Process Synchronization
SISTIM OPERASI
(Operating System)
IKI-20230
Johny Moningka
([email protected])
Fakultas Ilmu Komputer Universitas Indonesia Semester 2000/2001
Process Synchronization
nBackground
n
The Critical-Section Problem
n
Synchronization Hardware
n
Semaphores
n
Classical Problems of Synchronization
OS Processes JM-2000/v1.1/3
Synchronization
nSinkronisasi:
n Koordinasi akses ke shared data, misalkan hanya satu
proses yang dapat menggunakah shared var.
n Contoh operasi terhadap var. “counter” harus dijamin di-eksekusi dalam satu kesatuan (atomik) :
• counter := counter + 1; • counter := counter - 1;
n Sinkronisasi merupakan “issue” penting dalam
rancangan/implementasi OS (shared resources, data, dan multitasking).
OS Processes JM-2000/v1.1/4
The Critical-Section Problem
n n proses mencoba menggunakan shared data bersamaan
n Setiap proses mempunyai “code” yang mengakses/ manipulasi shared data tersebut => “critical section”
n Problem: Menjamin jika ada satu proses yang sedang “eksekusi” pada bagian “critical section” tidak ada proses lain yang diperbolehkan masuk ke “code” critical section dari proses tersebut. n Structure of process Pi repeat entry section critical section exit section reminder section until false;
OS Processes JM-2000/v1.1/5
n Ide:
n Mencakup pemakaian secara “exclusive” dari shared variable tersebut
n Menjamin proses lain dapat menggunakan shared variable tersebut
n Solusi “critical section problem” harus memenuhi:
1. Mutual Exclusion: Jika proses Pi sedang “eksekusi” pada
bagian “critical section” (dari proses Pi) maka tidak ada proses-proses lain dapat “eksekusi” pada bagian critical section dari proses-proses tersebut.
2. Progress: Jika tidak ada proses sedang eksekusi pada critical
section-nya dan jika terdapat lebih dari satu proses lain yang ingin masuk ke critical section, maka pemilihan siapa yang berhak masuk ke critical section tidak dapat ditunda tanpa terbatas.
Solution (pre-requsite)
Solutions (cont.)
3. Bounded Waiting: Terdapat batasan berapa lama
suatu proses harus menunggu giliran untuk
mengakses “critical section” – jika seandainya proses lain yang diberikan hak akses ke critical section.
• Menjamin proses dapat mengakses ke “critical section” (tidak mengalami starvation: proses se-olah berhenti menunggu request akses ke critical section diperbolehkan).
• Tidak ada asumsi mengenai kecepatan eksekusi proses-proses n tersebut.
OS Processes JM-2000/v1.1/7
Simple solution: case 2 process
nHanya 2 proses
n
Struktur umum dari program code Pi dan Pj:
repeat entry section critical section exit section reminder section until false;
n
Software solution: merancang algoritma program
untuk solusi critical section
n Proses dapat mengunakan “common var.” untuk
menyusun algoritma tsb. OS Processes JM-2000/v1.1/8
Algorithm 1
n Shared variables: n var turn: (0..1); initially turn = 0n turn = i ⇒ Pi dapat masuk ke critical section⇒ n Process Pi
repeat
while turn ≠ i do no-operation;
critical section
turn := j;
reminder section
until false;
OS Processes JM-2000/v1.1/9
Algorithm 2
n Shared variables
n var flag: array [0..1] of boolean;
initially flag [0] = flag [1] = false.
n flag [i] = true ⇒ P⇒ iready to enter its critical section
n Process Pi repeat
flag[i] := true;
while flag[j] do no-op;
critical section
flag [i] := false;
remainder section
until false;
n Satisfies mutual exclusion, but not progress requirement.
Algorithm 3
nCombined shared variables of algorithms 1 and 2.
nProcess Pi repeat
flag [i] := true; turn := j;
while (flag [j] and turn = j) do no-op;
critical section
flag [i] := false;
remainder section
until false;
nMeets all three requirements; solves the critical-section problem for two processes.
OS Processes JM-2000/v1.1/11
“Bakery Algorithm”
n
Critical Section for n processes
n Sebelum proses akan masuk ke dalam “critical
section”, maka proses harus mendapatkan “nomor” (tiket).
n Proses dengan nomor terkecil berhak masuk ke critical section.
•If processes Pi and Pj receive the same number, if i < j, then Pi is served first; else Pj is served first.
n The numbering scheme always generates numbers in increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...
OS Processes JM-2000/v1.1/12
Bakery Algorithm (Cont.)
n
Notasi <
≡
lexicographical order (ticket #, process
id #) => pasti unik
n (a,b) < (c,d) if a < c or if a = c and b < d
note: (b dan d pasti tidak sama)
n max (a0,…, an-1) is a number, k, such that k ≥aifor i
-0, …, n – 1 n
Shared data
var choosing: array [0..n – 1] of boolean;
number: array [0..n – 1] of integer,
OS Processes JM-2000/v1.1/13
Bakery Algorithm (Cont.)
repeat
choosing[i] := true;
number[i] := max(number[0], number[1], …, number[n – 1])+1; choosing[i] := false;
for j := 0 to n – 1 do begin
while choosing[j] do no-op; while number[j] ≠ 0
and (number[j],j) < (number[i], i) do no-op; end; critical section number[i] := 0; remainder section until false;
Synchronization Hardware
n
Memerlukan dukungan hardware (prosesor)
n Dalam bentuk “instruction set” khusus: test-and-set
n Menjamin operasi atomik (satu kesatuan): test nilai dan ubah nilai tersebut.
n
Test-and-Set dapat dianalogikan dengan kode:
function Test-and-Set (var target:boolean): boolean;
begin
Test-and-Set := target; target := true;
OS Processes JM-2000/v1.1/15
Test-and-Set (mutual exclusion)
nMutual exclusion dapat diterapkan:
n Gunakan shared data,
variabel: lock: boolean (initially false)
n lock: menjaga critical section n
Process Pi:
repeat
while Test-and-Set (lock) do no-op; .. critical section .. lock := false; remainder section until false; OS Processes JM-2000/v1.1/16
Semaphore
n
Synchronization tool that does not require busy
waiting.
n
Semaphore S – integer variable
n Dapat dijamin akses ke var. S oleh dua operasi atomik:
• wait (S): while S ≤0 do no-op; S := S – 1;
OS Processes JM-2000/v1.1/17
Example: n processes
nShared variables
n var mutex : semaphore n initially mutex = 1 n
Process Pi
repeat wait(mutex); critical section signal(mutex); remainder section until false;Semaphore Implementation
nDefine a semaphore as a record
type semaphore = record
value: integer
L: list of process;
end;
n
Assume two simple operations:
n block() : suspends the process that invokes it.
n wakeup(P): resumes the execution of a blocked process P.
OS Processes JM-2000/v1.1/19
Implementation (Cont.)
nSemaphore operations now defined as
n wait(S ): S.value := S.value – 1;
if S.value < 0 then begin
add this process to S.L;
block;
end;
n signal(S ): S.value := S.value + 1;
if S.value≤0
then begin
remove a process P from S.L;
wakeup(P );
end;
OS Processes JM-2000/v1.1/20
Semaphore: Synchronization Tool
nExecute B in Pj only after A executed in Pi
n
Use semaphore flag initialized to 0
n Code:
Pi Pj
M M
A wait(flag)
OS Processes JM-2000/v1.1/21
Two Types of Semaphores
n
Counting semaphore
n Integer value can range over an unrestricted
domain.
n Efektif untuk pemakaian membatasi jumlah proses, counter (blok pada nilai tertentu) dll.
• Semaphore s = 10;
n
Binary semaphore
n Integer value can range only between 0 and 1;
n Digunakan untuk mutula exclusion: membatasi hanya ada satu proses pada critical section.
• Semaphore s = 1;
Semaphore: bounded buffer
Shared data (array of item): buffer Semaphore:
Binary Semaphore mutex; // mutual exclusion akses ke buffer Semaphore empty_slot; // slot buffer yang kosong :
Semaphore full_item; // item di buffer;
Inisialisasi: mutex = 1; empty_slot = n; full_item = 0; n
OS Processes JM-2000/v1.1/23
Semaphrore: bounded buffer
Producer:do
.. produce item pada nextp; wait(empty_slot);
wait(mutex); …(critical section)
… add nextp to buffer;
… signal(mutex); signal(full_item); while (true); Consumer: do wait(full_item); wait(mutex); …(critical section)
… remove nextp buffer;
…
signal(mutex); signal(empty_slot); .. consume item nextp;
while (true);
OS Processes JM-2000/v1.1/24
Deadlock and Starvation
nDeadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes.
nLet S and Q be two semaphores initialized to 1
P0 P1 wait(S); wait(Q); wait(Q); wait(S); M M signal(S); signal(Q); signal(Q) signal(S);
nStarvation – indefinite blocking. A process may never be removed from the semaphore queue in which it is