• Tidak ada hasil yang ditemukan

getdocbd0e. 83KB Jun 04 2011 12:04:54 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdocbd0e. 83KB Jun 04 2011 12:04:54 AM"

Copied!
6
0
0

Teks penuh

(1)

in PROBABILITY

AN OBSERVATION ABOUT SUBMATRICES

SOURAV CHATTERJEE1

367 Evans Hall #3860, Department of Statistics, University of California at Berkeley, CA 94720-3860, USA.

email: sourav@stat.berkeley.edu

MICHEL LEDOUX2

Institut de Mathématiques, Université de Toulouse, 31062 Toulouse Cedex 9, France email: ledoux@math.univ-toulouse.fr

SubmittedAugust 19, 2008, accepted in final formOctober 7, 2009 AMS 2000 Subject classification: 60E15, 15A52

Keywords: Random matrix, concentration of measure, empirical distribution, eigenvalue

Abstract

LetMbe an arbitrary Hermitian matrix of ordern, andkbe a positive integer≤n. We show that if kis large, the distribution of eigenvalues on the real line is almost the same for almost all principal submatrices ofMof orderk. The proof uses results about random walks on symmetric groups and concentration of measure. In a similar way, we also show that almost allk×nsubmatrices ofM have almost the same distribution of singular values.

1

Introduction

Let Mbe a square matrix of ordern. For any two sets of integersi1, . . . ,ik and j1, . . . ,jl between 1 and n, M(i1, . . . ,ik;j1, . . . ,jl)denotes the submatrix of M formed by deleting all rows except rowsi1, . . . ,ik, and all columns except columns j1, . . . ,jl. A submatrix like M(i1, . . . ,ik;i1, . . . ,ik) is called a principal submatrix.

For a Hermitian matrix M of ordernwith eigenvaluesλ1, . . . ,λn(repeated by multiplicities), let FM denote the empirical spectral distribution function ofM, that is,

FM(x):=#{i:λix}

n .

The following result shows that given 1≪ kn and any Hermitian matrix M of ordern, the empirical spectral distribution is almost the samefor almost every principal submatrix of M of orderk.

1RESEARCH PARTIALLY SUPPORTED BY NSF GRANT DMS-0707054 AND A SLOAN RESEARCH FELLOWSHIP 2RESEARCH PARTIALLY SUPPORTED BY THE ANR GRANDES MATRICES ALÉATOIRES

(2)

expected spectral distribution function of A, that is, F(x) =EFA(x). Then for each r0, P(kFAFk∞≥k−1/2+r)≤12

p

ke−rpk/8. Consequently, we have

EkF

AFk∞≤

13+p8 logk

p

k .

Exactly the same results hold if A is a k×n submatrix of M chosen uniformly at random, and FAis the empirical distribution function of the singular values of A. Moreover, in this case M need not be Hermitian.

Remarks.(i) Note that the bounds do not depend at all on the entries of M, nor on the dimension n.

(ii) We think it is possible to improve the logktoplogkusing Theorem 2.1 of Bobkov[2]instead of the spectral gap techniques that we use. (See also Bobkov and Tetali[3].) However, we do not attempt to make this small improvement becauseplogk, too, is unlikely to be optimal. TakingM to be the matrix which hasn/2 1’s on the diagonal and the rest of the elements are zero, it is easy to see that there is a lower bound ofconst.k−1/2. We conjecture that the matching upper bound is also true, that is, there is a universal constantCsuch thatEkFAFk

∞≤C k−1/2.

(iii) The function F is determined byM andk. If M is a diagonal matrix, thenF is exactly equal to the spectral measure ofM, irrespective ofk. However it is not difficult to see that the spectral measure ofM cannot, in general, be reconstructed fromF.

(iv) The result about random k×nsubmatrices is related to the recent work of Rudelson and Vershynin[6]. Let us also refer to[6]for an extensive list of references to the substantial volume of literature on random submatrices in the computing community. However, most of this literature (and also[6]) is concerned with the largest eigenvalue and not the bulk spectrum. On the other hand, the existing techniques are usually applicable only when M has low rank or low ‘effective rank’ (meaning that most eigenvalues are negligible compared to the largest one).

A numerical illustration. The following simple example demonstrates that the effects of Theorem 1 can kick in even when k is quite small. We took M to be an×n matrix for n= 100, with (i,j)th entry= min{i,j}. This is the covariance matrix of a simple random walk up to timen. We chose k = 20, and picked two k×k principal submatrices Aand B of M, uniformly and independently at random. Figure 1 plots to superimposed empirical distribution functions of A andB, after excluding the top 4 eigenvalues since they are too large. The classical Kolmogorov-Smirnov test from statistics gives ap-value of 0.9999 (andkFAFBk∞=0.1), indicating that the two distributions arestatistically indistinguishable.

2

Proof

Markov chains.Let us now quote two results about Markov chains that we need to prove Theorem 1. LetX be a finite or countable set. LetΠ(x,y)0 satisfy

X

y∈X

(3)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Superimposed empirical distribution functions of two submatrices of order 20 chosen at random from a deterministic matrix of order 100.

for every x∈ X. Assume furthermore that there is a symmetric invariant probability measureµ

onX, that is,Π(x,y)µ({x})is symmetric in xand y, andPxΠ(x,y)µ({x}) =µ({y})for every y∈ X. In other words,(Π,µ)is a reversible Markov chain. For everyf :X →R, define

E(f,f) =1 2

X

x,y∈X

(f(x)f(y))2Π(x,y)µ({x}).

The spectral gap or the Poincaré constant of the chain(Π,µ)is the largestλ1>0 such that for all f’s,

λ1Varµ(f)≤ E(f,f).

Set also

|||f|||2=1 2supx∈X

X

y∈X

(f(x)f(y))2Π(x,y). (1) The following concentration result is a copy of Theorem 3.3 in[5].

Theorem 2 ([5], Theorem 3.3). Let (Π,µ)be a reversible Markov chain on a finite or countable spaceX with a spectral gapλ1>0. Then, whenever f :X →Ris a function such that|||f|||∞≤1, we have that f is integrable with respect toµand for every r0,

µ({f Rf dµ+r})3e−rpλ1/2.

Let us now specialize toX = Sn, the group of all permutations of nelements. The following transition kernelΠgenerates the ‘random transpositions walk’.

Π(π,π′) =

1/n ifπ=π,

2/n2 ifπ=πτfor some transpositionτ, 0 otherwise.

(4)

Theorem 3(Diaconis & Shahshahani[4], Corollary 4). The spectral gap of the random transposi-tions walk on Snis2/n.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let π be a uniform random permutation of {1, . . . ,n}. Let A = A(π) = M(π1, . . . ,πk;π1, . . . ,πk). Fix a pointx∈R. Let

f(π):=FA(x).

LetΠbe the transition kernel for the random transpositions walk defined in (2), and let||| · |||∞ be defined as in (1).

Now, by Lemma 2.2 in Bai[1], we know that for any two Hermitian matricesAandBof orderk,

kFAFBk∞≤

rank(AB)

k . (3)

Letτ= (I,J)be a random transposition, whereI,Jare chosen independently and uniformly from

{1, . . . ,n}. Multiplication byτ results in taking a step in the chain defined byΠ. Now, for any Therefore, from Theorems 2 and 3, it follows that for anyr0,

P(|FA(x)F(x)| ≥r)6 exp gence theorem we haveEF

A(x−) =limy↑xF(y) =F(x−). It follows that for everyr,

Since this holds for all r, the> can be replaced by. Similarly it is easy to show that F is a legitimate cumulative distribution function. Now fix an integerl2, and for 1i<llet

(5)

Lett0=−∞andtl=∞. Note that for eachi,F(ti+1−)−F(ti)≤1/l. Let

This proves the first claim of Theorem 1. To prove the second, using the above inequality, we get

EkF

For the case of singular values, we proceed as follows. As before, we letπbe a random permu-tation of{1, . . . ,n}; but here we defineA(π) =M(π1, . . . ,πk; 1, . . . ,n). Since singular values ofA are just square roots of eigenvalues ofAA∗, therefore

kFA−E(FA)k∞=kFAA∗−E(FAA∗)k,

and so it suffices to prove a concentration inequality forFAA∗. As before, we fixx and define

f(π) =FAA∗(x).

The crucial observation is that by Lemma 2.6 of Bai[1], we have that for any twok×nmatrices AandB,

kFAA∗−FBB∗k

rank(AB)

k .

The rest of the proof proceeds exactly as before. ƒ

(6)

[1] BAI, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices,

a review.Statist. Sinica9no. 3, 611–677. MR1711663

[2] BOBKOV, S. G. (2004). Concentration of normalized sums and a central limit theorem for

noncorrelated random variables.Ann. Probab.32no. 4, 2884–2907. MR2094433

[3] BOBKOV, S. G. and TETALI, P. (2006). Modified logarithmic Sobolev inequalities in discrete

settings.J. Theoret. Probab.19no. 2, 289–336. MR2283379

[4] DIACONIS, P. and SHAHSHAHANI, M. (1981). Generating a random permutation with random

transpositions.Z. Wahrsch. Verw. Gebiete57no. 2, 159–179. MR0626813

[5] LEDOUX, M. (2001).The concentration of measure phenomenon.Amer. Math. Soc., Providence, RI. MR1849347

[6] RUDELSON, M. and VERSHYNIN, R. (2007). Sampling from large matrices: an approach

Gambar

Figure 1: Superimposed empirical distribution functions of two submatrices of order 20 chosen atrandom from a deterministic matrix of order 100.

Referensi

Dokumen terkait

Kinerja pada kantor UPPD Provinsi Wilayah XXXI Cimahi menunjukan kinerja yang sangat baik karena pendapatan yang dicapai sesuai dengan target yang ditentukan atau

Thus, after doing further research for the market and industry analysis of canned fruit products, as well as macro analysis in Australia and New Zealand, it is recommended

digunakan untuk menampilkan informasi dari server web, server ini kini telah dikembangkan dengan menggunakan user interface grafis sehingga pemakai dapat dengan melakukan

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Secara praktis, penelitian ini diharapkan memberikan kontribusi terhadap institusi dengan melihat adanya hubungan antara prinsipal (peme- rintah dan rakyat) dan agen

[r]

Simpulan dari penelitian ini adalah tidak ter- dapat perbedaan kecenderungan individu dalam melakukan kecurangan antara individu yang memiliki level moral yang tinggi

Visual tokoh yang terdapat dalam kisah perang Bubat ini difokuskan pada empat tokoh utama yaitu Raja Majapahit Hayam Wuruk, Mahapatih Majapahit Gajah Mada, Maharaja Sunda