• Tidak ada hasil yang ditemukan

BAB III REKONTRUKSI TERBANG DENGAN PROGRAM X-PLANE

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB III REKONTRUKSI TERBANG DENGAN PROGRAM X-PLANE"

Copied!
19
0
0

Teks penuh

(1)

BAB III

REKONTRUKSI TERBANG

DENGAN PROGRAM X-PLANE

3.1 Pendahuluan

Dalam tugas akhir ini, mengetahui optimalnya suatu penerbangan pesawat Boeing 747-400 yang dikendalikan oleh seorang pilot dengan menganalisis hasil rekaman penerbangannya yang dapat dilihat dalam Flight Data Recorder atau FDR. Metode yang digunakan adalah dengan melakukan analisis perbandingan antara hasil yang diperoleh dari FDR dengan hasil program X-Plane. Dengan menggunakan beberapa parameter yang akan dimasukan kedalam program X-Plane sebagai referensi penerbangan tersebut, dapat diketahui hasil penerbangan pada fase lepas landas dan terbang menanjak. Karena keterbatasan dalam keluaran yang dapat diolah dalam FDR maka parameter yang dapat digunakan sebagai masukan dalam program X-Plane antara lain berat, posisi elevator, daya dorong dan posisi roda pendarat.

Analisis yang dilakukan pada tugas akhir ini dititikberatkan untuk mengetahui seberapa optimal seorang pilot untuk menerbangkan suatu pesawat, selain itu juga untuk mengetahui keakuratan program X-Plane.

Alasan penggunaan data yang diperoleh dari hasil rekaman suatu penerbangan yang direkam melalui FDR adalah bahwa parameter yang digunakan sesuai dengan kondisi penerbangan yang sesungguhnya, serta pemodelan yang dilakukan diharapkan mendekati hasil suatu penerbangan yang sesungguhnya. Sehingga dapat dilihat kelebihan serta kekurangan yang dimiliki pada penerbangan yang dikendalikan oleh seorang pilot dan suatu penerbangan simulasi yang dilakukan oleh sebuah program.

3.2 Analisis penerbangan

Bardasarkan uraian yang telah dijabarkan pada Bab serta paragraf sebelumnya maka dalam analisis ini dibedakan menjadi beberapa tahap antara analisis yang diperoleh dari FDR kemudian analisis yang diperoleh dari X-Plane lalu membandingkan hasil data

(2)

keluaran yang diperoleh dari FDR dengan data yang diperoleh dari X-Plane. Namun sebelumnya akan dibahas metodologi dalam melakukan analisis ini. Seperti pada gambar dibawah ini,

Modeling

Modeling

Simulasi

Simulasi

Data Recording

Data Recording

Analisis

Analisis

Kesimpulan

Kesimpulan

Komparasi

Tidak

Ya

Modeling

Modeling

Simulasi

Simulasi

Data Recording

Data Recording

Analisis

Analisis

Kesimpulan

Kesimpulan

Komparasi

Tidak

Ya

Gambar 11. Rekontruksi Terbang

Rekontruksi dimulai dengan memodelkan pesawat kedalam software X-Plane, kemudian menjalankan simulasi terbang dalam program X-Plane dan diperoleh data rekaman dari hasil simulasi yang hasilnya dibandingkan dengan data FDR, bila hasilnya tidak sesuai dengan FDR maka simulasi diulang kembali dengan input yang berbeda hingga hasil yang diperoleh mendekati FDR. Hasil yang diperoleh akan dianalisis pada bab IV kemudian dari analisis dapat disimpulkan faktor – faktor yang dapat mempengaruhi prestasi terbang pesawat sehingga pesawat tidak dapat terbang secara optimal.

3.3 Asumsi

Data yang diberikan FDR banyak dipengaruhi faktor-faktor luar maupun dalam pesawat, untuk membatasi pokok permasalahan yang akan dibahas maka diasumsikan beberapa pokok permasalahan, antara lain:

(3)

- Tidak ada kesalahan atau error terhadap sensor dan posisi peletakan sensor.

- Tidak ada gangguan dari luar seperti cuaca, penyimpangan kecil, kemiringan landasan dan gangguan lainnya.

3.4 Analisis Penerbangan Hasil dari FDR (Flight Data Recorder )

Flight Data Recorder merekam segala kegiatan pesawat dari awal pesawat lepas landas hingga pesawat mendarat. Dari data FDR yang diperoleh, parameter – parameter yang dapat diperoleh pada saat pesawat lepas landas hingga climb dapat dilihat pada tabel di akhir laporan tugas akhir ini. Dari banyaknya parameter yang dapat dilihat dalam FDR, tidak semua parameter keluaran FDR dapat digunakan untuk masukan FDR ,dikarenakan kemampuan alat yang terbatas. Keluaran yang diperoleh dari FDR [ ref 2 ] yang diolah pada software X-Plane pada riset ini dapat dilihat pada tabel di bawah ini :

Objek Contoh Penjelasan

Sample 184 Sample

GMT 19:49:20 Greenwich Mean Time

Date 260706 Date

Aileron-LI 0.53 Aileron - Left In Aileron-LO 0.97 Aileron - Left Out Aileron-RI -0.7 Aileron - Right In Aileron-RO 0.44 Aileron - Right Out

Aircraft 253 Aircraft Number

Airspeed 112 Airspeed

Air/Grnd GROUND Air / Ground

Altitude 263 Altitude

AOA 2.3 Angle of Attack

AspdTrue 116 kecepatan pesawat

DeptStation OEJN Departure Station (Jeddah - King Abdulaziz International) DestStation WIII Destination Station (Jakarta – Soekarno Hatta International) Elevator-LI 2.9 Elevator - Left In

Elevator-LO 5.1 Elevator - Left Out Elevator-RI 5.98 Elevator - Right In Elevator-RO 5.45 Elevator - Right Out

(4)

Flap-LO 19.25 Flap – Left Out Flap-RI 19.16 Flap – Right In FuelFlow-E1 11784 Fuel Flow - Engine 1 FuelFlow-E2 18840 Fuel Flow - Engine 2 FuelFlow-E3 18768 Fuel Flow - Engine 3 FuelFlow-E4 18864 Fuel Flow - Engine 4

FuelQty 261600 Fuel Quantity

GrndSpd 112 Ground Speed

GrossWgt 766080 Gross Weight

Gear-Lvr Lvr Down Gear – Lever Gear-Wrn Normal Gear – Warning

Tabel 1. Objek pada FDR

Dari hasil keluaran data yang terbatas pada FDR, hanya sedikit parameter hasil keluaran FDR ini yang dapat digunakan sebagai sumber dasar analisis penerbangan dan juga sebagai sumber masukan untuk program X-Plane. Sehingga, parameter yang dapat digunakan antara lain :

Parameter sebagai masukan (input) - Berat awal

- Elevator

- Posisi Roda Pendarat Parameter sebagai pembanding - Berat terhadap Waktu - Airspeed

- Ketinggian ( altitude )

- Sudut serang ( Angle of Attack )

Dari masing – masing data di atas akan dibahas pada sub-bab ini. Masing – masing parameter akan dibahas dengan cara analisis grafik, untuk parameter pembanding adalah hasil parameter keluaran FDR akan menjadi masukan kedalam program X-Plane dan hasil nya adalah parameter pembanding, kemudian kedua hasil akan ditampilkan sebagai grafik lalu akan dianalisis bila ada penyimpangan, bila hasilnya

(5)

mendekati antara FDR dan program X-Plane maka pilot menerbangkan pesawat dengan optimal dan program X-Plane termasuk program yang akurat untuk melakukan suatu simulasi namun bila hasilnya jauh berbeda akan dicari penyebab penyimpangan tersebut dan akan dianalisis dan jika memungkinkan akan dilakukan perbaikan baik dari sisi program X-Plane yang kembali direkonstruksi atau hasil perbaikan tersebut menjadi sebuah masukan pembelajaran untuk sang pengendali pesawat.

3.4.1 Parameter dari FDR

Banyaknya data FDR yang ada sampai puluhan ribu maka data tersebut harus dipilah agar mengetahui keberadaan pesawat pada kondisi lepas landas dan pada terbang menanjak.

Salah satu parameter untuk mengetahui keberadaan pesawat tersebut adalah keberadaan flap, yang berarti digunakan pada saat pesawat ingin menambah gaya angkatnya untuk mengangkat pesawat udara, tentunya pada saat kondisi lepas landas dan terbang menanjak. Dapat dilihat pada grafik di bawah ini, di mana posisi flap berada pada posisi yang optimal untuk menambah daya angkat

-5 0 5 10 15 20 25 0 100 200 300 400 500 Flap LO flap RI S u dut ( deg ) waktu (detik)

FLAP

Gambar 12. Flap

Dengan melihat grafik di atas maka mengambil kesimpulan bahwa terbang menanjak akan berakhir sekitar detik 250 pada penerbangan, sehingga data-data parameter juga akan diambil sekitar waktu tersebut.

(6)

Untuk menentukan posisi pesawat apakah masih berada dilandasan atau sudah berada di udara dapat dilihat dari posisi roda pendaratnya. Keberadaan roda pendarat sangat penting karna akan sangat berpengaruh kepada gaya hambat pesawat terbang, terutama pesawat besar yang menjadi rujukan dalam tugas akhir ini yaitu Boeing 747-400. Pada FDR tercatat landing gear diangkat pada detik 35.

Gambar 13. Posisi Roda Pendarat

Selain posisi roda pendarat faktor penting lainnya yaitu keberadaan elevator. Pada pesawat Boeing 747-400 terdapat 4 buah elevator yang bekerja yaitu elevator kiri dalam, kiri luar, kanan dalam dan yang terakhir kanan luar, sesuai dengan penerbangan yang telah direkam besarnya sudut elevator yang telah terbentuk sebagai berikut :

Elevator Vs Waktu -10 -5 0 5 10 15 0 50 100 150 200 250 Waktu ( de tik ) Sudu t s e r a n g ( de g r e e ) LI LO RI RO

(7)

Berdasarkan sudut yang dibentuk pada elevator pergerakannya hampir sama pada setiap bagian, dari parameter di atas dapat dimasukan menjadi inputan bagi software X-Plane. Dalam program X-Plane parameter tersebut akan diolah menjadi sebuah simulasi penerbangan yang akan mengeluarkan data-data penerbangan. Beberapa parameter yang diambil dari hasil simulasi akan dibandingkan dan dianalisis hasilnya dengan hasil penerbangan yang sebenarnya. Parameter yang akan diambil seperti yang telah dibahas pada bab awal yaitu berat, kecepatan udara (Airspeed), ketinggian, dan sudut serang (Angle of Attack).

3.4.1.1 Parameter dari FDR pada Fasa Lepas Landas

Pada fasa lepas landas, bahan bakar yang dikonsumsi dapat dilihat berdasarkan grafik di bawah ini.

Berat FDR 342750 343000 343250 343500 343750 344000 344250 344500 344750 345000 0 10 20 30 40 50 Berat FDR Be r a t (k g )

Waktu (de tik)

Gambar 15. Berat FDR Vs Waktu ( Take-Off ).

Pada fasa lepas landas ini, dari data FDR yang diperoleh dapat dilihat pengurangan bahan bakar yang terjadi, penurunannya dapat dikatakan konstan untuk beberapa saat tertentu. Setelah melihat pemakaian bahan bakar, faktor lain yang menjadi pembanding adalah kecepatan udara yang berada disekitar pesawat yang telah diukur oleh sensor yang ada pada pesawat.

(8)

Berdasarkan kecepatan udara yang terukur pada indicator yang berada pada pesawat udara serta terekam pada FDR maka dapat diperoleh kecepatan udara yang berada di luar pesawat pada grafik di bawah ini :

Airspeed Vs Waktu -20 0 20 40 60 80 100 120 140 0 10 20 30 40 50 Waktu ( De tik ) K e c e pa ta n ( m /s ) Airspeed FDR

Gambar 16. Airspeed FDR Vs Waktu ( Take-Off ).

Dapat dilihat melalui grafik pada 50 detik pertama, kecepatan udara yang terekam menunjukan signifikan perubahannya karena masih pada fasa take-off membutuhkan percepatan yang sangat tinggi untuk memperoleh gaya angkat yang besar. Parameter berikutnya yang akan dibahas adalah ketinggian yang diperoleh dari hasil rekaman FDR dapat dilihat pada grafik di bawah ini.

Ketinggian Vs Waktu -100 0 100 200 300 400 500 600 700 0 10 20 30 40 50 Ketinggian FDR Ket in g g ia n ( m et er)

Waktu (de tik)

(9)

Grafik menunjukan bahwa pesawat tidak mengalami gangguan dalam memperoleh ketinggian pada fasa terbang menanjak, sehingga dapat terbang secara optimal. Dan dapat dilihat melalui grafik pesawat telah lepas landas pada saat sekitar detik 30 namun sebelum pesawat lepas landas terlihat grafik berada pada posisi dibawah nol yang berarti pesawat berada posisi dibawah landasan, hal ini disebabkan karena sensor ketinggian berada di tail atau dibelakang pesawat yang akan turun dari posisi semula ketika pesawat akan take-off.

Parameter yang berikutnya yang akan dibahas adalah Angle of Attack . Sesuai dengan definisinya, Angle of Attack merupakan sudut antara chord line airfoil pesawat terhadap sumbu kecepatan udara, sehingga daya angkat pesawat terbang sangat bergantung dari besarnya Angle of Attack ini, berdasarkan data yang diperoleh hasil rekaman FDR, maka Angle of Attack yang diperoleh pada fasa lepas landas dapat dilihat pada grafik di bawah ini,

Angle of Attack -2 -1 0 1 2 3 4 5 6 7 8 9 0 10 20 30 40 50 Waktu ( detik ) Sudut Se r a ng ( de g r e e ) AOA FDR

Gambar 18. AOA FDR Vs Waktu ( Take-Off ).

Dapat dilihat bahwa grafik awal penerbangan pada saat lepas landas sudut serang yang tercipta berfluktuasi, kemungkinan dikarenakan instrument yang mengolah datanya. Setelah detik 30 untuk melakukan lepas landas sudut serang menunjukan kenaikan yang drastis dikarenakan pesawat sangat membutuhkan gaya angkat yang tinggi untuk mengangkat pesawat yang beratnya ribuan ton tersebut, kemudian sudut serang kembali turun namun tetap memiliki nilai yang fluktuasi tetapi masih dalam

(10)

margin tertentu untuk memberikan gaya angkat yang konstan pada saat fase terbang menanjak.

Setelah membahas hasil data yang telah diperoleh FDR pada fasa lepas landas, pada subbab berikut akan dibahas mengenai hasil data FDR untuk fasa terbang menanjak

3.4.1.2 Parameter dari FDR pada Fasa Terbang Menanjak

Pada fasa Terbang Menanjak, bahan bakar yang dikonsumsi pesawat dapat dilihat berdasarkan grafik di bawah ini.

Berat FDR 342750 343000 343250 343500 343750 344000 344250 344500 344750 345000 50 100 150 200 250 Berat FDR Be r a t (k g)

Waktu (de tik)

Gambar 19. Berat FDR Vs Waktu (Climb).

Pada fasa Terbang Menanjak ini yang diperoleh dari data FDR dapat dilihat pengurangan bahan bakar yang terjadi, penurunannya konstan terhadap waktu, tidak jauh berbeda dengan pemakaian bahan bakar pada fasa lepas landas.

Setelah membahas pemakaian bahan bakar, parameter selanjutnya adalah kecepatan udara disekitar pesawat. Berdasarkan kecepatan udara yang terukur pada indicator yang berada pada pesawat udara serta terekam pada FDR maka dapat diperoleh kecepatan udara yang berada di luar pesawat pada grafik di bawah ini :

(11)

Airspeed Vs Waktu -20 0 20 40 60 80 100 120 140 50 100 150 200 250 Waktu ( De tik ) K e c e pa ta n ( m /s ) Airspeed FDR

Gambar 20. Airspeed FDR Vs Waktu (Climb).

Dapat dilihat melalui grafik setelah 50 detik pertama, kecepatan udara yang terekam menunjukan perubahannya sudah tidak terlalu signifikan atau sudah mulai konstan karena masih pada fasa terbang menanjak ini tidak membutuhkan percepatan yang sangat tinggi serta udara disekitar pesawat sudah mulai konstan.

Parameter berikutnya yang akan dibahas adalah ketinggian yang diperoleh dari hasil rekaman FDR dapat dilihat pada grafik di bawah ini.

Ketinggian Vs Waktu 0 1000 2000 3000 4000 5000 6000 0 50 100 150 200 250 Ketinggian FDR K e ti n ggi an ( m e te r )

Waktu (de tik)

(12)

Grafik menunjukan bahwa pesawat tidak mengalami gangguan dalam memperoleh ketinggian pada fasa terbang menanjak, sehingga dapat terbang secara optimal.

Parameter yang berikutnya yang akan dibahas adalah Angle of Attack . sesuai dengan penjelasan pada subbab sebelumnya, berdasarkan data yang diperoleh dari hasil rekaman FDR, maka Angle of Attack yang diperoleh pada fasa terbang menanjak dapat dilihat pada grafik di bawah ini,

Angle of Attack -2 -1 0 1 2 3 4 5 6 7 8 9 50 100 150 200 250 Waktu ( detik ) Sudut Se r a ng ( de g r e e ) AOA FDR

Gambar 22. AOA FDR Vs Waktu (Climb).

Dapat dilihat bahwa grafik penerbangan pada fasa terbang menanjak sudut serang yang tercipta masih berfluktuasi sama seperti pada fasa lepas landas, kemungkinan dikarenakan instrument yang mengolah datanya. Pada fasa terbang menanjak ini walaupun pergerakan sudutnya tidak beraturan tapi masih dapat dikatakan konstan pada angka tertentu yaitu antara 3º- 6º.

Setelah membahas hasil data yang telah diperoleh dari FDR pada fasa lepas landas dan fasa terbang menanjak, pada subbab berikut akan dibahas mengenai hasil data X-Plane untuk fasa lepas landas serta terbang menanjak.

(13)

3.4.2 Parameter dari X-Plane pada Fasa Lepas Landas

Parameter pertama yang akan dibahas adalah masalah berat yang dihasilkan, untuk awal berat yang sama diperoleh grafik sebagai berikut :

Berat X-Plane 342500 342750 343000 343250 343500 343750 344000 344250 344500 344750 345000 0 10 20 30 40 50 Berat X-Plane Be r a t (k g )

Waktu (de tik)

Gambar 23. Berat X-Plane Vs Waktu ( Take-Off ).

Dapat dilihat pada grafik bahwa konsumsi bahan bakar berkurang secara konstan, sehingga terlihat bahwa garis penurunan bahan bakar berkurang hampir linier. Dari grafik yang ada dapat diketahui pula besarnya konsumsi bahan bakar terhadap waktu, dengan mencari persamaannya melalui grafik dan mencari nilai kemiringannya, begitu pula perbandingan antara data berat pada FDR untuk fasa terbang lepas landas akan dibahas pada bab selanjutnya.Setelah membahas mengenai bahan bakar salah satu parameter yang dapat dibandingkan pada fasa lepas landas adalah tinggi terbang, dapat dilihat dalam grafik di bawah ini :

Ketinggian Vs Waktu -100 0 100 200 300 400 500 600 700 0 10 20 30 40 50 Ketinggian X-Plane K e ti n g g ia n ( m e te r )

Waktu (de tik)

(14)

Dalam melakukan proses lepas landas, untuk membawa pesawat udara ke angkasa sesuai dengan ketinggian yang diinginkan maka diperlukan tenaga yang cukup besar. Antara lain gaya dorong yang besar, dari hasil simulasi pada program X-Plane tercatat besarnya gaya dorong pada fasa lepas landas seperti yang terlukis pada grafik di bawah ini:

Total Thrust X-Plane

0 50000 100000 150000 200000 250000 300000 0 10 20 30 40 50 total thrust X-Plane

Waktu ( de tik ) Th r u st (l b )

Gambar 25. Thrust X-Plane Vs Waktu ( Take-Off ).

Pada grafik di atas terlihat bahwa gaya dorong yang sangat besar atau mesin melakukan tenaga maksimum pada saat pesawat melakukan lepas landas dikarenakan pesawat sangat membutuhkan gaya yang besar untuk menciptakan daya angkat yang besar pula.

Dengan adanya gaya dorong yang tercipta, bagaimanakah kecepatan yang dimiliki pesawat? Tentu saja kecepatan yang ada sesuai dengan tenaga yang dihasilkan, semakin besar tenaga yang dihasilkan semakin besar pula kecepatan yang dimiliki pesawat. Besarnya kecepatan pada simulasi ini dapat dilihat pada grafik berikut ini :

(15)

Airspeed Vs Waktu 0 20 40 60 80 100 120 140 0 10 20 30 40 50 Waktu ( De tik ) K e c e p a ta n ( m /s ) Airspeed X-Plane

Gambar 26. Airspeed X-Plane Vs Waktu ( Take-Off ).

terlihat pada grafik yang ada bahwa kecepatan semakin bertambah pada fasa lepas landas kemudian sudah mulai terlihat konstan pada fasa terbang menanjak yaitu sekitar detik ke 50 dan kecepatan yang tercatat sekitar 200 (knot).

Saat lepas landas dan dilanjutkan dalam fasa terbang menanjak, sikap pesawat akan mengalami perubahan yaitu salah satunya sudut yang terbentuk antara sayap pesawat dengan sumbu horizontal, sehingga sayap dapat memperoleh gaya angkat yang besar sehingga pesawat dapat terbang. Sudut yang terbentuk pada sayap dinamakan Angle of Attack, telah dijelaskan pada bab sebelumnya dan pada data FDR telah dilihat besarnya sudut yang terbentuk, pada gambar 26 dapat dilihat pergerakan Angle of Atack yang dikeluarkan pada simulasi program X-Plane pada fasa terbang lepas landas.

Pergerakan sudut yang dikeluarkan melalui program X-Plane terlihat tidak beraturan , dapat dilihat pada detik 30 di mana pesawat mulai lepas landas maka sudut yang tercipta drastis menjadi besar seiring dengan besarnya daya yang diperoleh pesawat untuk melakukan lepas landas.

(16)

Angle of Attack -1 0 1 2 3 4 5 6 7 8 0 10 20 30 40 50 Waktu ( detik ) Sudut Se r a ng ( de g r e e ) AOA X-Plane

Gambar 27. AOA X-Plane Vs Waktu ( Take-Off ).

Pada subbab fasa lepas landas ini perubahan yang terlihat dari parameter-parameter yang diperoleh terlihat berubah secara signifikan. Pada subbab selanjutnya akan dibahas hasil program X-Plane pada fasa penerbangan terbang menanjak.

3.4.3 Parameter dari X-Plane pada Fasa Terbang Menanjak

Seperti pada subbab sebelumnya, parameter pertama yang dibahas adalah berat pada fasa terbang menanjak, dapat dilihat pada grafik di bawah ini :

Berat X-Plane 342500 342750 343000 343250 343500 343750 344000 344250 344500 344750 345000 50 100 150 200 250 Berat X-Plane Be r a t (k g)

Waktu (de tik)

Gambar 28. Berat X-Plane Vs Waktu (Climb).

Dapat dilihat pada grafik bahwa konsumsi bahan bakar berkurang secara konstan,sama seperti pemakaian bahan bakar pada fasa lepas landas yang menunjukan

(17)

pengurangan bahan bakar yang konstan. Setelah membahas mengenai bahan bakar parameter lainnya yang dapat dibandingkan sesuai pada fasa lepas landas adalah tinggi terbang, dapat dilihat dalam grafik di bawah ini tinggi terbang hasil simulasi program X-Plane pada fasa terbang menanjak :

Ketinggian Vs Waktu 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 50 100 150 200 250 Ketinggian X-Plane Ke ti n g g ia n ( m et er)

Waktu (de tik)

Gambar 29. Ketinggian X-Plane Vs Waktu (Climb).

Pada X-Plane, terbang menanjak yang signifikan terlihat pada sebelum detik ke 100 sedangkan setelah detik 100 ada penanjakan namun tidak terlalu besar dikarenakan pesawat akan beralih menuju fasa terbang jelajah. Untuk pembahasan selanjutnya akan dibahas pada bab setelah ini.

Dalam melakukan terbang menanjak, diperlukan gaya dorong yang besar tapi tidak sebesar pada saat melakukan lepas landas, dari hasil simulasi pada program X-Plane tercatat besarnya gaya dorong pada fasa lepas landas seperti yang terlukis pada gambar grafik di bawah ini:

(18)

Total Thrust X-Plane 0 50000 100000 150000 200000 250000 300000 50 100 150 200 250 total thrust X-Plane

waktu (de tik)

Th r u st (l b )

Gambar 30. Thrust. X-Plane Vs Waktu (Climb).

Pada grafik di atas terlihat bahwa gaya dorong yang sangat besar setelah pesawat melakukan lepas landas kemudian tenaga yang dibutuhkan tidak terlalu besar sehingga tenaga yang dikeluarkan menurun kembali seperti yang dilihat pada grafik di atas.

Besarnya gaya dorong yang menurun mempengaruhi kecepatan udara disekitar pesawat. Besarnya kecepatan udara disekitar pesawat pada fasa terbang menanjak disimulasi ini dapat dilihat pada grafik berikut ini :

Airspeed Vs Waktu 0 20 40 60 80 100 120 140 50 100 150 200 250 Waktu ( De tik ) K e c e p a ta n ( m /s ) Airspeed X-Plane

Gambar 31. Airspeed X-Plane Vs Waktu (Climb).

Terlihat pada gambar 28 bahwa kecepatan pada terbang menanjak konstan yaitu sekitar detik ke 50 dan kecepatan yang tercatat sekitar 200 (knot).

(19)

Pergerakan Angle of Atack yang diperoleh pada simulasi program X-Plane pada fasa terbang terbang menanjak dapat dilihat pada grafik di bawah ini,

Angle of Attack -1 0 1 2 3 4 5 6 7 8 50 100 150 200 250 Waktu ( detik ) Sudut Se r a ng ( de g r e e ) AOA X-Plane

Gambar 32. AOA X-Plane Vs Waktu (Climb).

Pergerakan sudut yang dikeluarkan melalui program X-Plane terlihat tidak beraturan , dapat dilihat pada gambar di atas fluktuasi yang terjadi antara 2º-5º, pergerakan sudut Angle of Atack masih dapat dikatakan wajar karena masih dalam interval jarak tertentu.

Pada subbab fasa terbang menanjak ini perubahan yang terjadi dari parameter-parameter yang diperoleh terlihat tidak berubah secara signifikan namun lebih banyak bergerak secara konstan. Pada bab selanjutnya akan dibahas analisis perbandingan hasil program X-Plane dibandingkan dengan hasil yang diperoleh dari rekaman penerbangan yang sesungguhnya yaitu dari FDR.

Gambar

Gambar  11. Rekontruksi Terbang
Tabel 1. Objek pada FDR
Gambar  13. Posisi Roda Pendarat
Gambar  15. Berat FDR Vs Waktu ( Take-Off ).
+7

Referensi

Dokumen terkait

27 Yuli Dwi Lestari, op.. seseorang akan kondisi yang mempengaruhi dirinya dalam memecahkan masalah yaitu: kapan suatu strategi seharusnya diterapkan, mengapa menerapkan

Karena fasilitas bekerja yang kurang dari RSUD Petala Bumi Pekanbaru, perawat melakukan pekerjaanya tidak dengan maksimal dengan alasan adanya perbedaan alat yang

Dalam oprasional 1-3 bulan anda sudah bisa melihat potensial tempat usaha warnet anda, apakah harus menambah komputer client atau harus menambah spesikikasi komputer, karena

Apabila ada aset tetap yang diperoleh melalui sewa guna usaha ( leasing ), bandingkan daftar aset dengan perjanjian sewa guna usaha tersebut, telaah apakah pencatatan sudah

pada siklus pertama penelitian didapatkan hasil sebagai berikut : 1) Keaktifan siswa sudah mulai ada kemajuan. Sudah ada beberapa siswa yang berani mengemukakan

Membantu Ketua Tim Pelaksana didalam mengevaluasi, men5rusun dan mengajukan rancangan perubahan danf atau penyempurnaan ketentuan petunjuk pelaksanaan

Latihan psikis merupakan metode efektif dalam pembelajaran untuk mempersiapkan keterampilan yang dipelajari dengan baik pada pembelajaran pendidikan jasmani olahraga

Dalam keadaan gawat darurat di mana harus segera dilakukan tindakan medis pada pasien yang tidak sadar dan tidak didampingi pasien, tidak perlu persetujuan dari siapapun (pasal