• Tidak ada hasil yang ditemukan

Tata Surya The Solar System

N/A
N/A
Protected

Academic year: 2018

Membagikan "Tata Surya The Solar System"

Copied!
20
0
0

Teks penuh

(1)

a

g

e

2

7

Modul 4

TATA SURYA

(THE SOLAR SYSTEM)

Surachman Dimyati, Ph.D sdimyati@ut.ac.id

Sebagai sumber energi, matahari merupakan benda langit bercahaya yang paling

banyak diperlukan baik oleh manusia, binatang, tumbuhan, dan kehidupan

lainnya. Matahari sebagai penanda siang dan malam di planet bumi ini,

benar-benar menjadi sumber energi kehidupan bagi makhluk hidup.

Kata surya berarti matahari. Jadi Tata surya adalah tatanan yang terdiri dari

matahari sebagai pusat peredaran dengan planet-planet yang mengelilinginya,

termasuk bumi, membentuk suatu fisik karena gravitasi matahari.

Makhluk hidup yang ada di dunia pasti pernah melihat matahari, bulan dan

bintang. Selain itu terdapat pula benda-benda langit yang lainnya, seperti planet,

meteor dan asteroid. Semua bintang mempunyai cahaya dan memancarkannya.

Bintang adalah benda langit yang besar, mempunyai cahaya sendiri, memancarkan

cahaya panas dan gelombang elektromagnetik lainnya. Matahari adalah sebuah

bintang, tetapi planet dan bulan tidak memiliki cahaya sendiri, benda-benda itu

dapat terlihat karena memantulkan cahaya matahari. Planet ialah benda langit

yang tidak mempunyai cahaya sendiri yang mengelilingi matahari dengan lintasan

tertentu dan bergaris tengah lebih besar dari 4000 km.

(2)

P

a

g

e

2

8

9 planet yang mengelilingi matahari dalam tata surya yaitu:

1. Merkurius

2. Venus

3. Bumi

4. Mars

5. Yupiter

6. Saturnus

7. Uranus

8. Neptunus

9. Pluto

Selain ke 9 planet di atas, benda langit yang lain adalah Asteroid dan komet.

Planet beredar mengelilingi matahari yang disebabkan adanya gaya gravitasi yaitu

gaya tarik menarik antara dua buah benda.

Hubungan antara benda-benda dengan gaya gravitasi yang ditimbulkan telah

dikemukakan oleh Sir Isaac Newton yaitu:

Gaya gravitasi yang ditimbulkan oleh dua buah benda besarnya sebanding dengan

massa benda-benda itu dan berbanding terbalik dengan kuadrat jarak benda-benda

Itu.

m1= massa benda 1

m2= massa benda 2

Adapun perbandingan massa planet dan massa matahari dalam tata surya

(3)

a

g

e

2

9

Tata Surya Massa Bumi = 1

Matahari 332.448,000

Mercurius 0,053

Venus 0,825

Bumi 1,000

Mars 0,108

Jupiter 317,900

Saturnus 95,220

Uranus 14,550

Neptunus 17,230

Pluto 0,180

Kala Rotasi dan Kala Revolusi Planet-planet

Tata Surya Kala Rotasi Kala Revolusi

Matahari 25,0 hari

-Mercurius 59,0 hari 88,0 hari

Venus 243,0 hari 224,7 hari

Bumi 23,9 hari 365,3 hari

Mars 24,6 jam 687,0 hari

Jupiter 9,9 jam 11,9 tahun

Saturnus 10,4 jam 29,5 tahun

Uranus 10,8 jam 84,0 tahun

Neptunus 15,7 jam 164,8 tahun

(4)

P

Tiap planet beredar mengelilingi matahari menempuh jalan yang berbentuk elips

serta matahari terletak pada salah satu di antara titik apinya.

P = titik pusat

F1, F2 = titik fokus (titik api)

A = aphelium (jarak planet yang terjauh dari matahari)

B = perihelium (jarak planet itu yang terdekat dari matahari)

m = matahari lintasan planet

Lintasan Planet

AC = sumbu panjang

BD = sumbu pendek

P = titik pusat

F1, F2= titik api

AP = PC = setengah sumbu panjang

PC PF P

PF 2

A

(5)

a

g

e

3

1

Hukum Kepler II (Hukum Petak)

Suatu planet melukiskan bidang-bidang (petak-petak) yang luasnya sama dalam

waktu yang sama.

Bila sebuah planet menempuh jarak P1 – P2

dalam satu bulan (ketika planet itu dekat

kepada matahari (M). Maka dalam satu

bulan pula ditempuhnya jarak P3– P4(ketika

planet jauh dari petak P1MP2= petak P3MP4.

P1P2P3P4= 4 macam letak planet yang sama.

Jadi menurut hukum kepler II, petak P1MP2 sama luasnya dengan petak P3 MP4.

Ini berarti bahwa planet P lebih cepat bergesernya yaitu sepanjang busur P1 – P2

daripada sepanjang busur P3– P4.

Hukum Kepler III

Waktu periodik sebuah planet (T) adalah berbanding lurus dengan pangkat tiga

jarak rata-ratanya ke matahari (d).

Jika waktu beredar planet mengelilingi

matahari T dan jarak rata-rata planet ke

matahari adalah d maka 2 2

d T

adalah sama

harganya bagi setiap pelarut.

Sehingga hukum ini dipakai untuk menghitung jarak-jarak planet ke matahari dan

waktu peredarannya yaitu dengan membandingkannya ke bumi jika T dan d

diketahui.

Hukum Newton

Hukum ini, seperti yang telah diuraikan pada bab sebelumnya, selain

berlaku di bumi juga berlaku di angkasa raya. Dua buah benda yang berdekatan

memiliki gaya tarik menarik yang berbanding lurus dengan perkalian massa benda

(6)

P

a

g

e

3

2

F = g 2

2 1

r m m

F = Gaya tarik menarik Isaac Newton (Google image)

g = Konstanta umum gravitasi

m1, m2= massa benda

r = jarak antara massa benda

Hukum newton juga disebut hukum gaya berat atau hukum gravitasi.

Komet atau Bintang Berekor

Comet (google images)

Komet merupakan benda langit terbuat dari gas dan debu. Komet

mengelilingi matahari, dengan orbit sangat lonjong. Karena cahaya matahari

komet membentuk semacam ekor yang sangat panjang. Panjang ekor komet dapat

mencapai jutaan kilometer dan arah ekornya selalu menjauhi matahari. Karena itu

komet sering disebut sebagai bintang berekor.

Asteroid

Asteroid adalah benda langit kecil semacam planet yang mengelilingi matahari

(7)

a

g

e

3

3

dan planet Yupiter. Bentuk orbitnya hampir menyerupai lingkaran, tetapi ada

beberapa asteroid yang bentuk orbitnya lonjong, seperti karus. Asteroid

mempunyai garis tengah antara 5 sampai 400 km.

Asteroid tidak mengandung udara dan kala revolusi (waktu edar) asteroid berkisar

antara empat sampai enam tahun. Asteroid yang terbesar adalah Ceres yang

mempunyai diameter750 km.

Meteorit

Di dalam tata surya, selain matahari, planet, komet terdapat pula benda-benda

langit yang kecil yang beratnya antara 10 mg sampai beberapa puluh ton yang

dikenal sebagai meteorit atau bintang beralih. Karena adanya gaya gravitasi bumi,

seringkali meteorit memasuki atmosfer bahkan tidak jarang pula sampai ke

permukaan bumi. Gerak meteorit mempunyai kecepatan antara 10 km/sekon

sampai 70 km/sekon. Apabila meteroit memasuki atmosfer, terjadi gesekan yang

hebat dan menimbulkan pijar, sehingga meteroit dapat terbakar habis sebelum

sampai ke permukaan bumi. Peristiwa perpijaran itu disebut meteor atau bintang

beralih. Meteor tersusun dari besi dan nikel.

Menurut Wikipedia-Indonesia, pada tanggal 15 Februari 2013, sebuah meteor

memasuki atmosfer Bumi, tepat di atas Rusia, sekitar pukul 09:20:26 Waktu

Yekaterinburg (03:20:26 UTC).

Meteor jatuh di kotaYekaterinburg, Rusia 2013 (Google Image)

Akademi Sains Rusia menyatakan bahwa meteor itu seberat 10 ton dan memasuki

(8)

P

kali kecepatan suara) dan meledak di ketinggian antara 18 dan 32 mil di atas

permukaan tanah (30 hingga 50 km). Namun, badan ruang angkasa AS, NASA,

memperkirakan bahwa meteor tersebut jauh lebih besar, kira-kira berdiameter

17 m (56 kaki) dan berat 10 ton,dengan pelepasan energi yang setara dengan 500

kiloton TNT, 20-30 kali lebih kuat daripada pengujian nuklir Trinity di New

Mexico (18 kt), atau bom atom yang dijatuhkan di Hiroshima (16 kt) dan yang

dijatuhkan di Nagasaki (21 kt). Objek meledak di udara pada ketinggian antara 30

dan 50 km (20 dan 30 mil) di atas permukaan tanah. Karena jauh lebih kecil

daripada objek yang saat ini sedang dilacak oleh para ilmuwan antariksa,

meteoroid ini tidak terdeteksi sebelum memasuki atmosfer.

Asal usul terjadinya tata surya

Sampai saat ini ilmu pengetahuan belum dapat membuktikan bagaimana

sebenarnya benda-benda langit terjadi. Ada beberapa hipotesa dari ilmuwan

diantaranya:

1. Teori kabut (teori nebula)

2. Teori bintang kembar

1. Teori Kabut

Sering pula disebut sebagai teori kant dan laplace, yang mengemukakan

pertama kali yaitu Emannel Kant dan Laplace pada awal abad 19 yang

kemudian disempurnakan oleh ahli yang berikutnya diantaranya Gerald P

Lumper, selanjutnya teori ini berkembang menjadi teori kondensasi yang

menganggap bahwa tata surya berasal dari kabut gas pijar. Debu yang

menggumpal dan berputar terus menerus itu disebut nebula. Nebula terdiri dari

Hidrogen dan Helium.

Perputaran nebula makin lama makin cepat sehingga gumpalan gas itu

menyerupai cakram. Karena semakin dingin, gumpalan gas itu menjadi padat

dan akhirnya pecah menjadi kepingan yang kemudian mengitari kabut intinya

yang masih panas. Kabut inti itulah yang kini disebut matahari, sedangkan

(9)

a

g

e

3

5

2. Teori Bintang Kembar

Pada teori ini dikemukakan bahwa sebelum ada tata surya mula-mula hanya

terdapat dua bintang atau bintang kembar yang saling berdekatan. Bila salah

satu bintang itu meledak menjadi kepingan-kepingan, dan kepingan itulah

mengintari bintang yang satunya lalu menjadi sembilan planet yang telah kita

kenal. Bintang yang dikelilingi sembilan planet itu disebut matahari.

3. Teori Planetesimal

Planetisimal adalah butir-butir debu lembut yang dingin dengan garis tengah

0,005-0,008 mm. Sebuah kabut pilin terdiri dari planetisimal yang saling tarik

menarik, lalu saling bertumbukan dan merapat menjadi benda-benda langit

yang bulat, panas dan pijar yang kemudian mendingin. Hingga pada akhirnya

menyusut kembali menjadi bumi dan planet-planet lainnya.

4. Teori Kant dan Laplace

Dalam hipotesanya, disebutkan bahwa bumi itu terjadi dari pecahan gas yang

terlepas dari matahari yang disebabkan oleh gaya sentrifugal berotasi

sepanjang khatulistiwa, terlepas kemudian berputar-putar lalu mendingin.

Mula-mula berubah menjadi bola gas kemudian menjadi bola cairan dan

(10)

P

a

g

e

3

6

Penerbangan Angkasa Luar

Penerbangan angkasa luar berbeda dengan penerbangan biasa. Kalau penerbangan

biasa, keperluan oksigen untuk pembakaran mesin diberikan oleh udaranya. Jadi

keperluan oksigen tidak mungkin dipenuhi jika menggunakan mesin seperti

penerbangan biasa. Karena itu penggunaan roket mutlak diperlukan, sebab

pembakaran pada roket tidak mengambil oksigen dari luar pesawat.

Prinsip penerbangan dengan roket menggunakan Hukum III Newton: aksi =

-reaksi. Makin jauh jarak yang ditempuh dan makin kuat muatan yang dibawa

pesawat, makin banyak pula bahan bakar roket yang diperlukan. Untuk mengatasi

hal ini roket dibuat beberapa tingkat.

Jenis-jenis Penerbangan angkasa luar

1. Penerbangan tanpa awak (unmanned flight)

2. Penerbangan berawak (manned flight)

Selain itu penerbangan angkasa luar dapat dibedakan:

a. Penerbangan sekali jalan

misalnya penggunaan roket untuk menempatkan satelit-satelit atau alat-alat

observasi di angkasa. Pada penerbangan ini muatan diletakkan di ujung atas

roket. Sedangkan roket-roket akan lepas setelah bahan bakarnya habis.

(11)

a

g

e

3

7

Penerbangan seperti ini biasanya diikuti dengan astronot atau kosmonot.

Setelah misinya selesai (menempatkan satelit, teleskop, laboratorium angkasa

luar, pendaratan di bulan/planet), astronot dengan kembali ke bumi. Pesawat

untuk kembali, berbentuk kapsul kerucut yang dilengkapi mesin roket dan jet

sebagai sistem control pendaratan (Re-entry Control System).

c. Penerbangan Rendezvous dan docking

Dalam penerbangan rendezvous, suatu pesawat bertemu dan bergandengan

dengan pesawat lain di angkasa. Proses rendezvous dan docking dapat

dilakukan untuk satu misi (misalnya misi gemini apollo) atau beberapa misi

(misalnya penggandengan pesawat milik Amerika dan Uni Soviet). Agar dapat

melakukan rendezvous (perjumpaan) dan docking (penggandengan), maka

masing-masing pesawat harus berorbit pada bidang yang sama. Jika tidak,

maka proses penggandengan pesawat tidak dapat dilakukan.

Bagaimana suatu pesawat dapat melepaskan gaya gravitasi bumi?

Jika seseorang melempar benda secara horisontal maka benda menempuh

lintasan paralel. Makin cepat lemparan benda, makin jauh benda itu jatuh ke

bumi. Jika kecepatan benda mencapai 29.000 km/jam atau 8 km/s maka benda

ini tidak tepat jatuh ke bumi, melainkan mengelilingi bumi dan menjadi satelit

komunikasi, misalnya palapa akan satelit tidak bergerak dan tetapi berada di

titik tertentu di atas bumi. Keadaan seperti di atas disebut geo sinkron atau geo

(12)

P

a

g

e

3

8

Kecepatan satelit . v

v = d QM

T = 2 GM

d3

Sedangkan nilai kecepatan lepas (escape velocity) dari gravitasi bumi adalah

v = d GM 2

Peristiwa-peristiwa penting dalam penerbangan ruang angkasa

- 4 Oktober 1951, peluncuran Sputnik I, oleh Uni Soviet.

Satelit bumi buatan yang pertama. Satelit ini berada pada perigee (titik

terdekat dengan bumi) = 227 km dan apogee (titik terjauh dengan bumi) = 947

km. Misinya adalah menyelidiki peristiwa-peristiwa alam di lapisan atas

atmosfir dan persiapan penerbangan manusia ke bulan.

- 3 November 1957 – peluncuran sputnik II.

- 31 Januari 1958, Explorer I oleh Amerika Serikat

(13)

a

g

e

3

9

- 11 Oktober 1958, Pionir I – Amerika Serikat mencapai ketinggian 114.000 km

- 2 Januari 1959 Lunik I – Uni Soviet bertujuan mencapai bulan tapi meleset,

hingga masuk ke garis orbit mengelilingi matahari. Tanpa sengaja lurik I

menjadi satelit buatan yang mengelilingi matahari seperti Merkurius, venus,

bumi dan lain-lain.

- 12 September 1959. Lunik II berhasil mencapai bulan massanya 1511 kg.

- 4 Oktober 1959, roket Kosmos – Uni Soviet, berhasil memotret permukaan

bulan.

- Selama tahun 1960 Uni Soviet telah meluncurkan Sputnik IV dan Sputnik V,

sementara itu Amerika Serikat meluncurkan Satelir pioneer V.

- 31 Januari 1961.

- Capsul Mercury – milik Amerika Serikat berawak Chimpase menempuh

perjalanan 650 km, kembali ke bumi dalam keadaan selamat.

- 12 Pebruari 1961, Uni Soviet berhasil menempatkan stasiun antar planet

menuju Venus.

- Selama tahun 1961 Uni Soviet meluncurkan pesawat Nastok I dan Nastok II

sedangkan Amerika Serikat meluncurkan Mercury-nya dengan astronot I,

Letkol Shedpard.

- Pada tahun 1962 Astronot ke-2 Amerika – John Glena, mengelilingi bumi 3

kali selama 4 jam 56 menit. Sedangkan Uni Soviet meluncurkan 2 pesawat

Wastok III dan Wastok IV dengan kosmonot masih banyak lagi

perkembangan dunia penerbangan angkasa luar antara a.1.

- Uni Soviet berhasil mendaratkan manusia pertama di bulan pada bulan Juli

1969 pada penerbangan Apollo XI, selanjutnya terus dilanjutkan

penerbangan-penerbangan lain seperti Apollo XII s/d XVII (Apollo XIII gagal).

- Amerika dan Uni Soviet berhasil menggandengkan pesawat mereka di

angkasa luar.

- Selain kedua negara itu Amerika Serikat dan Uni Soviet (sebelum terpisah),

yang mengembangkan program angkasa luarnya adalah Eropah (beberapa

negara), Perancis, dan China.

- Perancis dan China berhasil dalam meluncurkan dan menempatkan banyak

(14)

P

- Pada tahun 1976 Indonesia memiliki sendiri satelit komunikasi ”Palapa A1,

selanjutnya diikuti pula peluncuran Palapa AII, BI dan BII, setiap satelit

mempunyai jangka waktu tertentu untuk dapat bekerja dengan baik. Sampai

sekarang (1994), satelit Palapa BII masih beroperasi dan diharapkan tugasnya

akan digantikan satelit Palapa CI yang segera diluncurkan oleh roket Ariane –

dari Perancis. Sedangkan satelit Palapa CII direncanakan akan diluncurkan

oleh Amerika Serikat sebagaimana Satelit Palapa AI, AII, BI, dan BII.

Satelit Palapa diorbitkan secara geostationer, pada ketinggian sekitar

36000 km dari bumi. Dari ketinggian ini satelit dapat mengcover1/3 permukaan

bumi. Satelit berfungsi menerima dan menyalurkan sinyal elektronik dari bumi,

berupa telepon, televisi, fachimile (fax) dan lain-lain. Selain melayani komunikasi

domestik (Indonesia) satelit palapa dapat dimanfaatkan negara-negara tetangga

(Malaysia, Phylipina, Brunei, Singapura dan lain-lain).

Dalam komunikasi internasional (telepon, fax, TV, dan lain-lain)

menggunakan beberapa satelit komunikasi yang dibantu oleh stasiun bulan di

bumi. Selain itu dengan antena parabola, dan satelit-satelit internasional kita dapat

mengikuti siaran TV dari seluruh dunia.

Selain untuk komunikasi, satelit-satelit dapat dirancang untuk kepentingan

yang lain misalnya:

- Satelit cuaca

- Satelit penelitian sumber-sumber daya alam (pertambangan, pertanian)

- Satelit militer (mata-mata)

- Satelit penelitian angkasa luar

- dan lain-lain

Soal-soal Latihan

1. Yang termasuk benda-benda langit ...

2. Bintang adalah benda langit yang ...

3. Matahari adalah ...

4. Sebutkan nama-nama planet dalam tata surya !

5. Bagaimana rumus hukum gravitasi Newton?

(15)

a

g

e

4

1

7. Planet no. 2 terbesar adalah ...

8. Kala rotasi matahari ... hari

9. Kala revolusi pluto ... tahun

10. Jarak Matahari – Pluto ... juta km

11. Jelaskan mengenai Hukum Kepler I?

12. Jelaskan pula mengenai hukum Kepler II?

13. Apakah yang dimaksud komet?

14. Mengapa ekor komet selalu menjauhi matahari?

15. Apakah asteroit?

16. Berapakah diameter asteroid?

17. Apa yang dimaksud meteorit?

18. Mengapa meteorit berpijar ketika memasuki atmosfir?

19. Jelaskan mengenai teori Kabut Kant dan Laplace!

20. Jelaskan pula teori bintang kembar!

21. Jelaskan pula teori planetisional!

22. Bagaimana bentuk bumi yang sebenarnya?

23. Bagaimana perbandingan jari-jari bumi ke khatulistiwa dengan ke kutub?

24. Ada berapa macam gerak bumi?

25. Berapakah kala rotasi dan revolusi bumi?

26. Gambarlah posisi bumi, bulan dan matahari pada peristiwa gerhana bulan!

27. Gambarlah pula untuk gerakan matahari!

28. Ada berapa macam gerak bulan? Jelaskan!

29. Bagaimana gravitasi bulan dibandingkan dengan gravitasi bumi?

30. Apa yang menyebabkan pasang surut air laut? Jelaskan dengan gambar!

31. Apa perbedaan penerbangan dengan roket dibandingkan dengan penerbangan

biasa?

32. Apa yang dimaksud gerak satelit geosinkron?

33. Apakah nama satelit pertama yang diorbitkan? Negara mana yang membuat?

34. Siapakah nama kosmonot pertama?

35. Tahun berapa manusia mendarat di bulan? Dengan pesawat apa dan dari

negara mana?

(16)

P

37. Apakah fungsi satelit Palapa?

38. Bagaimana bekerjanya satelit Palapa?

Soal-soal Pilihan Ganda

1. Planet yang terbesar adalah ....

A. Saturnus

B. Uranus

C. Venus

D. Yupiter

E. Neptunus

2. Planet yang kala revolusinya paling lama adalah ....

A. Pluto

B. Mercurius

C. Venus

D. Neptunus

E. Mars

3. Benda angkasa yang masuk ke bumi, terlihat terang pada malam hari adalah ...

A. komet

B. asteroid

C. meteor

D. nebula

E. korona

4. Berikut ini adalah akibat rotasi bumikecuali...

A. terjadi siang – malam

B. perubahan arah angin

C. bumi memepat

D. revolusi bumi

(17)

a

g

e

4

3

5. Pasang surut air laut berdasarkan hukum ....

A. gravitasi Newton

B. Kepler I

C. Kepler II

D. Kepler III

E. Titus – Bede

6. Alasan penggunaan roket dalam penerbangan angkasa luar adalah ....

A. jaraknya jauh

B. suhunya tinggi

C. suhunya sangat rendah

D. sedikit oksigen

E. gesekan udara kecil

7. Prinsip penerbangan dengan roket adalah ....

A. Hukum I Newton

B. Hukum II Newton

C. Hukum III Newton

D. Hukum Keepler

E. Hukum Coulomb

8. Pada proses penggandengan dua pesawat di angkasa luar (rendezvous dan

docking) maka dua pesawat tersebut harus ....

A. memiliki orbit yang sebidang

B. memiliki orbit yang sejajar

C. memiliki orbit yang saling tegak lurus

D. kecepatannya harus sama

E. kecepatannya hampir sama

9. Keadaan satelit yang seakan-akan tidak bergerak dan tetap berada di titik

tertentu disebut keadaan ….

(18)

P

10. Kecepatan horisontal agar suatu benda tetap mengelilingi bumi adalah ….

A. 8 km/s

B. 10 km/s

C. 15 km/s

D. 20 km/s

E. 25 km/s

11. Kecepatan roket untuk dapat lepas dari gaya tarik bumi disebut juga ….

A. Zero Velocity

B. Vacuum Velocity

C. Escape Velocity

D. Highes Velocity

E. Optimum Velocity

12. Satelit bumi buatan yang pertama adalah ….

A. Mercury I

B. Gemini I

C. Pioner I

D. Sojuz I

E. Sputnik I

13. Pendaratan manusia di bulan terjadi pada tahun ....

A. 1962

B. 1964

C. 1969

(19)

a

g

e

4

5

14. Kegiatan berikut dapat dibantu oleh satelit Palapa,kecuali....

A. telepon

B. fax

C. telex

D. TV

E. ramalan cuaca

15. Satelit-satelit dapat difungsikan sebagai berikut,kecuali....

A. ramalan cuaca

B. penelitian sumber daya alam

C. telekomunikasi

D. keperluan militer

E. penstabilan ozon

Kunci Jawaban

1. D 9. E

2. A 10. A

3. C 11. C

4. D 12. E

5. A 13. D

6. D 14. E

7. C 15. E

(20)

P

a

g

e

4

6

DAFTAR PUSTAKA

Beauford Kathy,A Teachers Companion to the Space Station, Space Station Education Project-Michoud Aerospace, Public Relation Department, New Orleans, LA, 1987

Bennet . Donahue. Scheneider. Voit. The Essential Cosmic Prospective, Media Update, Pearson Education,Inc, publishing as Addison Wesley, San Francisco, CA. 2005

Bishop ON, Physics – A Practical Approach, MacMillan Publishers, Ltd, London, 1985

Chaisson,E, McMillan,S, Astronomy Today, Addison Wesley, Pearson, 2011.

Referensi

Dokumen terkait

Sedangkan, SAP Berbasis Akrual (modifikasian) menurut PP Nomor 71 Tahun 2010 mewajibkan entitas pelaporan menyusun dan menyajikan tujuh laporan keungan pokok yang terbagi

terutama menyangkut kegiatan upacara adat serta kebiasaan sebagai masyarakat. adat sebagai bentuk pengenalan kepada

5 Dalam pemerintahan, Uzbeg Khan yang telah menjadikan Golden Horde sebagai negara Islam, memerintah kepada seluruh bawahannya untuk masuk Islam, jika menolak mereka harus

Skripsi ini diajukan untuk memenuhi salah satu persyaratan guna memperoleh gelar Sarjana Komputer, Fakultas Teknologi Informasi Program Studi Teknik Informatika,

Pengalaman Lapangan (PPL) merupakan kegiatan kurikuler yang harus dilakukan oleh mahasiswa praktikan sebagai wadah pelatihan untuk menerapkan teori yang diperoleh

Mewakili sejumlah narasumber tersebut, Prof Haryono Suyono, Subiakto Tjakrawerdaja, Cosmas Batubara dan Anton Taba berbicara tentang sosok Pak Harto dalam talkshow yang dipandu

Bahan baku ini sangat menentukan karena bentuk dan ukuran kayu harus sesuai dengan desain yang akan kita buat, setelah kita mendapatkan bahan yang sesuai maka kayu dibiarkan

Tingkat keberhasilan tumbuh terbaik pada pengujian aklimatisasi tanaman di rumah kaca, yaitu penanaman dengan menggunakan media campuran tanah + pupuk kandang atau tanah +