BAB II KAJIAN TEORI A. Diskrip Konseptual
1. Kemampuan Penalaran Matematis
Penalaran merupakan komponen utama dalam matematika khususnya dalam pemecahan masalah (Bergqvist dkk, 2006). Senada dengan Bergqvist, Minarni (2010) mendefinisikan penalaran adalah alat untuk memahami matematika dan pemahaman matematik itu digunakan untuk menyelesaikan masalah. Menurut Shadiq (2003) penalaran adalah suatu aktivitas berpikir untuk menarik suatu kesimpulan berdasarkan pada beberapa pernyataan yang telah terbukti kebenarannya.
deduktif adalah proses berpikir untuk menarik kesimpulan dari hal yang khusus yang didasarkan pada hal umum atau hal yang telah dibuktikan kebenarannya.
Menurut Peraturan Dirjen Dikdasmen Depdiknas Nomor 506/C/Kep/PP/2004 (Wardhani, 2008) diuraikan bahwa indikator kemampuan penalaran adalah mampu :
a. Mengajukan dugaan.
b. Melakukan manipulasi matematika.
c. Menarik kesimpulan, menyusun bukti, memberikan alasan atau
bukti terhadap kebenaran solusi. d. Menarik kesimpulan dari pernyataan. e. Memeriksa kesahihan suatu argumen.
f. Menemukan pola atau sifat dari gejala matematis untuk membuat generalisasi.
Berdasarkan beberapa definisi di atas maka dapat disimpulkan bahwa penalaran adalah proses berpikir yang dilakukan untuk menarik suatu kesimpulan dari hal-hal yang telah dianggap benar. Sedangkan kemampuan penalaran matematis berarti suatu kemampuan siswa dalam menarik kesimpulan yang didasarkan dari berbagai pernyataan matematika. Bedasarkan uraian tersebut indikator-indikator kemampuan penalaran matematis yang digunakan penelitian ini adalah sebagai berikut:
b. Melakukan manipulasi matematika.
c. Menarik kesimpulan, menyusun bukti, memberikan alasan atau bukti terhadap kebenaran solusi.
d. Memeriksa kesahihan suatu argumen.
e. Menemukan pola atau sifat dari gejala matematis untuk membuat generalisasi.
2. Model Pembelajaran Generative
Menurut Hakim (2014) model pembelajaran generative adalah kegiatan pembelajaran yang masing-masing elemen belajar bekerja secara aktif saling membantu dan saling mendukung satu sama lain. Zulkarmain (2014) intisari dari belajar generative adalah bahwa otak tidak menerima informasi dengan pasif, melainkan justru dengan aktif mengkonstruk suatu interpretasi dari informasi tersebut dan kemudian membuat kesimpulan. Sedangkan menurut Moma (2012) bahwa pembelajaran generative adalah suatu model pembelajaran yang dilakukan agar siswa dapat berperan secara aktif mengkonstruksi suatu interpretasi dari suatu informasi dan membuat suatu kesimpulan. Selain itu menurut Farouk (2016) generative didasarkan pada gagasan bahwa siswa aktif dapat mengintegrasikan ide-ide baru ke dalam ingatan mereka untuk meningkatkan pengalaman pendidikan mereka.
dengan pengetahuan yang baru. Selain itu pembelajaran generative merupakan pembelajaran dimana siswa membangun atau menciptakan pengetahuan dengan memberi makna pada pengetahuannya sesuai dengan pengalaman.
Tahapan model pembelajaran generative yang digunakan dalam tulisan ini, mengacu pada tahap-tahap yang diusulkan oleh Osborne dan Wittrock (Wena,2011) yakni: (1) tahap pendahuluan; (2) tahap pemfokusan; (3) tahap tantangan atau pengenalan konsep; (4) tahap penerapan konsep. Pendahuluan atau disebut tahap eksplorasi, pada tahap ini guru membimbing siswa untuk melakukan eksplorasi terhadap pengetahuan, ide, atau konsepsi awal yang diperoleh dari pengalaman sehari-harinya atau diperoleh dari pembelajaran pada tingkat kelas sebelumnya. Pemfokusan pada tahap ini siswa melakukan pengujian hipotesis melalui kegiatan penyelidikan. Selain itu mengarahkan siswa untuk menetapkan konteks permasalahan berkaitan dengan penyelidikan tersebut. Pada tahap ini guru bertugas sebagai fasilisator yang menyangkut kebutuhan sumber, memberi bimbingan dan arahan dengan demikian para siswa dapat melakukan proses sains.
ini siswa diajak untuk dapat memecahkan masalah dengan menggunakan konsep barunya atau konsep benar dalam situasi baru yang berkaitan dengan hal-hal praktis dalam kehidupan sehari-hari. 3. Materi Pembelajaran Matematika
Materi pembelajaran matematika pokok bahasan segiempat dan segitiga.
Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya.
Kompetensi Dasar :
6.1 Mengidentifiksi sifat-sifat segitiga berdasarkan sisi dan sudutnya 6.2 Megidentifikasi sifat-sifat persegi panjang, persegi, trapesium,
jajargenjang, belah ketupat dan layang-layang.
6.3 Menghitung keliling dan luas bangun segitiga dan segi empat serta menggunakannya dalam pemecahan masalah.
Indikator : SIKLUS 1
6.1.1. Menjelaskan jenis-jenis segitiga berdasarkan sisi-sisinya 6.1.2. Menjelaskan jenis-jenis segitiga berdasarkan besar
sudutnya
6.2.1. Menjelaskan pengertian persegi panjang menurut sifatnya 6.2.2 Menjelaskan pengertian persegi menurut sifatnya
6.2.4 Menjelaskan sifat-sifat persegi panjang ditinjau dari sisi, sudut dan diagonalnya
6.2.5 Menjelaskan sifat-sifat persegi ditinjau dari sisi, sudut dan diagonalnya
6.2.6 Menjelaskan sifat-sifat trapesium ditinjau dari sisi, sudut dan diagonalnya
SIKLUS 2
6.2.7. Menjelaskan pengertian jajar genjang menurut sifatnya 6.2.8. Menjelaskan sifat-sifat jajar genjang ditinjau dari sisi,
sudut, dan diagonalnya.
6.2.9. Menjelaskan pengertian layang-layang menurut sifatnya 6.2.10. Menjelaskan sifat-sifat layang-layang ditinjau dari sisi,
sudut, dandiagonalnya
6.2.11. Menjelaskan pengertian belah ketupat berdasarkan sifatnya.
6.2.12. Menjelaskan sifat belah ketupat berdasarkan sisi, sudut, dan diagonalnya
6.3.1. Menemukan rumus keliling segitiga 6.3.2. Menemukan rumus luas segitiga
6.3.3. Menyelesaikan masalah yang berkaitan dengan menghitung keliling dan luas segiiga
SIKLUS 3
6.3.5. Menemukan rumus keliling persegi panjang 6.3.6. Menemukan rumus luas persegi
6.3.7. Menemukan rumus luas persegi panjang
6.3.8. Menyelesaikan masalah yang berkaitan dengan menghitung keliling dan luas persegi dan panjang panjang.
6.3.9. Menemukan rumus keliling layang-layang 6.3.10. Menemukan rumus luas layang-layang 6.3.11. Menemukan rumus keliling belah ketupat 6.3.12. Menemukan rumus luas belah ketupat
6.3.13. Menyelesaikan masalah yang berkaitan dengan menghitung keliling layang-layang dan belah ketupat
B. Penelitian Relevan
1. Penelitian Farouk, A dan Elfateh, A (2016) dengan judul Effectiveness use generative Learning Model Onstrategic Thinking skill and
Learning Level Of Basics Offensive Fencing mengungkapkan bahwa model pembelajaran generative bisa meningkatkan ketrampilan berpikir stategis dan tingkat kinerja, hal tersebut ditunjukkan dengan rata-rata kelas experimental kemampuan berpikir strategis dengan menggunakan model pembelajarn generative lebih baik dari kelas kontrol.
dari penerapan pembelajaran generatif terhadap kemampuan pemecahan masalah. Hal tersebut terlihat dari rata-rata kelas eksperimen lebih tinggi dari kelas kontrol. Dengan nilai kelas eksperimen 77,69 dan kelas kontrol 63,88.
3. Penelitian Muchyidin, Arif (2014) dengan judul pengaruh strategi pembelajaran generatif terhadap kemampuan penalaran matematika siswa MTs Negeri Larugung Kuningan mengungkapkan bahwa terdapat pengaruh pembelajaran generatif terhadap kemampuan penalaran matematis, hal tersebut ditunnjukkan dengan rata-rata kemampuan penalaran matematis sebesar 69,66% termasuk dalam kategori cukup. Selain itu pembelajaran generatif mendapatkan respon yang positif dari siswa sebesar 71,05% .
Terdapat beberapa kesamaan dan perbedaan antara beberapa penelitian di atas dengan penelitian yang akan dilaksanakan oleh peneliti. Kesamaan tersebut terletak pada penggunaan model pembelajaran generative, sedangkan perbedaannya yaitu pada subyek dan objek penelitian. Penelitian (a) dilaksanakan di fakultas pendidikan psikologi, Ovidius University Annals, penelitian (b) dilaksanakan di SMA Negeri 1 Dukupuntang, Kabupaten Cirebon, penelitian (c) dilaksanakan di MTs Larugung Kuningan, dan penelitian yang akan peneliti laksanakan adalah di SMP Muhammadiyah Kaliwiro.
C. Kerangka Pikir
Kemampuan penalaran matematis siswa masih rendah maka dibutuhkan pembelajaran yang dapat merangsang daya nalar siswa dan memberikan kesempatan yang luas untuk berfikir mengajukan dugaan melalui masalah kontekstual, melihat pola melalui pemodelan dan menarik kesimpulan dari pernyataan matematika. Pembelajaran dengan dasar pandangan kontruktivisme dapat menjadi salah satu solusinya. Pandangan konstruktivisme memandang bahwa pengetahuan itu harus dibangun sendiri oleh siswa, sehingga belajar dipandang sebagai suatu proses aktif yang dilakukan oleh siswa. Salah satu pembelajaran yang menggunakan dasar kontruktivisme yaitu pembelajaran dengan model generative.
Model pembelajaran generative merupakan pembelajaran yang berpusat pada siswa dimana siswa mengkontruksi kembali pengetahun sebelumnya untuk dikaitkan dengan pengetahuan yang baru. Pada tahap pembelajaran generative terdapat aktivitas siswa dapat merangsang daya nalar. Pada tahap pemfokusan terdapat kegiatan siswa yang dapat mengajukan dugaan atau menemukan pola atau sifat dari gejala matematis untuk melakukan generalisasi. Pada tahap tantangan siswa melakukan penarikan kesimpulan dari berbagi informasi yang diperoleh. Selain itu pada tahap penerapan siswa diminta untuk menggunakan informasi tersebut untuk memeriksa suatu kesakhihan argumen yang diberikan dan melakukan manipulasi matematika. Oleh sebab itu pada tahap-tahap generativie terdapat aktivitas siswa yang bisa membantu melatih daya
nalar. Sehingga kemampuan penalaran matematis diharapkan dapat meningkat.
D. Hipotesis Tindakan