• Tidak ada hasil yang ditemukan

Identifikasi Penyakit Hypertensive Retinopathy Melalui Citra Fundus Retina Menggunakan Probabilistic Neural Network

N/A
N/A
Protected

Academic year: 2017

Membagikan "Identifikasi Penyakit Hypertensive Retinopathy Melalui Citra Fundus Retina Menggunakan Probabilistic Neural Network"

Copied!
4
0
0

Teks penuh

(1)

65

DAFTAR PUSTAKA

Badii, Chitra. 2016. Making Sense of Hypertensive Retinopathy.

http://www.healthline.com/ . Diakses 8 September 2016.

Bouman, C.A. 2015. Digital Image Processing.

https://engineering.purdue.edu/~bouman/ece637/.../ConnectComp.pdf. Diakses

4 Januari 2017.

Cavallari, M., Stamile, C., Umeton, R., Calimeri, F., Orzi, F. 2015. Novel Method for

Automated Analysis of Retinal Images: Results in Subjects with Hypertensive

Retinopathy and CADASIL. BioMed Research International 2015.

Chairani, R. 2016. Identifikasi Kesuburan Pria Melalui Kelainan Sperma

Berdasarkan Morfologi (Teratospermia) Menggunakan Invariant Moment.

Skripsi. Universitas Sumatera Utara.

Chudasama, D., Patel, T., Joshi, S. 2015. Image Segmentation using Morphological

Operation. International Journal of Computer Application 117(18) : 16-19.

Dataset Structered Analysis of the Retina http://www.ces.clemson.edu/~ahoover/stare/

Diakses 22 januari 2016.

Downie, L.E., Hodgson, L.A., D’Sylva, C., Mclntosh, R.L., Rogers, S.L., Connel, P.

& Wong, T.Y. 2013. Hypertensive retinopathy: comparing the

Keith-Wagener-Barker to a simplified classification. Journal of Hypertension 31(5): 960-965.

Fatihah, N. 2016. Identifikasi Jenis Kayu Tropis Menggunakan Backpropagation

Neural Network. Skripsi. Universitas Sumatera Utara.

Febriani, A. 2014. Identifikasi Diabetic Retinopathy Melalui Citra Retina

Menggunakan Modified K-Nearest Neighbor. Skripsi. Universitas Sumatera

Utara.

Hussain, M.A., Mamun, A.A., Reid, C., Huxley, R.R. 2016. Prevalence,

Awareness, Treatment and Control of Hypertension in Indonesian Adults Aged

(2)

66

≥ 40 Years: Findings from the Indonesia Family Life Survey (IFLS). PLoS ONE 11(8) : e0160922.

Hutson, N., Adkinson, J., Sidiropoulos, P., Vlachos, I., Iasemidis, L. 2016.

Classification of Ocular Disorders Based on Fractal and Invariant Moment

Analysis of Retinal Fundus Images. Southern Biomedical Engineering

Conference, pp : 57-58.

Joshi, S., Karule, P.T. 2012. Retinal Blood Vessel Segmentation. International

Journal of Engineering and Innovative Technology 1(3) : 175-178.

Kaur, R., Kaur, S. 2013. Object Extraction and Boundary Tracing Algorithms for

Digital Image Processing: Comparative Analysis: A Review. International

Journal of Advanced Research in Computer Science and Sofware Engineering

3(5):263-268.

Kementrian Kesehatan. 2013. Laporan Hasil Riset Kesehatan Dasar, RISKESDAS.

Indonesia. Jakarta.

Kementrian Kesehatan. 2014. Infodatin Hipertensi. Pusat Data dan Informasi.

Indonesia. Jakarta.

Kisan, S., Mishra, S., Mishra, S. A Survey on Applications of Fractal Dimension upon

Various Image Processing Applications. International Journal of Advanced

Research in Computer and Communication Engineering 5(9): 44-47

Lotfi, A., Benyettou, A. 2014. A reduced probabilistic neural network for the

classi_cation of large databases. Turkish Journal of Electrical Engineering &

Computer Sciences 22 : 979-989.

Mehta, K., Kaur, N. 2016. An Enhanced Segmentation Technique for Blood Vessel in

Retinal Images. International Journal of Computer Application 150(6) : 9-15.

Mishra, M., Jena.,A.R., Das, R. 2013. A Probabilistic Neural Network Approach for

Classification of Vehicle. International Journal of Application or Innovation

in Engineering & Management (IJAIEM) 2(7) : 367 -371.

(3)

67

Narasimhan, K., Neha, V.C. & Vijayarekha, K. 2012. Hypertensive Retinopathy

Diagnosis from Fundus Images by Estimation of AVR. International

Conferences on Modelling Optimazation and Computing 38 : 980-993.

National Institutes of Health (NIH). High Blood Preasure and Eye Disease. 2014.

https://www.nih.gov/. Diakses 10 September 2016.

Noronha, K., K.T, Navya & Nayak, K. P. 2012. Support System for the Automated

Detection of Hypertensive Retinopathy using Fundus Images. International

Conferences on Eletronic Design and Signal Processing, pp 7-11.

Oktariani, A. 2016. Identifikasi Penyakit Daun Teh dengan Metode Probabilistic

Neural Network (PNN). Skripsi. Universitas Sumatera Utara.

Ong, Y.-T., Wong, T.Y., Klein, R., Klein, B.E.K., Mitchell, P., Sharrett, A.R., Couper,

D.J., & Ikram, M.K. 2013. Hypertensive Retinopathy and Risk of Stroke.

Hypertension. 62(4): 706-711.

Palomino, L.V., Jr, V.S, Neto, R.M.F. 2014. Probabilistic Neural Network and Fuzzy

Cluster Analysis Methods Applied to Impedance-Based SHM for Damage

Classifcation. Hindwai Publishing Corporation 2014(2014): 1-12.

Prakash, B., Yerpude, A. 2015. A Survey on Plant Leaf Disease Identification.

International Journal of Advanced Research in Computer Science and

Software Engineering 5(3) : 313-317.

Putra, D. 2010. Pengolahan Citra Digital. Yogyakarta : Andi.

Ramya, C., Rani, S.S., 2012. A Novel Method for the Contrast Enhancement of Fog

Degraded Video Sequences. International Journal of Coumpter Applications

54(13) : 1-5.

Shahana,S, Das, D.C.N. 2016. Probabilistic Neural Network Assisted Cell Tracking

and Classification, International Research Journal of Engineering and

Technology (IRJET) 3(8):1155-1161.

(4)

68

Sharma, D.P. 2013. Intensity Transformation using Contrast Limited Adaptive

Histogram Equalization. International Journal of Engineering Research 2(4) :

282:285.

Singh, R.P., Dixit, M. 2015. International Journal of Signal Processing, Image

Processing and Pattern Recognition 8(8) : 345-352.

Soltani, Z., Jafarian, A. 2016. A New Artificial Neural Networks Approach for

Diagnosing Diabetes Disease Type II. International Journal of Advanced

Computer Science and Applications 7(6) : 89-94.

You,S., Bas, E., Erdogmus, D. Principal curve based retinal vessel segmentation

towards diagnosis of retinal diseases, IEEE International Conference

Healthcare Informatics, Imaging and System Biology. 11: 331–337.

Zhou, H. & Wu, J. & Zhang, J. 2010. Digital Image Processing: Part I (1st edition).

http://bookboon.com/en/digital-image-processing-part-one-ebook . Diakses 26

Desember 2016.

Referensi

Dokumen terkait

Langkah-langkah yang dimaksud adalah sebagai berikut: pengumpulan citra retina normal dan citra retina terdeteksi diabetic retinopathy yang akan digunakan sebagai

Metode yang diajukan pada penelitian ini adalah Modified k-Nearest Neighbor untuk identifikasi diabetic retinopathy.. Sebelum tahap identifikasi dilakukan, citra retina

Hasil akhir menunjukkan model terbaik untuk klasifikasi patologi makula pada retina berdasarkan citra retinal OCT yaitu Mobilenet dengan optimizer Adam

Tahap-tahap yang dilakukan adalah sebagai berikut: tahap pengumpulan data citra fundus yang terdiri dari citra normal dan citra glaukoma yang akan digunakan sebagai data latih dan

15 % SIMILARITY INDEX 14 % INTERNET SOURCES 4 % PUBLICATIONS % STUDENT PAPERS Exclude quotes On Exclude bibliography On Exclude matches Off Penerapan Metode Probabilistic Neural

Metode yang diajukan pada penelitian ini adalah Modified k-Nearest Neighbor untuk identifikasi diabetic retinopathy. Sebelum tahap identifikasi dilakukan, citra retina

Tampilan Sistem Pada gambar di atas merupakan proses sistem berjalan setelah menginputkan gambar lalu memilih menu deteksi gambar maka sustem akan otomatis mendeteksi dan memberikan

& Seetharaman, K., 2022, A three-stage ensemble boosted convolutional neural network for classification and analysis of COVID-19 chest x-ray images, International Journal of Cognitive