• Tidak ada hasil yang ditemukan

2 Jurnal SENMI 2010

N/A
N/A
Protected

Academic year: 2017

Membagikan "2 Jurnal SENMI 2010"

Copied!
8
0
0

Teks penuh

(1)

STUDI PERENCANAAN SISTEM DISTRIBUSI DAYA LISTRIK BERDASARKAN PERTUMBUHAN BEBAN

BERBASIS BIAYA INVESTASI MINIMUM

Adri Senen

Jurusan Teknik Elektro, Politeknik Bengkalis, Bengkalis – Riau email : Ad_Senen@Yahoo.com

ABSTRAK

Kebutuhan akan energi listrik yang terus meningkat akan berakibat adanya penambahan peralatan sistem distribusi, perubahan konstruksi/topologi jaringan, atau penggantian peralatan sistem distribusi. Setiap perencanaan jaringan distribusi, biaya merupakan salah satu faktor penting agar jaringan yang direncanakan tidak boros dalam pendanaan (investasi) namun jaringan yang direncanakan sesuai dengan kriteria yang telah ditentukan dan dapat memenuhi kebutuhan energi listrik bagi konsumen.

Oleh karena itu diperlukan suatu perencanaan sistem distribusi yang berbasis investasi minimum serta mampu mengakomodir adanya pertumbuhan beban tiap tahun perencanan. Penelitian ini akan coba menjawab dan menjembatani permasalahan tersebut. Penulis akan melakukan simulasi perencanaan jaringan yang tentunya memenuhi kriteria/batasan perencanaan sistem distribusi antara lain tegangan pada tiap node/bus beban dalam batas yang diizinkan, yaitu : sebesar 97% s.d. 103% dari tegangan nominal untuk kondisi marginal dan 95% s.d. 105% dari tegangan nominal untuk kondisi kritikal, Kondisi tpembebanan trafo sebesar 90% untuk kondisi marginal dan 100% untuk kondisi kritikal dan Tidak ada peralatan yang melebihi batas kemampuannya. Perencanaan dimulai dari kondisi existing (tahun ke-1) dan memperlihatkan perkembangan sistem dari tahun ke tahun, dalam tulisan ini perencanaan di targetkan sampai 10 tahun kedepan.

Kata kunci :Kebutuhan listrik, pertumbuhan beban, peralatan sistim distribusi, kriteria sistem distribusi investasi dan perencanaan sistem distribusi

II. TINJAUAN UMUM 2.1. Transformator 2.1. 1. Dasar transformator

Trafo bekerja mengubah tenaga elektrik dari satu level tegangan ke level tegangan yang lain. Terdiri dari dua pasang coil yang dikopel satu sama lain melalui suatu medan magnet. Persamaan tegangan trafo berdasarkan jumlah lilitan pada belitan, sbb:

2

Pada kenyataannya, tidak semua fluks yang terkopel diantara belitan namun juga ada leakage flux, leakage fluks ini akan menyebabkan terjadinya leakage reaktans yang menyebabkan jatuh tegangan di antara belitan trafo. Leakage reaktans akan meningkat jika tegangan primer yang tinggi, rating kVA yang besar dan inti yang besar.

2.1.2 Trafo distribusi 3 fasa

Trafo distribusi memiliki rating dari beberapa kVA s.d. beberapa MVA. Ukuran standar trafo ditunjukan pada tabel 1 di bawah ini Rating lebih kecil dari 50 kVA memiliki impedansi lebih kecil dari 2%. Rating 750 kVA sampai 2500 kVA memiliki impedansi

±

5.75%. Makin kecil impedansi maka semakin baik regulasi tegangan transformator.

Konstruksi trafo 3 fasa biasanya berasal dari 3 buah trafo 1 fasa. Arus beban penuh pada tiap fasa dari trafo 3 fasa adalah seperti ditunjukan pada persamaan 2:

(2)

dimana:

SkVA = Rating trafo (kVA)

VL-G, kV = Rating tegangan Line-ground (kV) VL-L, kV = Rating tegangan Line-Line (kV)

2.1.3. Pembebanan trafo distribusi

Trafo distribusi memberikan keluaran sesuai dengan rating keluarannya, apabila diaplikasikan pada kondisi berikut:

1. Tegangan sekunder tidak melebihi batas 105% rating. Trafo akan memilki kVA konstan apabila dioperasikan pada 100% s.d. 105% rating tegangan.

2. Fakor Daya beban (pf) lebih besar dari 80%. 3. Frekuensi lebih besar dari 95% dari rating.

Trafo distrbusi modern memiliki satuan kenaikan sebesar 650C, artinya trafo akan memiliki ekspektasi umur normal apabila dioperasikan pada temperatur belitan sebesar 650C dan titik terpanas pada belitan tidak melebihi 800C.

2.1.4. Alokasi pembebanan berdasarkan rating trafo

Jika hanya rating trafo distribusi yang diketahui, maka saluran dapat dibebani berdasarkan demand yang terukur dan rating kVA trafo. Misalkan node 1 adalah node sumber dengan tegangan sebesar V1 kV dan asumsikan daya yang terukur di node 1 adalah sebesar P1 kW dan faktor daya sebesar pf1, node 1 terhubung dengan trafo sebanyak n buah dengan rating sebesar kVAT1, kVAT2…kVATn maka dapat dihitung kVA pada node 1 sebesar :

1

Faktor alokasi dapat dihitung dengan persamaan

Sehingga sekarang alokasi untuk tiap trafo dapat dihitung dengan persamaan berikut:

n

2.2.1. Impedansi saluran udara

Saluran udara memiliki resistansi dan reaktansi yang membentuk impedansi. Nilai impedansi ini berpengaruh terhadap jatuh tegangan, aliran daya, hubung singkat dan rugi-rugi daya. Resistansi dc berbanding terbalik dengan luas konduktor saluran dan berubah terhadap suhu.

2.2.2. Jatuh tegangan pada saluran udara

Jatuh tegangan pada saluran dapat diaproksimasikan sebesar:

X

Vdrop = Jatuh tegangan disepanjang saluran (V). R, X = Resistansi dan reaktansi saluran (Ω)

IR = Arus saluran yang terjadi akibat aliran daya nyata (A) IX = Arus saluran yang terjadi akibat aliran daya reaktif (A)

2.3. Metoda Memperkecil Jatuh Tegangan

(3)

1. Terjadi pembeban tak seimbang, hal ini dapat menyebabkan terjadinya arus fasa yang tinggi dan akan mengakibatkan jatuh tegangan tinggi.

2. Kapasitor tidak bekerja, menyebabkan faktor daya menjadi turun dan mengakibatkan jatuh tegangan tinggi.

3. Regulator tidak bekerja, akan menyebabkan jatuh tegangan pada saluran.

Untuk memperkecil terjadinya jatuh tegangan dapat dilakukan dengan beberapa cara antara lain: meningkatkan pf : peningkatan pf dapat dilakukan dengan pemasangan kapasitor, mengganti saluran dengan ukuran yang lebih besar, membuat rangkaian setimbang, mengubah sistem satu fasa menjadi tiga fasa, mengurangi beban dan mengurangi panjang saluran.

2.4. Kapasitor

Telah disebutkan bahwa kapasitor dapat memperkecil jatuh tegangan. Jika suatu sistem memiliki beban pada pf rendah maka kapasistor akan memberikan energi yang disimpannya ke sistem, saat beban melepaskan energi sisanya maka kapasitor akan menyerap energi tersebut. Sehingga kapasitor dengan beban reaktif (pf rendah) saling mempertukarkan daya reaktif satu sama lain.

2.4.1 Rating kapasitor

Unit kapasitor memiliki rating 50 s.d. 500 kVar. Standar IEEE 18 mensyaratkan agara penggunaan kapasitor tidak melewati limit berikut:

1. 135% nameplate kVAR 2. 110% tegangan rms 3. 135% arus nominal.

2.4.2. Kemampuan kapasitor meningkatkan tegangan

Kapasitor dapat meningkat tegangan. Arus reaktif yang melewati impedansi sistem akan menyebabkan tegangan menjadi naik sebesar.

%

10

2

,l l kV

L kVAR rise

V

X

Q

V

=

(8)

dimana:

XL = Impedansi urutan positip sistem dari sumber ke kapasitor (Ω) VkV,l-l = Tegangan saluran-saluran sistem (kV)

QkVAR = Rating bank 3 fasa (kVAR)

Semakin besar ukuran saluran (diameter) maka impedansi saluran akan makin kecil, dengan demikian jatuh tegangan yang terjadi juga akan lebih kecil.

III. Metoda

Adapun metoda yang dilakukan adalah : 1. Digunakan metoda coba-coba (heuristic).

2. Hitung aliran daya pada topologi jaringan eksisting untuk mengevaluasi: a. Profil Tegangan (Magnitud dan sudut) pada tiap node.

b. Aliran daya pada tiap segmen saluran (kW dan kVAR). c. Total input pada saluran (kW dan kVAR)

3. Evaluasi besar arus vs kapasitas kabel dan jatuh tegangan setiap cabang. Jika arus atau jatuh tegangan melampaui kriteria yang ditetapkan, lakukan perbaikan saluran (seperti meningkatkan pf : peningkatan pf dapat dilakukan dengan pemasangan kapasitor, mengganti saluran dengan ukuran yang lebih besar)

4. Evaluasi kapasitas trafo. Jika pembebanan trafo melampaui kriteria yang ditetapkan, maka dilakukan perbaikan antara lain :

a. Pemasangan kapasitor b. Penggantian trafo c. Mutasi trafo

4. Ulangi langkah 2 sampai 4 untuk tiap tahun perencanaan.

5. Hitung investasi yang dibutuhkan untuk tiap alternative perbaikan jaringan yang dilakukan. 6. Kemudian menentukan besarnya biaya investasi minimum yang diperlukan agar kriteria dapat

(4)

IV. HASIL DAN PEMBAHASAN 4.1. Kondisi Existing Sistem Distribusi 4.1.1. Topologi jaringan

Adapun topologi jaringan digambarkan seperti pada gambar 1 berikut ini:

Gambar 1. Topologi Jaringan Kasus Uji 4.1.2. Data saluran

4.1.3. Data trafo

ID MVA

Primary Sec

% Z X/R

kV kV

Trafo1 0.25 20 0.38 6 5.8

Trafo2 0.25 20 0.38 4 5.8

Trafo3 0.4 20 0.38 6 5.8

Trafo4 0.2 20 0.38 6 5.8

Trafo5 0.25 20 0.38 6 5.8

Trafo6 0.35 20 0.38 6 5.8

Trafo7 0.175 20 0.38 4 5.8

4.2 Hasil Dan Analisa

Analisa pada kasus uji ini menggunakan metoda yang telah diuraikan secara ringkas pada bagian sebelumnya. Untuk prakiraan beban sampai dengan 10 tahun mendatang. Diasumsikan pertumbuhan beban adalah sebesar 5% /tahun dengan menggunakan persamaan sebagai berikut :

Line L (m) T(°C) R X Y MVAb %R %X %Y

Line 1 4000 75 0.443 0.3584 4.7E-06 100 44.3 35.84 0.007441

Line 2 5000 75 0.206 0.30109 5.6E-06 100 25.75 37.64 0.011193

Line 3 3000 75 0.443 0.3584 4.7E-06 100 33.23 26.88 0.005581

Line 4 2000 75 0.443 0.3584 4.7E-06 100 22.15 17.92 0.003721

Line 5 1500 75 0.443 0.3584 4.5E-06 100 16.61 13.44 0.002725

Line 6 1500 75 0.443 0.3584 4.7E-06 100 16.61 13.44 0.002791

Line 7 2500 75 0.206 0.30109 5.6E-06 100 12.88 18.82 0.005597

(5)

Fn = (1+0.1)n-1 .Setelah melakukan perhitungan prakiraan beban maka dilakukan perhitungan aliran daya untuk sepuluh tahun mendatang, dari analisa aliran daya ini akan diketahui profile (arus saluran tegangan tiap bus) untuk tiap-tiap komponen (bus, saluran dan trafo) pada topologi jaringan yang ada pada kasus uji.

Analisa aliran daya ini menggunakan program aplikasi etap 4 dengan pemodelan topologi jaringan seperti pada gambar 1. Hasil dari analisa aliran daya ini hanya akan menampilkan aliran daya pada main feeder, yang berguna untuk menghitung komponen sistem distribusi (bus dan saluran) yang berada diluar kriteria yang telah ditentukan sebelumnya. Dari analisa aliran daya didapatkan aliran daya pada saluran dan resume komponen sistem distribusi radial yang berada diluar kriteria sebagai seperti pada tabel 5 dan tabel 6 berikut. Sedangkan hasil simulasi keseluruhan dapat dilihat pada tabel-tabel dibawah ini.

Gambar 4. Analisa aliran daya dengan menggunakan program aplikasi etap 4

Tabel 1. Hasil simulasi rugi-rugi saluran dan jatuh tegangan tahun ke-1

ID Losses Voltage Drop

kW kVar From To %

line1 0.1 -7.4 100 99.93 0.07

line2 1 -9.7 100 99.72 0.28 line3 1 -4.7 100 99.76 0.24

line6 0.2 -2.6 99.76 99.69 0.07

line4 0 -3.7 99.72 99.69 0.03

line5 0 -2.7 99.72 99.7 0.02 line7 0.3 -5.2 99.72 99.62 0.1

(6)

Tabel 2. Hasil simulasi rugi-rugi saluran dan jatuh tegangan tahun ke-10

ID Losses Voltage Drop kW kVar From To %

line1 0.1 -7.3 100 99.9 0.1

line2 2.4 -7.6 100 99.57 0.43

line3 2.4 -3.6 100 99.64 0.36

line6 0.4 -2.4 99.64 99.53 0.11

line4 0 -3.6 99.57 99.53 0.04

line5 0 -2.7 99.57 99.54 0.03

line7 0.6 -4.7 99.57 99.42 0.15

line8 0.1 -5.4 99.42 99.37 0.05

Dari hasil simulasi aliran daya memperlihatkan bahwa Kapasitas arus kabel sampai 10 tahun dengan pertumbuhan beban 5 %, ternyata kapasitas arus kabel masih mencukupi (umur diabaikan). Hal ini dapat dilihat pada total rugi jaringan eksisting sebesar 2.6 Kw dari 1345 Kw atau 0,19 % dan pada tahun 10 total rugi mencapai 6 Kw dari 2190,86 MVA atau 0,27 %. Jadi total rugi-rugi masih jauh di bawah 2 %.

Tabel 3. Hasil simulasi pembebanan trafo tahun ke-1

ID Kapasitas Pembebanan Presentase (MVA) (MVA) (%)

Trafo1 0.25 0.122 48.9

Trafo2 0.25 0.216 86.3

Trafo3 0.4 0.34 85.1

Trafo4 0.2 0.098 49

Trafo5 0.25 0.098 39.1

Trafo6 0.35 0.299 85.5

Trafo7 0.175 0.147 83.9

Tabel 4. Hasil simulasi pembebanan trafo tahun ke-10

ID Kapasitas Pembebanan Presentase (MVA) (MVA) (%)

Trafo1 0.25 0.186 74.3

Trafo2 0.25 0.329 131.6

Trafo3 0.4 0.517 129.2

Trafo4 0.2 0.149 74.6

Trafo5 0.25 0.149 59.4

Trafo6 0.35 0.461 131.6

Trafo7 0.175 0.224 127.7

(7)

Tabel 5. Resume Profile komponen sistem yang berada di luar kriteria

Dari tabel 5 terlihat beberapa komponen jaringan dan trafo berada di luar criteria yang telah ditetapkan (kondisi kritis). Oleh karena itu perlu dilakukan perbaikan jaringan dengan beberapa alternatif sebagai berikut :

Alternatif 1

Berdasarkan hasil simulasi (seperti terlihat pada tabel 3.6) maka sebagai alternatif 1 untuk mengatasi kondisi kritis tersebut agar trafo tidak mengalami overload maka dapat dilakukan penggantian trafo. Untuk lebih jelas dapat dilihat pada tabel dibawah ini :

Pergantian trafo

ID Trafo Old

Pembebanan

tahun ke 10 New

Diganti

tahun ke Harga

( MVA ) ( MVA ) ( MVA ) ( Rp )

Trafo2 0.315 0.329 0.4 4 34.209.000

Trafo3 0.4 0.471 0.63 5 51.326.000

Trafo6 0.35 0.44 0.63 8 51.326.000

Trafo7 0.175 0.214 0.25 5 27.385.000

Total Biaya = 164.246.000

Jadi, besarnya biaya invenstasi yang diperlukan untuk pergantian empat buah trafo pada tahun ke-4,5 dan 8 agar sistem dapat berfungsi sesuai dengan kriteria yang telah ditetapkan adalah sebesar Rp. 164.246.000

Alternatif 2

Sebagai alternatif kedua untuk mengatasi kondisi tersebut adalah dengan melakukan pemasangan kapasitor pada titik –titik beban tertentu, namun tetap dilakukan pergantian trafo. Lihat tabel berikut:

Pemasangan kapasitor

ID

Kap Penempatan

Kapasitas Dipasang tahun

Harga

(Mvar) ( Rp )

1 Beban2 0.1 4 400.000.000

2 Beban6 0.2 8 800.000.000

Total Biaya = 1.200.000.000

Pergantian Trafo

ID Tahun

1 2 3 4 5 6 7 8 9 10

Bus H0 Marginal Marginal Kritis Kritis Kritis Kritis Kritis Kritis Kritis Kritis Bus F0 Marginal Marginal Marginal Marginal Marginal Kritis Kritis Kritis Kritis Kritis Bus E0 Aman Marginal Marginal Marginal Marginal Marginal Marginal Marginal Marginal Marginal Bus I0 Aman Marginal Marginal Marginal Marginal Marginal Marginal Marginal Marginal Marginal Bus C0 Aman Aman Marginal Marginal Marginal Marginal Marginal Marginal Marginal Marginal Bus B0 Aman Aman Aman Marginal Marginal Marginal Marginal Marginal Marginal Marginal

Bus G0 Aman Aman Aman Aman Aman Aman Aman Aman Aman Marginal

Trafo2 Aman Aman Marginal Marginal Kritis Kritis Kritis Kritis Kritis Kritis

Trafo3 Aman Aman Aman Marginal Marginal Kritis Kritis Kritis Kritis Kritis

Trafo6 Aman Aman Aman Aman Aman Aman Marginal Marginal Kritis Kritis

ID Trafo Old

Pembebanan

tahun ke 10 New

Diganti

tahun ke Harga

( MVA ) ( MVA ) ( MVA ) ( Rp )

Trafo3 0.4 0.471 0.63 5 51.326.000

Trafo7 0.175 0.214 0.25 5 27.385.000

(8)

Jadi, besarnya biaya investasi yang dibutuhkan untuk alternatif kedua ini adalah Rp. 78.711.000 + Rp. 1.200.000.000 = Rp. 79.911.000.000

Alternatif 3

Alternatif lain juga dapat dilakukan dalam rangka manajemen pembebanan trafo, yaitu: pengantian dan mutasi trafo dimana trafo yang memiki beban kecil dimutasikan ke beban besar dan begitu sebaliknya seperti ditunjukan pada tabel berikut:

Hasil perhitungan di atas dapat ditentukan besarnya biaya mutasi dan penggantian trafo adalah sebesar Rp. 102.652.000.

Dari semua alternatif, ternyata alternatif ketiga memberikan biaya investasi minimum yakni melakukan pergantian dan mutasi trafo.

V. KESIMPULAN

1. Analisa aliran daya dapat memperlihatkan profil peralatan yang berada diluar kriteria, sehingga memudahkan perencanaan.

2. Jatuh tegangan hanya terjadi pada bus tegangan rendah/sekunder, sehingga untuk memperbaikinya hanya memerlukan penggantian trafo pada bus tersebut

3. Pembebanan trafo yang tidak merata menyebabkan manajemen trafo tidak efisien.

4. Trafo yang overload dapat diganti, dimutasi, maupun dilakukan pemasangan kapasitor di beban kemudian dibandingkan besar biaya yang dibutuhkan untuk ketiga alternatif tersebut.

5. Hasil perhitungan menunjukan bahwa biaya investasi minimum untuk sistem tersebut adalah alternatif ketiga yakni mutasi dan pergantian trafo.

DAFTAR PUSTAKA

[1] HP Schmidt, dkk, Fast Reconfiguration Of Distribution Systems Considering Loss Minimisation, paper IEEE, 2005

[2] Hugh Rudnick dkk, Reconfiguration Of Electric Distribution System, paper, 1997 [3] Rina Irawati, Analisa Aliran Daya Jaringan Distribusi Radial, paper, SSTE, 2001 [4] William H K, Distributin Sistem Modeling and Analysis, CRC press, 2002 [5] X. Wang, Modern Power System Planning, Mc Graw Hill.

[6] Kersting, W.H, 2002, “Distribution System Modeling and Analysis”, CRC Press, Boca Raton London New York Washington D.C.

ID

Trafo Old

Pembebanan

tahun ke 10 New Diganti Action Harga

( MVA ) ( MVA ) ( MVA ) tahun ke ( Rp )

Trafo2 0.315 0.329 0.4 4 Mutasi dg Trafo 3 0 Trafo3 0.4 0.471 0.63 4 new 51326000 Trafo6 0.35 0.44 0.63 5 new 51326000 Trafo7 0.175 0.214 0.35 5 Mutasi dg Trafo 6 0

Gambar

Gambar 1. Topologi Jaringan Kasus Uji
tabel-tabel dibawah ini.
Tabel 3. Hasil simulasi pembebanan trafo tahun ke-1
tabel  berikut:

Referensi

Dokumen terkait

(6) Pendidikan Profesi Guru (PPG) sebagaimana dimaksud ayat (1) adalah program pendidikan yang diselenggarakan untuk mempersiapkan lulusan S1 kependidikan dan S1/D4

Siswa diminta bekerja sama untuk menyimpulkan konsep atau aturan geometri datar yang berkaitan dengan kedudukan dua garis, sifat-sifat bidang datar dan

(2) Faktor-faktor yang mempengaruhi dalam arti mendukung keterampilan guru dalam merumuskan soal-soal tes uraian adalah (a) faktor pengetahuan guru itu sendiri, (b)

Kupu-kupu ini memiliki permukaan atas dan permukaan bawah sayap berwarna hitam, terdapat warna hijau di tengah sayap yang menghubungkan sayap depan dengan sayap

Ardian !*a). adan tandardi!a!i Na!iona%. adan tandardi!a!i Na!iona%. E!tima!i adan$an Karbon dan Emi!i Karbon Fit)ria& A. E!tima!i adan$an Karbon dan

Untuk penggunaan warna pada aplikas i mobile “Student’s Telko m Univers ity”, perancang mengarahkan pemilihan wa rna yang s es uai dengan warna logo

Apakah dalam pelaksanaan kegiatan dari Perjanjian Kerja Sama antara Direktorat Kerja Sama dan Pengembangan, Ditjen HKI dengan Pusat Dokumentasi dan Informasi Ilmiah, LIPI

Dari tabel dapat dilihat perbedaan derajat PGK berdasarkan kadar kreatinin dan cystatin C yang bermakna secara statistika, yaitu bila PGK dengan LFG yang