• Tidak ada hasil yang ditemukan

Total emisi gas metan (CH4) di lahan sawah di

N/A
N/A
Protected

Academic year: 2021

Membagikan "Total emisi gas metan (CH4) di lahan sawah di"

Copied!
6
0
0

Teks penuh

(1)

Penekanan Emisi dan Mitigasi Gas CH

4

melalui Teknik Budi Daya

Padi Walik Jerami di Lahan Sawah Tadah Hujan

Mulyadi1, A. Wiharjaka1, Shri Hari Mulya2, I. Johari Sasa1 dan S. Partohardjono3

1Loka Penelitian Tanaman Pangan, Jakenan 2Balai Penelitian Tanaman Padi, Sukamandi

3Pusat Penelitian dan Pengembangan Tanaman Pangan, Bogor

ABSTRACT. Emission and Mitigation of Methane Through Tillage, Variety and Organic Matter Application from Walik Jerami Rice in Rainfed Lowland Areas. Glasshouse gases such as CO2, CH4, N2O

can cause global warning. Emission of CO2, CH4, N2O contribute about

55, 15, 6% of total glasshouse effects. Atmospheric methane as glasshouse gas is more effective than CO2. Therefore, cultural

techniques for food crops that consider environment are necessary. A field experiment was conducted in Pati, Central Java during the 2001 dry season to determine the effect of soil tillage, rice variety, and organic matter application on emission and mitigation of methane. The experiment used split plot design replicated three times. Soil tillage treatment as the main plot consisted of zero tillage (t1) and maximum tillage (t2). Rice variety as sub plot consisted of Limboto (v1), Way Rarem (v2), and IR64 (v3); fertilization tested as sub-sub plot was 5 t straw/ha + 90 kg N/ha (n1), 5 t farmyard manure/ha + 90 kg N/ha (n2), 90 kg N/ha (n3). As nitrogen source, ammonium sulphate (ZA) was used. Zero tillage minimised methane emission, and gave insignificant grain and biomassa yields. Way Rarem variety that was transplanted using walik jerami system emitted methane lower than Lomboto which was tolerant to drought and IR64. Farmyard manure application in maximum tillage plot emitted methane lower than rice straw; on the other hand, rice straw in zero tillage plot emitted methane lower than farmyard manure.

Key words: Methane, walik jerami, rainfed lowland areas, rice.

ABSTRAK. Gas rumah kaca (CH4, N2O dan CO2) merupakan salah

satu penyebab pemanasan bumi. Emisi gas CO2, CH4 (metan) dan

N2O masing-masing menyumbang 55, 15 dan 6% dari total efek rumah

kaca. Gas metan di atmosfer 25-35 kali lebih efektif daripada CO2

sebagai gas rumah kaca. Bertolak dari hal tersebut perlu dicari teknik budidaya tanaman pangan yang ramah lingkungan. Penelitian emisi dan mitigasi gas CH4 melalui pengolahan tanah, pemilihan varietas

dan pemberian bahan organik pada padi walik jerami dilaksanakan pada MK I 2001 di Pati Jawa Tengah, menggunakan rancangan petak petak terpisah dengan tiga ulangan. Petak utama adalah cara olah tanah: (t1) tanpa olah tanah, (t2) olah tanah sempurna. Anak petak adalah varietas: (v1) Limboto, (v2) Way Rarem dan (v3) IR64. Anak-anak petak adalah pemupukan (n1) jerami 5 t + 90 kg N/ha (n2) pupuk kandang 5 t + 90 kg N/ha, dan (n3) 90 kg N/ha, pupuk ZA sebagai sumber N. Hasil penelitian menunjukkan perlakuan tanpa olah tanah mampu menekan emisi gas CH4. Padi gogo yang ditanam secara walik

jerami (varietas Way Rarem), emisi gas CH4 lebih rendah di- banding

padi sawah yang toleran kekeringan (varietas Limboto) mau- pun IR64. Pemberian pupuk kandang pada perlakuan olah tanah sempurna (OTS), emisi gas CH4 lebih rendah dari pemberian jerami. Pada TOT,

pemberian jerami justru sebaliknya.

Kata kunci: Gas CH4, walik jerami, sawah tadah hujan.

T

otal emisi gas metan (CH4) di lahan sawah di

Indonesia berkisar antara 2,54-9,8 Tg/tahun (Japan Environmental Agency, 1992; Bachelet

dan Neue, 1992 dan ALGAS, 1998). Emisi gas rumah kaca pada lahan sawah dipengaruhi oleh kondisi ok-sidasi dan reduksi. Emisi gas metan lebih tinggi pada kondisi sawah. Sebaliknya, emisi gas N2O lebih tinggi pada kondisi kering.

Akhir-akhir ini pengurangan pemakaian pupuk an-organik dilakukan karena harganya relatif mahal dan dalam jangka panjang kurang menguntungkan bagi lingkungan. Pengurangan penggunaan pupuk an-organik perlu diimbangi oleh pemberian pupuk an-organik. Pupuk organik di samping merupakan sumber unsur hara juga dapat meningkatkan kadar bahan organik tanah yang pada gilirannya dapat dimanfaatkan oleh

mikroba tanah sebagai sumber energi (Wihardjaka et

al., 1999).

Pupuk organik merupakan sumber karbon yang dapat menyumbang pembentukan gas metan tetapi mendukung upaya peningkatan produktivitas tanah. Gas metan lepas ke atmosfer melalui degadrasi an-aerobik bahan organik (biogenik) dan nonbiogenik (Cicerone and Oremland, 1988). Proses dekomposisi bahan organik secara anaerobik menghasilkan gas N2,

H2, CH4, C2H6, propana dan sebagainya. Ketersediaan

gas CO2, CH4, dan N2 lebih besar dalam tanah yang

ter-genang (Neue and Scharpensell, 1990).

Pemilihan varietas umur pendek dan toleran ke-keringan diperlukan dalam pola tanam padi-palawija di lahan sawah tadah hujan, karena distribusi dan in-tensitas curah hujan pada agroekosistem ini tidak me-nentu. Tujuan penelitian adalah untuk mendapatkan

data volume emisi gas CH4 melalui pengaturan

peng-olahan tanah, varietas dan bahan organik dalam upaya menekan emisi gas tersebut tanpa mengurangi hasil padi walik jerami di lahan sawah tadah hujan.

BAHAN DAN METODE

Penelitian dilaksanakan pada lahan sawah tadah hujan jenis tanah Inceptisol di Pati, Jawa Tengah, pada MK 2001, (Maret - Juni). Penelitian menggunakan ran-cangan petak petak terpisah, dengan tiga ulangan. Ukuran petak percobaan 5 x 4 m. Petak utama adalah

(2)

cara olah tanah yang terdiri atas tanpa olah tanah dan olah tanah sempurna. Anak petak adalah varietas yang meliputi Limboto, Way Rarem dan IR64, sedangkan anak-anak petak adalah penggunaan jerami 5 t + 90 kg N/ha, pupuk kandang 5 t + 90 kg N/ha, dan 90 kg N/ha. Sebagai sumber N adalah pupuk ZA. Parameter yang

diamati meliputi emisi gas CH4 dan N2O, C organik

tanah dan bahan organik, N total tanah dan tanaman, Eh dan pH tanah, tinggi tanaman, jumlah anakan, kom-ponen hasil, hasil, dan iklim.

Contoh gas diambil dua minggu sekali dan di-laksanakan pada pukul 06.00. Contoh gas ditampung dalam boks yang terbuat dari feksiglas ukuran 40 x 40 x 60 cm (boks kecil) dan 40 x 40 x 110 cm (boks besar). Penggunaan boks disesuaikan dengan fase pertumbuh-an tpertumbuh-anampertumbuh-an. Contoh gas diambil dengpertumbuh-an mengguna-kan jarum suntik ukuran 6 ml dengan interval waktu 5’, 10’, 15’, dan 20’. Contoh gas dianalisis dengan

meng-gunakan gas kromatografi pada suhu injektor 110oC

dan suhu kolom 92oC.

HASIL DAN PEMBAHASAN

Emisi gas CH4

Pola emisi gas CH4 harian diamati dengan interval dua minggu sekali, kemudian dilanjutkan pengamatan setiap minggu setelah tanaman berumur 82 hari setelah tanam (HST) hingga menjelang panen. Emisi gas CH4 pada perlakuan tanpa olah tanah (TOT) lebih rendah dari olah tanah sempurna (OTS). Pada varietas IR64, emisi gas CH4 cenderung lebih tinggi dari Limboto dan Way Rarem. Pemberian bahan organik berupa jerami maupun pupuk kandang menyebabkan emisi harian lebih tinggi dibanding tanpa bahan organik. Rata-rata fluk harian metan pada sistem olah tanah, varietas dan bahan organik dari pengamatan awal 26 HST sampai umur 68 HST relatif tinggi, kemudian menurun hingga menjelang panen (Gambar 1, 2 dan 3). Hal ini berkaitan dengan tergenangnya lahan selama pertumbuhan tanaman yang berpengaruh terhadap nilai redoks potensial (Eh tanah). Redoks potensial merupakan ukuran intensitas oksidasi atau reduksi. Tanah tergenang dicirikan oleh Eh tanah yang rendah atau negatif. Pada tanah yang tidak tergenang (kondisi oksidasi), nilai Eh berkisar antara +400 sampai +700 mV, sedangkan pada kondisi reduksi -250 sampai -350 mV (Ponnamperuna, 1972).

Selama pertumbuhan tanaman, lahan sawah da-lam kondisi tergenang, kecuali menjelang panen. Hal ini terlihat dari nilai Eh tanah yang berkisar antara -169 sampai -5 (Gambar 4). Kondisi reduksi menguntungkan

bakteri methanogen dalam pembentukan gas CH4. Gas CH4 terbentuk secara optimal pada nilai Eh rata-rata kurang dari -200 mV, karena pada kondisi tersebut bak-teri methanogen sebagai penghasil gas metan sangat aktif sehingga proses dekomposisi bahan organik ber-langsung cepat (Alexander, 1977).

0 2 4 6 8 10 12 24 40 54 68 82 89 96

Hari setelah tanam (HST)

Emisi gas CH4 (ugm2./menit)

TOT OTS

Gambar 1. Pola emisi gas CH4 harian pada perlakuan tanpa olah

tanah padi walik jerami, Jakenan, MK 2001.

0 4 8 12 16 24 40 54 68 82 89 96

HST (hari setelah tanam)

Emisi gas CH4 (/m2/menit)

Limboto Wayrarem IR64

Gambar 2. Pola emisi gas CH4 harian dari berbagai varietas padi

walik jerami. Jakenan, MK 2001.

0 2 4 6 8 10 24 40 54 68 82 89 96

HST (hari setelah tanam)

Emisi gas CH4 (ug/m2/menit)

Jerami 5 t/ha P. kandang 5 t/ha 90 kg N/ha

Gambar 3. Pola emisi gas CH4 harian dari perlakuan bahan organik

(3)

Pada tanah masam, penggenangan akan me-ningkatkan pH tanah, sedangkan pada tanah alkalin akan menurunkan pH tanah. Selanjutnya, selama 4-12 minggu penggenangan, nilai pH akan stabil berkisar antara 6,5-7,0. Pada perlakuan TOT, dari awal peng-amatan sampai 54 HST, pH meningkat dari 4,8 menjadi 7,1, selanjutnya menurun pada kisaran 5-6 (Gambar 5).

Hal ini berkaitan dengan Fe (OH)2 atau Fe (OH)8 dan

bahan tereduksi lainnya. Selanjutnya Neue (1993)

me-nyatakan, fluk emisi gas CH4 tertinggi terjadi pada saat

tanaman berumur 54 HST. Pembentukan gas CH4 pada

tanah masam terjadi 5-6 minggu setelah penggenang-an. Menurut Sanchez (1976), peningkatan pH terjadi karena karena adanya pelepasan ion hidroksida ketika Fe (OH)3 dengan senyawa oksida lainnya direduksi menjadi aktivitas bakteri methanogen optimal sebagai

penghasil gas CH4 pada kisaran pH tanah antara 6-8.

Penambahan pupuk N pada tanah secara langsung

akan dihidrolisis oleh enzim urease menjadi CO2 dan

NH3, sehingga pH tanah cenderung naik yang diikuti

oleh turunnya Eh tanah. Nilai pH tanah pada OTS justru sebaliknya, turunnya Eh tanah diikuti oleh turunnya pH tanah.

Pada perlakuan kombinasi antara pengolahan

tanah dan varietas, besarnya emisi gas CH4 berbeda.

Varietas Way Rarem mengemisi gas CH4 lebih rendah

dibanding Limboto dan IR64 dalam perlakuan TOT, masing-masing 59,73; 69,96 dan 106,6 kg/ha/musim, sedangkan pada perlakuan OTS sebesar 123,5; 128,5 dan 138,8 kg/ha/musim (Gambar 6).

Masing-masing varietas memiliki umur, sifat dan aktivitas akar yang berbeda. Ini berkaitan dengan volume emisi gas metan. Eksudat akar merupakan karbohidrat, asam organik dan asam amino yang

mu-dah berfermentasi menjadi asetat atau CO2 + H+ yang

kemudian menjadi gas metan dengan bantuan bakteri methanogen (Yagi and Minami, 1990).

Kombinasi jerami + ZA pada perlakuan TOT

rata-rata mengemisi gas CH4 lebih rendah dibanding

pem-berian pupuk kandang + ZA maupun dipupuk ZA saja, yaitu sebesar 51,4; 115,2 dan 69,6 kg/ ha/musim. Pada

perlakuan OTS, pemberian jerami mengemisi gas CH4

lebih tinggi dibanding pemberian pupuk kandang na-mun masih lebih rendah jika dipupuk ZA saja, masing-masing 154,5; 121,3 dan 115 kg/ha/musim (Gambar 7).

Tingginya emisi gas CH4 dari pupuk kandang pada

-200 -160 -120 -80 -40 0 26 40 54 68 82

HST (hari setelah tanam)

Eh tanah OTS

TOT

Gambar 4. Redoks potensial tanah dari perlakuan olah tanah pada padi walik jerami. Jakenan, MK 2001.

0 1 2 3 4 5 6 7 8 26 40 54 68 82

HST (hari setelah tanam)

pH tanah

TOT OTS

Gambar 5. Nilai pH tanah pada perlakuan tanpa olah tanah pada padi walik jerami. Jakenan, MK 2001.

47.9 40.4 66.1 103.6 74.9 167.1 58.4 63.9 86.7 0 40 80 120 160 200 240 Limboto Wayrarem IR 64

Emisi gas CH4 kg/ha/musim

Jerami 5 t/ha P. kandang 5 t/ha 90 kg N/ha

Gambar 6. Emisi gas CH4 pada perlakuan TOT padi walik jerami.

Jakenan, MK 2001. 0 50 100 150 200

Limboto Wayrarem IR64

Emisi gas CH4 (kg/ha/musim)

Jerami 5 t/ha P. Kandang 5 t/ha 90 kg N/ha

Gambar 7. Emisi gas CH4 pada perlakuan OTS pada padi walik

(4)

perlakuan TOT disebabkan karena bahan organik di-berikan dengan cara tebar di permukaan tanah, se-hingga pupuk kandang lebih cepat terdekomposisi yang menghasilkan hara dan juga karbon yang merupakan unsur utama pembentukan CH4. Sedangkan proses dekomposisi jerami membutuhkan waktu yang lama. Dilaporkan oleh Ponnamperuna (1984) bahwa mes-kipun laju mineralisasi bahan organik pada kondisi anaerob lebih lambat, tetapi jumlah bahan organik yang termineralisir lebih besar karena yang terimobili-sasi lebih kecil, dapat mencapai sekitar dua kali lipat daripada kondisi aerob. Neue (1985) melaporkan bah-wa selama proses dekomposisi pada minggu pertama, N anorganik banyak lepas. Pada kondisi anaerob dan nisbah C/N tinggi, pelepasan N masih terus berjalan, tetapi remineralisasi N yang terimobilisasi lebih lambat. Selanjutnya produk akhir dari proses dekomposisi

an-aerobik adalah: CH4, CO2, H2, H2S, NH3, R-COOH, RNH2,

RSH dan sisa-sisa yang tahan. Selanjutnya Ponnam-peruna (1984) melaporkan, pembenaman jerami ke dalam tanah secara anaerobik akan meningkatkan

pro- duksi CH4, kandungan C dan N organik. Nisbah

C/N yang tinggi pada bahan organik berkaitan erat dengan perkembangan bakteri methanogen dalam

mem- produksi CH4. Besarnya kadar C organik dan N

total jerami dan pupuk kandang disajikan dalam Tabel 1.

Hasil dan Komponen Hasil

Hasil analisis sidik ragam menunjukkan ada inter-aksi yang nyata perlakuan olah tanah, varietas, dan bahan organik hanya terjadi pada bobot jerami dan jumlah gabah hampa (Tabel 2). Varietas nyata mem-pengaruhi komponen hasil padi walik jerami, antara lain jumlah gabah hampa, panjang malai, jumlah malai, dan bobot 1000 butir. Pemberian bahan organik hanya nyata mempengaruhi hasil gabah.

Pada perlakuan olah tanah sempurna, hasil me-ningkat lebih tinggi dibandingkan tanpa olah tanah. Tanah yang diolah sempurna menghasilkan gabah 0,60 t/ha lebih tinggi daripada tanpa olah tanah (Tabel 3). Varietas IR64 menghasilkan gabah lebih tinggi daripada Way Rarem dan Limboto. Tanpa penambahan bahan organik ke dalam tanah, varietas Limboto dan Way Rarem menghasilkan gabah relatif rendah. Namun dengan pemberian bahan organik, hasil kedua varietas meningkatkan. Penambahan bahan organik dapat me-ningkatkan kapasitas menahan air dan memperbaiki struktur tanah, sehingga akar berkembang lebih baik dalam menyerap air dan hara yang dibutuhkan oleh tanaman.

Tanggap padi walik jerami terhadap pemberian bahan organik nyata pada perlakuan olah tanah. Pe-ningkatan hasil sebesar 17% jika diberikan pupuk kan-dang. Pemberian jerami segar hanya meningkatkan hasil 10%, dan tidak beda nyata dibanding hasil pada perlakuan tanpa bahan organik. Pengembalian jerami

Tabel 1. Kadar C organik dan N total jerami dan pupuk kandang pada padi walik jerami, Jakenan MK. 2001.

Bahan organik C organik Bahan N total Nisbah

(%) organik (%) (%) C/N

Jerami padi 30,31 52,25 0,93 32,7

Pupuk kandang 7,28 12,56 0,26 28,3

Tabel 2. Uji F beberapa parameter hasil dan komponen hasil pada padi walik jerami, Jakenan MK. 2001. Nilai F hitung

Sumber Derajat

Keragaman bebas Hasil Bobot Gabah Gabah Bobot 1000 Panjang Jumlah

gabah jerami hampa isi butir malai malai

Ulangan 2 - - - -Olah tanah (T) 1 - - - -Galat (a) 2 Varietas (V) 2 1,87 tn 1,06 tn 39,43 ** <1 tn 12,35 ** 8,94 ** 36,60 ** TXV 2 1,31 tn <1 tn 5,47 * 1,05 tn 1,41 tn 1,38 tn <1 tn Galat (b) 8

Bahan organik (o) 2 3,45 * 1,91 tn <1 tn 1,28 tn 1,15 tn <1 tn <1 tn

TxO 2 1,40 tn <1 tn <1 tn 1,38 tn 1,68 tn 1,87 tn 1,97 tn VxO 4 <1 tn 1,43 tn 2,76 tn 1,29 tn <1 tn 1,64 tn <1 tn TxVxO 4 <1 tn 4,61 ** 2,50 tn <1 tn 1,22 tn <1 tn <1 tn Galat (c) 24 KK (a)% KK (a)% 24,1 28,1 15,9 19,1 3,5 6,9 17,3 KK (a)% 9,8 13,8 23,7 29,2 2,9 3,2 15,0

(5)

ke dalam tanah relatif tidak meningkatkan hasil. Hal ini diduga karena proses imobilisasi dan dihasilkannya asam-asam organik slama proses perombakan yang dapat mengganggu pertumbuhan tanaman padi.

Varietas Limboto dan Way Rarem cenderung menghasilkan jerami lebih tinggi daripada IR64. Hasil jerami kedua varietas tersebut nyata lebih tinggi pada perlakuan tanpa olah tanah dengan pemberian bahan organik, baik berupa jerami segar maupun pupuk kandang .

Interaksi perlakuan olah tanah dan varietas mem-pengaruhi jumlah gabah hampa. Jumlah gabah hampa varietas IR64 nyata lebih rendah daripada Limboto dan Way Rarem, baik pada perlakuan tanpa olah tanah maupun olah tanah sempurna. Menurut Yoshida (1981), kekeringan terutama pada saat tanaman

ber-bunga menyebabkan banyak gabah yang hampa akibat tidak terbentuknya asimilat berupa karbohidrat dalam gabah selama fotosintesis.

Varietas IR64 juga memberikan panjang malai dan bobot 1000 butir lebih rendah daripada Way Rarem dan Limboto, namun jumlah malai dari IR64 nyata lebih banyak.

KESIMPULAN

Emisi gas CH4 harian meningkat seiring dengan

turunnya redok potensial tanah, emisi CH4 meningkat

pada 54 dan 68 HST. Perlakuan TOT menekan emisi gas

CH4 sebesar 65% lebih rendah dari OTS.

Tabel 3. Hasil dan komponen hasil dari berbagai olah tanah, varietas dan bahan organik pada padi walik jerami, Jakenan MK. 2001. Tanpa olah tanah Tanpa olah tanah Varietas

Jerami 5 t/ha + Pukan 5 t/ha + 90 kg N/ha Jerami 5 t/ha + Pukan 5 t/ha + 90 kg N/ha

90 kg N/ha 90 kg N/ha 90 kg N/ha 90 kg N/ha

Limboto 3,19 a 3,31 a 2,85 a 3,27 a 3,41 a 3,06 a

Wayrarem 2,81 a 2,84 a 2,38 a 3,42 a 3,44 a 3,33 a

IR64 2,94 a 3,33 a 2,89 a 3,95 a 3,96 a 4,11 a

Bobot jerami (t/ha)

Limboto 8,27 a 9,33 a 6,21 a 9,78 a 8,23 a 8,04 a

Wayrarem 8,80 a 6,53 b 6,13 a 8,12 ab 9,59 a 8,53 a

IR64 7,82 a 5,71 b 7,27 a 7,81 b 8,95 a 8,01 a

Jumlah gabah hampa/rumpun

Limboto 251 a 245 b 123 b 251 a 225 a 108 c

Wayrarem 256 a 198 c 141 a 204 a 177 c 166 b

IR64 149 b 278 a 143 a 238 a 180 b 172 a

Jumlah isi hampa/rumpun

Limboto 449 a 453 b 367 b 455 a 568 a 469 c Wayrarem 446 a 457 b 340 c 510 a 414 c 486 b IR64 520 a 550 a 457 a 552 a 537 b 621 a Panjang malai (cm) Limboto 22,8 a 24,8 a 21,6 a 23,3 a 24,9 a 22,9 a Wayrarem 22,8 a 24,1 a 21,2 a 23,6 a 24,1 a 24,0 a IR64 22,3 a 24,1 a 21,3 a 23,1 a 25,6 a 23,7 a Bobot 1000 butir (g) Limboto 26,8 a 25,7 a 24,9 a 27,2 a 25,9 a 25,9 a Wayrarem 27,4 a 25,2 a 25,0 a 27,0 a 27,1 a 26,5 a IR64 26,9 a 25,8 a 25,2 a 26,7 a 26,0 a 25,4 a Jumlah malai/rumpun Limboto 6,7 a 7,3 a 10,4 a 6,8 a 7,5 a 9,8 a Wayrarem 7,3 a 6,9 a 10,2 a 6,1 a 6,7 a 10,6 a IR64 5,9 a 7,1 a 9,1 a 6,6 a 7,5 a 11,5 a

Angka dalam lajur diikuti huruf yang sama tidak bebeda nyata pada taraf 5 % menurut Uji DMRT Pukan = pupuk kandang

(6)

Varietas padi gogo Way Rarem dan Limboto dapat menekan emisi gas CH4 sebesar 34% dan 24% tetapi hasil gabah kedua varietas lebih rendah 0,5 t dan 0,3 t/ha daripada IR64.

Pemberian pupuk kandang pada perlakuan OTS, dapat menekan emisi gas CH4 27% dibandinkan jerami. Pada perlakuan TOT, pemberian jerami justru dapat menekan emisi gas CH4 sebesar 124% dibanding pem- berian pupuk kandang.

DAFTAR PUSTAKA

Alexander, M. 1977. Introduction to soil microbiology. Second edition John Wiley & Sons. Nw York. 467 p.

ALGAS. 1998. National report on Asean least-cost greenhause gas abatement strategy for agricultural sector.

Bachelet, D dan H.U. Neue. 1992. Methane emission from wetland rices areas of Asia Chemosphere (in press).

Cicerone, R.J. dan R.S. Oremland. 1988. Biogeochemical aspect of atmospheric methane. Global Biogeochem Cycles 2:299-327. Japan Enviromental Agency 1992. The basic study on strategic

response against the global warning climate change and their adverse effect. Ministry of population and environmet of Indonesia, Jakarta.

Neue, H.U. 1985. Organic matter dynamics in wetland soils. p.109-122.

In: Wetland soils: Characterization, classification. and

utilization. IRRI, Los Banos, Philipines.

Neue, H.U. 1993. Methane emission from rice fields: Wetland rice fields may make a major contribution to global warning. Bio Science 43.

Neue, H.U. and H.W. Scharpenseel. 1990. Gaseous product of the

decomposition of organic matter in sub mergend soils. In:

Organic matter & soil. International Rice Research Institute. Los Banos, Philippines. p. 311-328.

Ponnamperuna, F.N. 1972. The Chemistry on submerged soils. Adv. In Agron. 24: 29-66.

Ponnamperuna, F.N. 1984. Straw as a soerce of nutrients for wetland rice, In: Organic matter and rice. International Rice Research Institute. Los Banos, Philippines. p. 311-328.

Sanchez, P.A. 1976. Properties and Management of soils in the tropics. Departement of Soil Science North Carolina State University. John Wiley and Sons, New York, London, Toronro, Sydney. Schultz. 1989. A three years continuous record of the influence of

daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy field. J. Geophys. Res. 94:16405 Wiharjaka, A, P. Setyanto dan A. Karim Makarim, 1999. Pengaruh penggunaan bahan organik terhadap hasil padi dan emisi gas metan pada padi sawah. Risalah Seminar Hasil Penelitian Emisi Gas Rumah Kaca dan Peningkatan Produktivitas Padi Sawah, Puslitbangtan, Bogor.

Yagi , K. and Minami. 1990. Effect of organik matter application of methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36: 599-610.

Yoshida,S. 1981. Fundamentals of rice crop science science crop science. International Rice Research Institute. Los Banos, Laguna, Philippines.

Gambar

Gambar 3. Pola emisi gas CH 4  harian dari perlakuan bahan organik pada padi walik jerami
Gambar 6. Emisi gas CH 4  pada perlakuan TOT padi walik jerami.
Tabel 2. Uji F beberapa parameter hasil dan komponen hasil pada padi walik jerami, Jakenan MK
Tabel 3. Hasil dan komponen hasil dari berbagai olah tanah, varietas dan bahan organik pada padi walik jerami, Jakenan MK

Referensi

Dokumen terkait

bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a dan huruf b, perlu menetapkan Keputusan Bupati Bantul tentang Pembentukan Majelis dan Sekretariat

Untuk mengetahui apakah F-CNPs dari soot limbah kopi memiliki karakteristik yang sesuai untuk potensi aplikasi yang dapat dimanfaatkan..

Target Jangka Menengah Kedeputian Sains Antariksa dan Atmosfer tahun 2020-2024 adalah peningkatan layanan informasi tentang lingkungan antariksa dan dinamika atmosfer

Bentuk pelanggaran prinsip kesantunan berbahasa pada tuturan remaja desa Karangtalun RT 04 RW 03 Kecamatan Bobotsari Kabupaten Purbalingga yang sering kali peneliti temui

- Secara umum Taget Kinerja yang ditetapkan pada Perjanjian Kinerja Kantor Wilayah Kementerian Hukum dan Ham Sulawesi Barat sudah tercapai dengan baik. Pada tahun

karena hanya berkat rahmat, hidayah dan karunia-Nya penulis berhasil menyelesaikan penelitian dengan judul “ Pengukuran Kinerja Lembaga Pengelola Zakat Dengan Metode

Atau dapat dikatakan juga bahwa belanja pegawai adalah semua pengeluaran pemerintah daerah yang tidak berhubungan secara langsung dengan aktivitas atau dengan kata

Sebagai bahan pangan, jagung dapat dikonsumsi dalam berbagai bentuk, seperti jagung basah dengan kulit, jagung kering dengan kulit, dan jagung pipilan.. Jagung