeanmeal.J.Anim.Sci. 30,609–613.

Hungate,R.E.,1969.In:Norris,J.R.,Ribbons,D.W.(Eds.),ARoleTubeMethodforCultivationofstrictAnaerobes.MethodinMicrobiology.Academic,New York,NY,p.313.

Klevesahl,E.A.,Cochran,R.C.,Titgemeyer,E.C.,Wickersham,T.A.,Farmer,C.G.,Arroquy,J.I.,Johnson,D.E.,2003.Effectofawiderangeintheratioof supplementalrumendegradableproteintostarchonutilizationoflowquality,grasshaybybeefsteers.J.Anim.FeedSci.Technol.105,5–20. Kridi,R.T.,Haddad,S.G.,Muwalla,M.M.,2001.TheeffectoffeedingruminallyundegradableproteinonpostpartumreproductionofAwassiewes.Asian-Aust.

J.Anim.Sci.14,1125–1128.

Leng,R.A.,1999.Feedingstrategiesforimprovingmilkproduction.In:Falvey,L.,Chantalakana,C.(Eds.),SmallholderDairyingintheTropics.International livestockResearchInstitute(ILRI),Nairobi,Kenya.

Liang,J.B.,Matsumoto,M.,Young,B.A.,1994.PurinederivativeexcretionandrumenmicrobialyieldinMalaysiancattleandswampbuffalo.Anim.FeedSci. Technol.47,189–199.

Little,C.O.,Burroughs,W.,Woods,W.,1963.Nutritionalsignificanceofsolublenitrogenindietaryproteinsforruminants.J.Anim.Sci.22,358–363. Mabjeesh,S.J.,Arieli,A.,Zamwell,S.,Tagari,H.,1998.Heattreatedwholecottonseedversusmaizeglutenmealasarumenundegradableproteinsupplement

forlactatingdairycows.Livest.Prod.Sci.55,249–259.

Mahala,A.G.,Gomaa,A.S.,2007.Effectofheattreatmentonsesamecakeproteindegradation.J.Anim.Vet.Sci.2,39–42.

Makkar,H.P.S.,Becker,K.,Abel,H.J.,Szegletti,C.,1995.Degradationofcondensedtanninsbyrumenmicrobesexposedtoquebrachotannins(QT)inrumen simulationtechnique(RUSITEC)andeffectsofQTonfermentativeprocessesintheRUSITEC.J.Sci.FoodAgric.69,495–500.

Merchen,N.R.,Firkins,J.L.,Berger,L.L.,1986.Effectofintakeandforagelevelonruminalturnoverrates,bacterialproteinsynthesisandduodenalamino acidflowsinsheep.J.Anim.Sci.62,216–225.

Robinson,P.H.,Mcqueen,R.E.,Burgess,P.L.,1991.Influenceofrumenundegradableproteinlevelsonfeedintakeandmilkproductionofdairycows.J.Dairy Sci.74,162–163.

Russell,J.R.,2001.Effectsofsomedietaryfactorsonruminalmicrobialproteinsynthesis.Turk.J.Vet.Anim.Sci.25,681–686.

Saha,H.M.,Kahindi,R.K.,Muinga,R.W.,2008.EvaluationofmanurefromgoatsfedPanicumbasaldietandsupplementedwithMadrasthorn,Leucaenaor Gliricidia.J.Trop.Subtrop.Agroecosyst.8,251–257.

Sahoo,B.,Walli,T.K.,2008.Effectoffeedingundegradableproteinwithenergyonnutrientutilization,milkyieldandmilkcompositionofcrossbredgoats. SmallRumin.Res.75,36–42.

Samuel,M.,Sagatheman,S.,Thomas,J.,Mathen,G.,1997.AnHPLCmethodforestimationofvolatilefattyacidsofruminalfluid.IndianJ.Anim.Sci.67, 805–807.

SAS,1998.User’sGuide:Statistic,Version6,12thed.SASInst.Inc.,Cary,NC.

Sherrod,L.B.,Tillman,A.D.,1962.Effectofvaryingtheprocessingtemperaturesuponthenutritivevaluesforsheepofsolventextractedsoybeanand cottonseedmeals.J.Anim.Sci.21,901–910.

Singh,S.,Kundu,S.S.,Kushwaha,B.P.,Maity,S.B.,2009.Dietaryenergylevelsresponseonnutrientutilization,nitrogenbalanceandgrowthinBhadawari buffalocalves.Livest.Res.RuralDev.21,8.

Swartz,L.A.,Heinrichs,J.,Varga,G.A.,Muller,L.D.,1991.Effectsofvaryingdietaryundegradableproteinondrymatterintake,growth,andcarcass CompositionofHolsteincalves.J.DairySci.74,3884–3890.

Tagari,H.,Pena,F.,Satter,L.D.,1986.Proteindegradationbyrumenmicrobesofheat-treatedwholecottonseed.J.Anim.Sci.62,1732–1739.

Thang,C.M.,Ledin,I.,Bertilsson,J.,2010.Effectofusingcassavaproductstovarythelevelofenergyandproteininthedietongrowthanddigestibilityin cattle.Livest.Sci.128,166–172.

VanSoest,P.J.,Robertson,J.B.,Lewis,B.A.,1991.Methodsfordietaryfiberneutraldetergentfiber,andnonstarchpolysaccharidesinrelationtoanimal nutrition.J.DairySci.74,3583–3597.

VanSoest,P.J.,1994.NutritionalEcologyoftheRuminant.CornellUniversityPress,NewYork,NY,p476.

Verbic,J.,2002.Factorsaffectingmicrobialproteinsynthesisintherumenwithemphasisondietscontainingforages.Veihwirtsch.Fachtagung29,24–25. Wanapat,M.,2000.Rumenmanipulationtoincreasetheefficiencyuseoflocalfeedresourcesandproductivityofruminantsintropics.Asian-Aust.J.Anim.

Sci.13(Suppl.),59–67.

Wanapat,M.,Polyorach,S.,Boonnop,K.,Mapato,C.,Cherdthong,A.,2009.Effectsoftreatingricestrawwithureaorureaandcalciumhydroxideupon intake,digestibility,rumenfermentationandmilkyieldofdairycows.Livest.Sci.125,238–243.

Wankhede,S.M.,Kalbande,V.H.,2001.EffectoffeedingbypassproteinwithureatreatedgrassontheperformanceofRedKhandharicalves.Asian-Aust.J. Anim.Sci.14,970–973.

Wing,J.M.,Vanhorn,H.H.,Sklare,S.D.,Hariss,B.,1988.Effectsofcitrusmolassesdistiller,solublesandmolassedistiller,solublesandmolassesonrumen parametersandlactation.J.DairySci.71,414–420.

Yang,J.H.,Broderick,G.A.,Koegel,R.G.,1993.Effectofheattreatingalfalfahayonchemicalcompositionandruminalinvitroproteindegradation.J.Dairy Sci.76,154–163.

Referensi

Dokumen terkait

If we run the same function a second time in the same Python session, then it runs even faster—there’s no need to compile the target function on the second pass if the argument

(2) Pe:beri kerja dengan kriteria tertentu sebagaimana dimaksud dalam Pasal 4 ayat (1) wajib memberikan tanda bukti pemotongan Pajak Penghasilan Pasal 21

[r]

[r]

Sebelum menentukan biaya dan waktu Optimum, harus dilakukan iterasi terlebih dahulu yang dimulai dengan mengetahui berapa cost slope terendah pada lintasan kritis dengan

Bersandar pada sabda Rasulullah S.A.W “barangsiapa yang tidak berterima kasih kepada manusia, maka ia tidak bersyukur kepada Allah” Oleh karena itu, pada kesempatan kali ini

Bila hubungan interpersonal antara ibu tunggal dengan anaknya kurang baik misalnya ketidaktepatan ibu tunggal dalam memilih pola komunikasi maka akan sikap atau perilaku anak

Hasil penelitian ini menunjukkan bahwa: (1) terdapat pengaruh positif antara merek terhadap kepuasan konsumen KFC, dibuktikan dari nilai t hitung sebesar 2,201,