• Tidak ada hasil yang ditemukan

LAPORAN ASISTENSI MATA KULIAH PENGINDERAAN JAUH. Dosen : Lalu Muhammad Jaelani ST., MSc., PhD. Cherie Bhekti Pribadi ST., MT

N/A
N/A
Protected

Academic year: 2021

Membagikan "LAPORAN ASISTENSI MATA KULIAH PENGINDERAAN JAUH. Dosen : Lalu Muhammad Jaelani ST., MSc., PhD. Cherie Bhekti Pribadi ST., MT"

Copied!
30
0
0

Teks penuh

(1)

LAPORAN ASISTENSI

MATA KULIAH PENGINDERAAN JAUH

Dosen :

Lalu Muhammad Jaelani ST., MSc., PhD Cherie Bhekti Pribadi ST., MT

Oleh:

Mutia Kamalia Mukhtar 3514100084

Jurusan Teknik Geomatika

Institut Teknologi Sepuluh Nopember Ph. 031-5929487

(2)

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa karena dengan rahmat, karunia, serta hidayah-Nya penulis dapat menyelesaikan laporan ini. Penulis mengucapkan terima kasih kepada:

1. Bapak Lalu Muhammad Jaelani ST., MSc., PhD. selaku dosen mata kuliah Penginderaan Jauh.

2. Ibu Cherie Bhekti Pribadi ST., MT. selaku asisten dosen mata kuliah Penginderaan Jauh.

3. Teman-teman yang membantu dalam proses penyelesaian laporan praktikum ini.

Penulis berharap laporan ini dapat berguna dalam menambah wawasan serta pengetahuan kita mengenai koreksi geometrik citra. Jika terdapat kekurangan dalam penulisan laporan ini mohon dimaafkan. Oleh sebab itu, Penulis berharap adanya kritik, saran dan usulan demi perbaikan laporan yang akan di buat berikutnya.

Semoga laporan ini dapat dipahami bagi siapapun yang membacanya dan juga dapat berguna bagi penulis. Mohon maaf apabila terdapat kesalahan kata dalam penulisan laporan ini. Kritik dan saran yang membangun sangat diperlukan demi perbaikan laporan ini.

Surabaya, 12 Oktober 2016

(3)

DAFTAR ISI HALAMAN JUDUL KATA PENGANTAR DAFTAR ISI BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Maksud dan Tujuan BAB II DASAR TEORI

2.1 Koreksi Geometrik ( Registrasi Image to Map) 2.2 Citra Satelit MODIS

2.3 Resolusi Spektral BAB III PELAKSANAAN

3.1 Alat dan Bahan

3.2 Tempat dan Waktu Praktikum 3.3 Petunjuk Praktikum

3.3.1 Subset Data Via ROI 3.3.2 Spatial Subset 3.3.3 Spectral Subset

3.3.4 Registration Image to Map BAB IV HASIL DAN ANALISA

4.1 Subset Data Via ROI 4.2 Spatial Subset 4.3 Spectral Subset

4.4 Registration Image to Map BAB V PENUTUP

5.1 Kesimpulan 5.2 Saran DAFTAR PUSTAKA LAMPIRAN

(4)

BAB I

PENDAHULUAN 1.1 Latar Belakang

Di bidang keilmuan geomatika memang difokuskan di bidang pemetaan. Berbagai macam teknik digunakan untuk menghasilkan peta suatu daerah yang dikehendaki. Mulai dari metode yang sederhana sampai teknologi yang sangat canggih pun digunakan untuk mendapatkan gambaran suatu daerah sesuai keperluan. Salah satunya yaitu dengan memperoleh peta dengan menggunakan citra satelit maupun foto udara.

Maka dari itu digunakan beberapa software untuk mengolah peta yang didapatkan sesuai kebutuhan. Dalam praktikum kali ini, kami melakukan pengolahan citra hasil satelit agar mudah untuk di analisa dan di interpretasikan. Maka dari itu dalam pengolahan data kali ini software yang digunakan adalah adalah ENVI 4.6.1 yang merupakan software yang digunakan untuk pengolahan data citra satelit karena dalam pengoperasiannya cukup sederhana.

1.2 Maksud dan Tujuan

Tujuan dalam melaksanaan praktikum ini adalah sebagai berikut :

a. Pengenalan cara melakukan koreksi geometrik dengan metode registrasi (image to map).

b. Mengetahui tentang spatial subset. c. Mengetahui tentang spectral subset. d. Registration Image to Map.

(5)

BAB II DASAR TEORI

2.1 Koreksi Geometrik

Geometrik merupakan posisi geografis yang berhubungan dengan distribusi keruangan (spatial distribution). Geometrik memuat informasi data yang mengacu bumi (geo-referenced data), baik posisi (sistem koordinat lintang dan bujur) maupun informasi yang terkandung di dalamnya.

Menurut Mather (1987), koreksi geometrik adalah transformasi citra hasil penginderaan jauh sehingga citra tersebut mempunyai sifat-sifat peta dalam bentuk, skala dan proyeksi. Transforamasi geometrik yang paling mendasar adalah penempatan kembali posisi pixel sedemikian rupa, sehingga pada citra digital yang tertransformasi dapat dilihat gambaran objek dipermukaan bumi yang terekam sensor. Pengubahan bentuk kerangka liputan dari bujur sangkar menjadi jajaran genjang merupakan hasil transformasi ini. Tahap ini diterapkan pada citra digital mentah (langsung hasil perekaman satelit), dan merupakan koreksi kesalahan geometrik sistematik.

Geometrik citra penginderaan jauh mengalami pergeseran, karena orbit satelit sangat tinggi dan medan pandangya kecil, maka terjadi distorsi geometric. Kesalahan geometrik citra dapat tejadi karena posisi dan orbit maupun sikap sensor pada saat satelit mengindera bumi, kelengkungan dan putaran bumi yang diindera. Akibat dari kesalahan geometrik ini maka posisi pixel dari data inderaja satelit tersebut sesuai dengan posisi (lintang dan bujur) yang sebenarnya.

Kesalahan geometrik citra berdasarkan sumbernya kesalahan geometrik pada cita penginderaan jauh dapat dikelompokkan menjadi dua tipe kesalahan, yaitu kesalahan internal (internal distorsion), dan kesalahan eksternal (external distorsion). Kesalahan geometrik menurut sifatnya dapat dibedakan menjadi dua jenis yaitu kesalahan sistematik dan kesalahan random. Kesalahan sistematik merupakan kesalahan yang dapat diperkirakan sebelumnya, dan besar kesalahannya pada umumnya konstan, oleh karena itu dapat dibuat perangkat lunak koreksi geometrik secara sitematik. Kesalahan geometrik yang bersifat random (acak) tidak dapat diperkirakan terjadinya, maka

(6)

koreksinya harus ada data referensi tambahan yang diketahui. Koreksi geometrik yang biasa dilakukan adalah koreksi geometrik sistemik dan koreksi geometrik presisi.

Kesalahan geometrik internal disebabkan oleh konfigurasi sensornya, akibat pembelokan arah penyinaran menyebabkan distorsi panoramic (look angle), yang terjadi saat cermin scan melakukan penyiaman (scanning). Besarnya sudut pengamatan (field of view) satelit pada proses penyiaman akan mengakibatkan perubahan luas cakupan objek. Distorsi panoramic sangat besar pengaruhnya pada sensor satelit resolusi rendah seperti rendah NOAA-AVHRR dan MODIS, namun citra resolusi tinggi seperti Landsat, SPOT, IKONOS, Quickbird, dan ALOS bebas dari distorsi panoramic, karena orbitnya yang tinggi dengan medan pandang kecil hampir tidak terjadi pergeseran letak oleh relief pada data satelit tersebut. Distorsi yang disebabkan perubahan atau pembelokan arah penyiaman bersifat sistematik, dapat dikoreksi secara sistematik. Kesalahan geometrik menyebabkan perubahan bentuk citra.

2.1.1 Registrasi

Memberikan koordinat pada citra berdasarkan koordinat yang ada pada citra lain (dengan cakupan area yang sama) yang telah memiliki koordinat. Dalam beberapa kasus, yang dibutuhkan adalah penyamaan posisi antara satu citra dengan citra lainnya dengan mengabaikan sistem koordinat dari citra yang bersangkutan. Penyamaan posisi ini kebanyakan dimaksudkan agar posisi piksel yang sama dapat dibandingkan. Dalam hal ini penyamaan posisi citra satu dengan citra lainnya untuk lokasi yang sama sering disebut dengan registrasi. Dibandingkan dengan rektifikasi, registrasi ini tidak melakukan transformasi ke suatu koordinat sistem. Dengan kata lain, registrasi adalah suatu proses membuat suatu citra konform dengan citra lainnya, tanpa melibatkan proses pemilihan sistem koordinat.

2.2 Citra Satelit MODIS

MODIS (Moderate Resolution Imaging Spectroradiometer) merupakan sensor multispektral yang memiliki jumlah 36 band yang mempunyai resolusi spasial yang berbeda-beda mulai dari 250 m (band 1-2), 500 m (band 3-7), 1000 m (band 8-36)

(7)

dengan panjang gelombang mulai dari 0,620-14,385 µm. Sensor ini mengorbit bumi secara polar pada ketinggian 705 km, lebar cakupan lahan pada permukaan bumi setiap putarannya sekitar 2330 km.

Band λ (µm)

Resolusi Spasial (m)

Kegunaan Utama

Saluran Reflektan (Pantulan) 1 0,620 - 0,670 250

Aerosol, Awan, Lahan

2 0,841 - 0,876 250 3 0,459 - 0,479 500

Aerosol, Awan, Ketebalan Optis,Bentuk Awan, Masking

Awan, Salju, Lahan/Tanah

4 0,545 - 0,565 500 5 1,230 - 1,250 500 6 1,628 - 1,652 500 7 2,105 - 2,155 500 8 0,405 - 0,420 1000 Warna Laut, Klorofil,Fitoplankton, Biogeo-kimiawi 9 0,438 - 0,448 1000 10 0,483 - 0,493 1000 11 0,526 - 0,536 1000 12 0,546 - 0,556 1000 Sedimen, Atmosfer 13 0,662 - 0,672 1000 14 0,673 - 0,683 1000 Flouresense 15 0,743 - 0,753 1000 Aerosol Atmosfer 16 0,862 - 0,877 1000

(8)

Band λ (µm) Resolusi Spasial (m) Kegunaan Utama 18 0,931 - 0,941 1000 19 0,915 - 0,965 1000 26 1,360 - 1,390 1000 Awan Sirus

Saluran Radian (Pancaran) 20 3,660 - 3,840 1000

Permukaan dan Awan, Suhu, Api dan Vulkanik,

Suhu Muka Laut

21 3,929 - 3,989 1000 22 3,929 - 3,989 1000 23 4,020 - 4,080 1000 24 4,433 - 4,498 1000 Suhu Atmosfer 25 4,482 - 4,549 1000 27 6,535 - 6,895 1000

Uap Air Troposfer

28 7,175 - 7,475 1000

29 8,400 - 8,700 1000 Partikel Awan

30 9,580 - 9,880 1000 Total Kandungan Ozon

31 10,780 - 11,280 1000

Awan, Api, Suhu Permukaan

32 11,770 - 12,270 1000 33 13,185 - 13,485 1000

Ketinggian Awan, Suhu, Tekanan, Profil Suhu/Temperatur

34 13,485 - 13,785 1000 35 13,785 - 14,085 1000 36 14,085 - 14,385 1000

(9)

2.3 Resolusi Spektral

Resolusi spektral diartikan sebagai dimensi dan jumlah daerah panjang gelombang yang dimiliki oleh sensor. Sebagai contoh, potret hitam-putih mempunyai resolusi yang lebih rendah (0,4 m - 0,7 m) dibandingkan dengan Landsat TM band 3 (0,63 m - 0,69 m). Dengan jumlah band-band sempit yang banyak maka pemakai atau peneliti dapat memilih kombinasi yang terbaik sesuai dengan tujuan dari analisis untuk mendapatkan hasil yang optimal. TM mempunyai 7 band dengan lebar setiap bandnya yang sempit tetapi rentang band yang digunakan lebar (mulai band biru sampai dengan band termal), sedangkan SPOT 5 mempunyai 4 band dengan rentang dari band hijau sampai dengan inframerah sedang, ini berarti bahwa TM mempunyai resolusi spektral yang lebih baik dibandingkan dengan SPOT.

(10)

BAB III PELAKSANAAN

3.1 Alat dan Bahan

 Laptop Asus S551L

 Citra Landsat Kota Bogor Tanggal : 17 Agustus 2016 Path : 122

Row : 64

 Citra MODIS Sulawesi

 Software ENVI 5.1

3.2 Tempat dan Waktu Praktikum

Hari : Selasa

Tanggal : 11 Oktober 2016

Jam : 14.00-15.00 BBWI

Tempat : Laboratorium Geospasial Teknik Geomatika ITS

3.3 Petunjuk Praktikum

3.3.1 Subset Data Via ROI 1. Buka software ENVI.

(11)

3. Pilih RGB, lalu klik Band 3-2-1 dan Load.

4.Masukkan peta vektor yang telah di potong sesuai daerah kabupaten masing-masing.

(12)

5. Pilih Subset Data Via ROIs di menu Basic Tools.

(13)

7. Pilih data yang akan di subset lalu aktifkan Mask pixels output of ROI, dan save.

8.Setelah itu akan muncul band hasil subset. Klik Load jika ingin menampilkan hasil citra yang telah di subset.

(14)

3.3.2 Spatial Subset

1. Pilih Open Image File, lalu masukkan data citra MODIS yang telah di georeferencing sebelumnya. Dan load Band 3-2-1.

2. Pilih menu Basic Tools lalu pilih Resize Data.

(15)

4. Klik Spatial Subset di menu Subset Using klik Image.

5. Ganti angka Samples dan Lines sesuai yang anda butuhkan, disini saya menggunakan 800x1000. Lalu arahkan kotak merah ke daerah yang ingin anda potong. Klik OK.

(16)

3.3.3 Spectral Subset

1. Pilih Spectral Subset.

(17)

3. Akan muncul jendela Resize Data Parameters. Lalu save citra. Klik OK.

(18)

3.3.4 Registration Image to Map

1. Masukkan citra MODIS yang telah di potong. Load Band 3-2-1.

(19)

3. Pilih menu Map lalu pilih Registration kemudian pilih Image to Map. Lalu pilih proyeksi UTM, Datum WGS-84, Units Meters, Zone 51 S, dan klik OK.

(20)

5. Buka kembali jendela Vector Parameters: Cursor Query. Pilih titik GCP yang anda inginkan, lalu pilih mode zoom, klik ditengah-tengah piksel. Akan keluar angka Easting dan Northing di kolom Location. Copy angka Easting dan Northing tersebut ke jendela Ground Points Selection lalu klik Add Point.

6. Ulangi langkah 4 dan 5 untuk mendapatkan titik GCP sebanyak yang anda inginkan.

7. Pilih Option lalu Warp File.

(21)

9. Save citra yang akan ada GCP nya.

10. Lalu proses registrasi pun akan selesai dengan munculnya band seperti berikut. Load Band 1 sampai 4 untuk melihat hasilnya.

(22)

BAB IV

HASIL DAN ANALISA 4.1 Hasil Subset Data Via ROI

(23)

4.2 Hasil Spatial Subset

(24)
(25)

BAB V PENUTUP 5.1 Kesimpulan

 Subset Data via ROI : Citra telah terpotong menjadi citra daerah Kota Bogor saja dan daerah di sekitar Kota Bogor sudah hilang/tidak tampak.

 Resize Data (Spatial/Spectral) : Citra telah terpotong menjadi citra daerah Pulau Sulawesi saja tetapi pulau-pulau kecil di sekitar Pulau Sulawesi masih tampak.

 Registration Image to Map : Secara geometrik tidak ada perubahan yang signifikan. Tetapi dibandingkan dengan metode sebelumnya yakin Registration Image to Image, nilai RMS Error pada metode Registration Image to Map ini lebih besar dari pada metode sebelumnya.

5.2 Saran

1. Dalam melakukan praktikum hendaknya mendengarkan penjelasan dari dosen dengan baik.

2. Terus berlatih setiap hari agar lebih menguasai software.

(26)

DAFTAR PUSTAKA

Saripin, Ipin. 2003. Kajian Pemanfaatan Satelit Masa Depan:Sistem Penginderaan Jauh Satelit Ldcm (Landsat-8) Buletin Teknik Pertanian Vol.8 No.2.

Sitanggang, Gokmaria. Kajian Pemanfaatan Satelit Masa Depan: Sistem Penginderaan Jauh Satelit Lcdm (Lansat-8) Peneliti Bidan Bangfaja. LAPAN.

geomatikainderaja.blogspot.com/p/koreksi-geometrik.html

http://www.gispedia.com/2016/04/Karakteristik-citra-modis.html

Danoedoro, P. 1996. Pengolahan Citra Digital – Teori Dan Aplikasinya Dalam Bidang Penginderaan Jauh, Fakultas Geografi, Universitas Gadjah Mada.

(27)

LAMPIRAN

 Hasil Registration Image to Map

(28)
(29)
(30)

Referensi

Dokumen terkait

PENAWARAN MATA KULIAH SEMESTER GASAL TAHUN AKADEMIK 2012/2013 JURUSAN TARBIYAH PRODI PAI. PROGRAM KUALIFIKASI S1 (LULUSAN D2)

X dapat digunakan untuk menentukan struktur kristal memiliki harga d (jarak kisi) dengan intensitas yang karakteristik. Difraktogram padatan hasil sintesis pada penelitian

Sedangkan secara umum peningkatan kemampuan analisis siswa dalam model pembelajaran kooperatif tipe TTW menggunakan RTE terlihat dari nilai rata-rata gain yang

Sistem pencatatan periodik merupakan kuantitas persediaan ditangan ditentukan, seperti yang tergambarkan oleh namanya secara periodik. Semua pembelian persediaan

Hal ini terjadi seiring dengan terus-menerusnya penggumpalan uap air di atasnya (Chiapetta & Koball, 2010: 196). Pemenuhan syarat-syarat ini membutuhkan perhitungan awal

Untuk dapat mengerjakan latihan ini, gunakan konsep-konsep yang telah diuraikan dalam Kegiatan Belajar 1. Telitilah konsep-konsep tersebut dengan cermat. Etika merupakan pokok

Penelitian ini bertujuan untuk mengetahui perbedaan ketepatan shooting menggunakan punggung kaki antara pemain depan dengan pemain tengah pada siswa yang mengikuti

Pada dasarnya, rangkaian diskusi dalam bidang ekonomi ini didasarkan oleh suatu keinginan luhur untuk dapat memberikan suatu kontribusi penting bagi pembangunan ekonomi