• Tidak ada hasil yang ditemukan

Analisis Perbandingan Perhitungan Struktur Cangkang Kubah (Dome) Material Beton Dan Material Baja Dengan Program

N/A
N/A
Protected

Academic year: 2017

Membagikan "Analisis Perbandingan Perhitungan Struktur Cangkang Kubah (Dome) Material Beton Dan Material Baja Dengan Program"

Copied!
21
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA

2.1. Struktur Cangkang

Menurut (Schodeck, 1998), pengertian cangkang merupakan suatu bentuk struktur berdimensi tiga yang tipis dan kaku serta memiliki permukaan lengkung. Permukaan cangkang dapat memiliki bentuk yang sembarang. Bentuk yang biasanya dari struktur cangkang terbagi tiga, yaitu :

a) Permukaan Rotasional, yaitu bentuk permukaan yang berasal dari kurva yang diputar terhadap satu sumbu. Misalnya, permukaan bola, elips, kerucut dan parabola.

b) Permukaan Translasional, yaitu bentuk permukaan yang dibentuk dengan menggeserkan kurva bidang di atas kurva bidang lainnya. Misalnya, permukaan siilindris dan eliptik paraboloid.

c) Permukaan Ruled, yaitu bentuk permukaan yang dibentuk dengan menggeserkan dua ujung segmen garis pada dua kurva bidang. Misalnya, permukaan koloid dan hiperbolik paraboloid.

(2)

Struktur cangkang yang sangat kuat memikul beban terbagi rata dan tidak sesuai untuk memikul beban terpusat ini dapat kita analogikan dengan sebuah telur. Telur juga merupakan struktur cangkang, misalnya, jika kita menggenggam telur dengan kedua telapak tangan kemudian ditekan dengan sekuat tenaga, telur yang kulitnya begitu tipis tersebut tidak akan pecah. Tetapi jika kita membenturkan benda padat ke salah satu sisi titik telur tersebut, maka dengan begitu mudah telur tersebut akan pecah.

Gambar 2.1. Berbagai Jenis Permukaan Struktur Cangkang Menerus

(3)

Menurut (Schodek, 1998), sebagai akibat dari menahan beban dan terjadinya tegangan pada arah dalam bidang, struktur cangkang yang tipis bisa memiliki bentang yang relatif besar. Perbandingannya bisa saja digunakan tebal cangkang 8 cm untuk permukaan yang memiliki bentang 30 sampai 40 m. Struktur cangkang tersebut memakai material yang relatif baru untuk dikembangkan, misalnya beton bertulang yang didesain untuk membuat struktur cangkang. Bentuk yang menggunakan material pasangan bata yang mempunyai ketebalan lebih besar tidak bisa digolongkan sebagai struktur yang memikul tegangan pada arah dalam bidang karena pada struktur dengan material ini momen lentur sudah mulai dominan.

Bentuk struktur cangkang berdimensi tiga juga bisa dibuat dari batang-batang kaku dan pendek. Struktur ini juga bisa disebut dengan struktur cangkang meskipun tegangannya berada terpusat pada setiap batang berbeda dengan struktur cangkang biasa yang tegangannya menerus. Struktur tersebut pertama diperkenalkan oleh Schwedler pada tahun 1863 dengan desain kubah yang memiliki bentang 48 m. Struktur tersebut dikenal dengan Kubah Schwedler, yang terdiri dari jaring-jaring batang bersendi tak teratur. Struktur baru lainnya menggunakan batang-batang yang diletakkan pada kurva yang dibentuk oleh garis melintang dan membujur pada suatu permukaan putar.

Untuk mengantisipasi kesukaran yang ditimbulkan dari penggunaan batang-batang bersendi tak teratur yang membentuk struktur cangkang seperti Kubah Schwedler itu dapat pula menggunakan batang-batang yang panjangnya

(4)

Bentuk-bentuk lain yang bukan merupakan permukaan putaran juga bisa diciptakan dengan menggunakan elemen-elemen batang. Beberapa diantaranya adalah atap barrel ber-rib dan atap Lamella yang terbuat dari grid berbentuk miring seperti pelengkung yang membentuk elemen-elemen diskrit. Bentuk tersebut banyak dibuat dengan menggunakan material kayu meskipun dewasa ini dapat juga dengan menggunakan material yang terbuat dari baja ataupun beton bertulang.

Gambar 2.2. Contoh Permukaan Jala Pada Struktur Cangkang

(5)

2.2. Analisis dan Desain Cangkang 2.2.1. Gaya-gaya Meridional

Menurut (Schodek, 1998), tegangan dan gaya-gaya dalam yang terjadi pada struktur cangkang yang dibebani dengan terbagi rata dapat diperoleh dengan memakai persamaan keseimbangan dasar. Jika dianggap pada suatu struktur kubah menerima beban mati yang berasal dari berat sendiri dan lapisan penutupnya, apabila beban mati total disebut W dan gaya dalam per bidang satuan panjang yang terjadi pada permukaan cangkang adalah Nϕ , maka persamaan keseimbangan dalam arah horizontal akan dihasilkan sebagai berikut :

ΣFx = 0 ; W = ( Nϕ sin θ) (2πa) (2.1)

dimana θ adalah sudut yang terjadi pada potongan cangkang dan a adalah jari-jari kelengkungan di titik tersebut. Gaya Nϕ adalah gaya normal tekan yang terjadi pada potongan horizontal yang didefinisikan dengan ϕ. Komponen vertikal dari gaya ini yang dianggap merata pada keliling cangkang adalah Nϕ sin θ. Karena gaya dinyatakan dalam gaya per satuan panjang (kN/m) di sepanjang

potongan, maka gaya total adalah keliling potongan (2πa) dikalikan dengan Nϕ

sin θ, atau dengan kata lain, panjang total dikalikan dengan gaya per satuan panjang akan didapat gaya total. Gaya ke atas ini harus sama besar dengan gaya ke bawah yakni berat sendiri total struktur cangkang tersebut, sehingga didapat W =(Nϕ sin θ) (2πa). Persamaan tersebut dapat pula dinyatakan dalam jari-jari aktual

dengan menggunakan hubungan a = R sin θ, jadi :

W = ( Nϕ sin θ) (2π R sin θ) (2.2) dengan demikian dapat diperoleh :

= �

(6)

Apabila beban total (W) telah diketahui, maka gaya dalam pada cangkang dapat diperoleh secara langsung. Karena gaya-gaya dalam ini dinyatakan dalam gaya per satuan panjang, maka tegangan dalam yang dinyatakan dalam gaya per satuan luas (kN/mm2) dapat diperoleh dengan membaginya dengan tebal cangkang. Jadi, fϕ = Nϕ t L, dimana L mempunyai satuan panjang dan Nϕ

mempunyai satuan gaya per satuan panjang.

Sedangkan untuk persamaan keseimbangan dalam arah vertikal dengan beban mati total W akan didapat :

− ∫ ��2 (

1 2π R sin θ) R dϕ + Nϕ sin θ (2π R sin θ) = 0 (2.4) dimana ϕ1 dan ϕ2 adalah segmen cangkang yang ditinjau. Suku di sebelah kiri

adalah beban total W. Untuk ϕ1 = 0, maka :

Nϕ = ��

1+cos �

(2.5)

Persamaan ini pada kenyataannya sama dengan Nϕ = W/2π� sin2�. Kedua persamaan tersebut menunjukkan gaya meridional yang ada pada potongan tersebut.

Gambar 2.3. Gaya Meridional Pada Cangkang

(7)

2.2.2. Gaya Terpusat

Menurut (Schodek, 1998), mengapa struktur cangkang yang sangat kuat memikul beban terbagi rata dan tidak sesuai untuk memikul beban terpusat dapat dilihat dengan menganalisis gaya-gaya meridional yang terjadi akibat beban tersebut. Persamaan yang telah didapat sebelumnya Nϕ = W/2π� sin2� dimana W adalah beban terbagi rata total yang mempunyai arah ke bawah. Untuk cangkang yang memikul beban terpusat P, persamaan tersebut berubah menjadi Nϕ = P/2π� sin2�. Apabila beban terpusat tersebut bekerja pada θ = 0 (puncak cangkang), maka tegangan tepat di bawah beban tersebut menjadi tak terhingga, karena untuk θ = 0, maka sin θ = 0 dan Nϕ = ∞. Hal tersebut dalam mengakibatkan keruntuhan jika permukaan struktur cangkang tidak dapat memberikan tahanan momen dan beban tersebut benar-benar terpusat. Itulah sebabnya mengapa sebaiknya beban terpusat dihindari pada struktur cangkang.

2.2.3. Kondisi Perletakan

(8)

pada tepi cangkang yang menyebabkan akan terjadi momen lentur pula. Oleh karena itu, perletakan rol lebih disukai. Akan tetapi, perletakan tersebut sulit dibuat pada struktur cangkang. Selain itu, perubahan sudut sedikit saja pada perletakan tersebut dapat menimbulkan momen lentur walaupun masih lebih kecil daripada momen yang ditimbulkan dari penggunaan perletakan sendi atau jepit.

Menurut peninjauan kemudahan konstruksi, momen lentur yang tidak besar biasanya boleh terjadi di tepi cangkang dengan maksud agar kondisi pondasi dan tepi cangkang lebih mudah dilaksanakan. Cangkang dibuat kaku sedemikian rupa secara lokal di sekitar tepi dengan cara menambah ketebalannya dan khusunya diperkuat terhadap momen lentur.

Gambar 2.4. Kondisi Perletakan Cangkang

Tinjauan utama pada desain ini adalah bagaimana menahan gaya horizontal yang terjadi dengan komponen yang mempunyai arah ke dalam dari

(9)

meridional bidang dalam. Untuk itu dapat digunakan sistem penyokong (buttreness). Sistem demikian sudah banyak dipakai pada gedung, khusunya pada struktur kubah pasangan bata sejak zaman dahulu.

Gambar 2.5. Kondisi Perletakan Struktur Cangkang Berbentuk Bola

(10)

Cara lain untuk mengatasi gaya horizontal tersebut adalah dengan menggunakan cincin tarik. Cincin tarik ini berfungsi un tuk menahan dorongan ke luar dari cangkang, jadi cincin ini mengalami tarik. Besar dorongan ke luar ini dalam satuan panjang adalah Nϕ cos θ. Gaya ini lah yang mengakibatkan datangnya gaya tarik sebesat T = (Nϕ sin θ) a, dimana a adalah jari-jari cincin tarik tersebut.

Cincin tarik harus dapat menahan semua dorongan horizontal yang ada. Apabila terletak di atas permukaan tanah maka harus dipakai pondasi menerus yang berfungsi untuk meneruskan komponen gaya vertikal ke tanah. Cara lainnya adalah dengan menumpu cincin tersebut pada elemen-elemen lain, seperti kolom yang hanya dapat menahan gaya vertikal.

Penggunaan cincin tarik, bagaimana pun dapat mengakibatkan terjadinya momen lentur juga pada permukaan cangkang dimana terdapat pertemuan antara cangkang dan cincin. Momen lentur ini disebabkan akibat ketidaksamaan deformasi yang terjadi di antara cangkang dan cincin tersebut. Deformasi melingkar pada cangkang dapat bersifat tekan dimana tepi permukaan cangkang berdeformasi ke arah dalam. Sedangkan deformasi balok cincin berbeda dengan deformasi cangkang. Karena elemen-elemen tersebut harus digabungkan, maka cincin tepi membatasi gerakan bebas permukaan cangkang sehingga timbul momen di tepi cangkang. Momen tersebut kemudian dimatikan dengan cepat pada cangkang sehingga permukaan cangkang secara keseluruhan tidak terpengaruh. Tetapi cangkang secara lokal diperkaku dan diperkuat terhadap lentur.

(11)

akibat dari deformasi tersebut. Salah satu cara yang efektif adalah dengan menggunakan cara pascatarik dalam mengontrol deformasi. Balok cincin tersebut biasanya mengalami tarik. Jadi, dapat diberi haya pascatarik sedemikian rupa sehingga gaya tekan dapat timbul terlebih dahulu pada balok cincin sehingga deformasinya menjadi sama dengan yang terjadi pada tepi cangkang. Gaya dorong ke luar dari cangkang akan mengurangi gaya tekan yang dapat memperbesar gaya tarik pada kabel pascatarik. Apabila besar gaya pascatarik awal dikontrol dengan baik, maka deformasi cincin juga dapat dokontrol sehingga perbedaan dengan cangkang dapat diperkecil. Permukaan cangkang itu sendiri dapat juga diberi gaya pascatarik dalam arah melingkar untuk mengontrol deformasi dan gaya pada cangkang.

Gambar 2.6. Gangguan Tepi Pada Struktur Cangkang

(12)

2.2.4. Tinjauan-tinjauan Lain

Banyak faktor lain yang harus ditinjau dalam mendesain suatu struktur cangkang. Menurut (Schodek, 1998), salah satu faktor nya adalah keharusan menjamin bahwa cangkang tersebut tidak akan mengalami tekuk. Apabila kelengkungan permukaan cangkang relatif datar, maka dapat terjadi tekuk snap-through atau tekuk lokal. Seperti yang terjadi pada kolom panjang, ketidakstabilan

dapat terjadi pada taraf tegangan rendah. Hal ini dapat dihindari dengan memakai permukaan yang mempunyai lengkung tajam. Penggunaan lengkung tajam ini tentu saja mengakibatkan tidak dapat menggunakan cangkang berprofil rendah dan berbentang panjang. Masalah ini juga terjadi pada cangkang yang terbuat dari elemen-elemen linear kaku seperti kubah geodesik.

Gambar 2.7. Tekuk Pada Struktur Cangkang Tipis

Masalah lain yang perlu diperhatikan Menurut (Schodek, 1998), adalah cangkang harus mampu menahan beban-beban yang berarah tidak vertikal.

(13)

Biasanya beban angin bukan merupakan masalah yang besar dalam desain struktur cangkang. Beban gempa, yang juga berarah lateral dapat menimbulkan masalah serius dalam desain. Apabila terjadi beban tersebut, maka sebaiknya harus didesain dengan sangat berhati-hati.

Gambar 2.8. Trajektori Tegangan Pada Cangkang Kubah Akibat Beban Angin

2.3. Struktur Membran

Menurut (Schodek, 1998), cara yang tepat untuk mempelajari perilaku permukaan cangkang adalah dengan melihatnya sebagai analogi dari membran, yaitu elemen permukaan yang sedemikian tipisnya sehingga muncul gaya tarik pada permukaannya. Gelembung sabun atau lembaran tipis dari karet adalah contoh-contoh dari membran. Membran yang memikul beban tegak lurus dari permukaannya akan berdeformasi secara tiga dimensi serta diikuti dengan terjadinya gaya tarik pada permukaan membran. Hal yang perlu diperhatikan adalah adanya dua kumpulan gaya dalam pada permukaan membran yang mempunyai arah saling tegak lurus serta yang paling penting adalah adanya

(14)

tegangan geser tangensial pada permukaan membran yang juga memiliki fungsi sebagai pemikul beban.

Membran itu sendiri menurut (Schodek, 1998), adalah struktur permukaan fleksibel tipis yang memikul beban dengan mengalami yang paling utama adalah tegangan tarik. Struktur membran cenderung dapat menyesuaikan diri dengan cara struktur tersebut dibebani. Selain itu, struktur ini juga sangat peka terhadap efek aerodinamika dari angin. Efek tersebut dapat menyebabkan terjadinya getaran (fluttering). Oleh karena itu, membran yang digunakan pada gedung harus distabilkan dengan cara tertentu sehingga bentuknya dapat dipertahankan pada saat memikul berbagai kondisi pembebanan.

Ada beberapa cara dasar untuk menstabilkan membran. Rangka penumpu dalam yang kaku, misalnya dapat digunakan. Selain itu, yang dapat dilakukan adalah dengan menggunakan prategang pada permukaan membran. Dalam hal ini dapat dilakukan dengan memberikan gaya luar yang menarik membran atau dengan menggunakan tekanan dalam jika membrannya mempunyai volume tertutup.

(15)

berbagai kondisi pembebanan yang mungkin terjadi. Biasanya membran tersebut diberi tegangan dalam arah tegak lurus di seluruh permukaannya.

Menstabilkan membran dengan menggunakan tegangan dalam dapat dilakukan jika membran mempunyai volume tertutup. Struktur membran tersebut sering dinamakan struktur pneumatis. Meskipun struktur pneumatis masih bisa dibilang baru untuk digunakan, pengetahuan tentang pneumatis ini sudah lama diketahui. Seperti contoh kulit air, salah satu jenis struktur pneumatis yang sudah lama digunakan oleh manusia.

Penggunaan struktur pneumatis pada gedung masih relatif baru. Seorang ahli dari Inggris yang bernama William Lanchester yang menerapkan prinsip balon ke dalam bangunan rumah sakit pada tahun 1917. Pada tahun 1922 dibangun pula Oasis Theater di Paris yang menggunakan struktur atap berlubang pneumatis. Banyak penelitian mengenai pneumatis yang dilakukan pada masa Perang Dunia II karena adanya nilai militer pada struktur pneumatis. Penggunaan struktur yang ditumpu udara (air supported structures) dimulai pada tahun 1946, yaitu pada bangunan radomes yang didalamnya terdapat antenna radar yang sangat besar. Dewasa ini, struktur pneumatis sudah menjadi hal yang umum pada pembangunan gedung.

2.4. Deformasi Dinding Struktur Cangkang Tanpa Lenturan

(16)

pelat sama besar disebut permukaan tengah (middle surface). Dengan merincikan bentuk permukaan tengah dan ketebalan pada setiap titik, maka suatu cangkang ditentukan sepenuhnya secara geometris.

Untuk menganalisis gaya-gaya dalam pada struktur cangkang, bagi suatu elemen yang kecilnya tak terhingga dari cangkang itu yang dibentuk oleh dua pasang bidang yang berdekatan dan tegak lurus terhadap permukaan tengah dari cangkang tersebut, dan memiliki kelengkungan utamanya (Gambar 2.9. (a)). Ambil sumbu-sumbu koordinat x dan y yang menyinggung garis kelengkungan utama pada titik O dan sumbu z yang tegak lurus pada permukaan tengah, seperti pada gambar. Jari-jari utama kelengkungan yang terletak pada bidang xz dan yz ditandai masing-masing oleh rx dan ry. Tegangan yang bekerja pada permukaan

bidang elemen itu diuraikan dalam arah sumbu-sumbu koordinat dan komponen tegangan ditunjukkan oleh simbol σx, σy, τxy = τyx, τxz. Dengan notasi ini, gaya

resultan per satuan panjang penampang melintang normal seperti pada Gambar 2.9. (b) adalah :

(2.8), karena sisi-sisi lateral elemen yang diperlihatkan pada Gambar 2.9. (a) memiliki bentuk trapesium yang disebabkan oleh kelengkungan cangkang. Hal ini menyebabkan tidak samanya gaya geser Nxy dan Nyx satu dengan lainnya,

(17)

ketebalan h adalah sangat kecil dibandingkan dengan jari-jari rx, ry dan

mengabaikan suku-suku z/rx danz/ry pada persamaan-persamaan (2.6), (2.7), (2.8).

Kemudian Nxy = Nyx dan resultan gaya geser dinyatakan oleh persamaan yang

sama seperti pada pelat.

Gambar 2.9. Elemen yang Dibentuk Oleh Dua Bidang, Gaya Resultan Per Satuan Panjang Penampang

Momen lentur dan puntir per satuan panjang penampang normal menurut (Timoshenko, 1992) dituliskan dengan persamaan berikut ini :

�� = ∫+ ℎ/2/2 ��� �1−

dimana penentuan arah momennya mengikuti penentuan arah momen pada struktur pelat. Jika mengabaikan sekali lagi besaran z/rx dan z/ry yang kecil yang

disebabkan oleh kelengkungan cangkang, dan untuk momennya digunakan persamaan yang sama dengan persamaan yang digunakan pada pelat.

(18)

Untuk membahas lenturan cangkang, dianggap bahwa elemen linear, seperti AD dan BC (Gambar 2.9. (a)), yang tegak lurus pada permukaan tengah, tetap lurus dan menjadi tegak lurus pada permukaan tengah cangkang yang dideformasikan. Selama pelenturan, permukaan lateral atau melintang elemen ABCD hanya berotasi terhadap garis-garis perpotongannya dengan permukaan tengah. Jika r’x dan r’y adalah jari-jari kelengkungan setelah deformasi, maka

perpanjangan satuan suatu lamina atau belahan tipis pada jarak z dari permukaan tengah (Gambar 2.9. (a)) adalah :

�� = −1��

selain rotasi, sisi-sisi lateral elemen berpindah tempat sejajar sebagai akibat meregangnya permukaan tengah. Dan jika perpanjangan satuan bagian tengah permukaan yang bersangkutan pada arah x dan y ditandai masing-masing dengan

�1 dan �2 , maka perpanjangan �� dari belahan yang ditinjau seperti pada Gambar

(19)

dibandingkan dengan satu. Pengaruh pertambahan panjang �1 dan �2 pada kelengkungan juga diabaikan. Oleh karena itu, sebagai pengganti Persamaan (2.14) didapatkan : mempergunakan persamaan untuk menghitung komponen regangan suatu belahan ini dan dengan menganggap bahwa tidak ada tegangan normal antara belahan

(� = 0), maka diperoleh persamaan untuk menghitung komponen tegangan

seperti berikut :

�� = 12 ��1+ ��2− ����+����� (2.17)

�� = 12 ��2+ ��1− �(��+���)� (2.18) dengan mensubstitusikan persamaan ini ke Persamaan (2.6) dan (2.7) dan dengan mengabaikan besaran z/rx dan z/ry yang kecil dibandingkan dengan angka satu,

maka akan diperoleh :

�� = 1�ℎ2 (�1+ ��2) �� =

�ℎ

1−�2 (�2+ ��1) (2.19)

�� = −� (�� +���) �� = −� (�� +���) (2.20)

dimana D menunjukkan ketegaran lentur cangkang dan memiliki arti yang sama seperti pada struktur pelat yaitu :

� = �ℎ3

12 (1−�2) (2.21)

(20)

elemen. Bila regangan geser pada permukaan tengah cangkang ditandai dengan �, dan rotasi tepi BC relatif terhadap � sekitar sumbu x (Gambar 2.9. (a)) ditandai dengan ��� dx maka akan diperoleh :

τxy = (� −2����) G (2.22)

dengan mensubstitusikan persamaan ini ke dalam persamaan (2.7) dan (2.10) serta dengan menggunakan penyederhanaan, maka diperoleh :

��� = ��� = 2(1+�ℎ�) (2.23) ��� = −��� = � (1− �)��� (2.24)

jadi, dengan menganggap bahwa selama pelenturan suatu cangkang, elemen linear yang tegak lurus pada permukaan tengah adalah tetap lurus dan menjadi tegak lurus pada permukaan tengah yang mengalami deformasi, maka kita dapat menyatakan gaya resultan per satuan panjang � ,� , dan ��� serta � ,�, dan

��� atas suku-suku yang terdiri dari enam buah besaran yaitu tiga buah

komponen regangan �1,�2, dan � dari permukaan tengah cangkang dan tiga buah besaran � ,�, dan ��� yang menggambarkan perubahan kelengkungan serta puntiran permukaan tengah.

(21)

Jika kondisi cangkang sedemikian rupa sehingga lenturan dapat diabaikan, permasalahan analisis tegangan dapat dibuat menjadi sangat sederhana, karena momen resultan Persamaan (2.9) dan (1.10) serta resultan gaya geser Persamaan (2.8) hilang. Jadi, yang belum diketahui adalah tiga buah besaran

�� ,�� , dan ��� = ��� , yang dapat ditetapkan dari kondisi keseimbangan suatu

Gambar

Gambar 2.1. Berbagai Jenis Permukaan Struktur Cangkang Menerus
Gambar 2.2. Contoh Permukaan Jala Pada Struktur Cangkang
Gambar 2.3. Gaya Meridional Pada Cangkang
Gambar 2.4. Kondisi Perletakan Cangkang
+6

Referensi

Dokumen terkait

tergantung dari kombinasi antara gaya prategang dan beban luar selain itu,b eberapa hal yang mempengaruhi defleksi pada struktur beton prategang adalah beban mati, beban hidup,

Berat total bangunan (Wt) ... Gaya geser dasar horisontal akibat gempa ... Distribusi beban geser dasar akibat gempa sepanjang tinggi gedung ... Kontrol simpangan tingkat

Fungsi lapisan ini adalah sebagai bagian dari perkerasan yang menahan gaya lintang dari beban roda sekaligus sebagai lapis peresapan untuk lapis pondasi bawah... Lapis

Hasil analisis dengan acuan LRFD 1993 menunjukkan rangka baja aman dan dapat menopang beban yang bekerja terlihat dari rasio gaya aksial dan momen (P-M