• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:AUA:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:AUA:"

Copied!
14
0
0

Teks penuh

(1)

BOUNDEDNESS FOR MULTILINEAR COMMUTATOR OF LITTLEWOOD-PALEY OPERATOR

ON HARDY AND HERZ-HARDY SPACES

Changhong Wu, Lanzhe Liu

Abstract. In this paper, the (H~bp, Lp) and (HK˙α,p q,~b,K˙

α,p

q ) type boundedness for the multilinear commutator associated with the Littlewood-paley operator are obtained.

Keywords: Littlewood-paley operator; Multilinear commutator; BMO; Hardy space; Herz-Hardy space.

MR Subject Classification: 42B20, 42B25.

1. Introduction and definition

Let Lqloc(Rn) = {fq is locally integrable on Rn}. Suppose f L1

loc(Rn), B =

B(x0, r) ={x ∈Rn:|x−x0|< r} denotes a ball of Rn centered at x0 and having radiusr, write fB=|B|−1

R

Bf(x)dxandf#(x) = supx∈B|B|−1

R

B|f(x)−fB|dx < ∞. f is said to belong to BM O(Rn), if f# L(Rn) and define ||f||

BM O = ||f#||L∞.

LetT be a linear operator and K be a function on Rn×Rn,

T(f)(x) =

Z

Rn

K(x, y)f(y)dy for f ∈C0∞,

where K satisfies:

(1)|K(x, y+h)−K(x, y)| ≤C· |h|α· |x−y|−n−α for 2|h|<|x−y|, 0< α≤1; (2)||T(f)||Lp0 ≤C||f||Lp0 for some 1< p0 ≤ ∞;

Then we call T is the Calder´on-Zygmund singular integral operator.

Letb∈BM O(Rn) and T be the Calder´on-Zygmund singular integral operator. The commutator [b, T] generated byb and T is defined by

(2)

A classical result of Coifman, Rochberg and Weiss (see[2]) proved that the commu-tator [b, T] is bounded on Lp(Rn) (1< p <∞). However, it was observed that the [b, T] is not bounded, in general, fromHp(Rn) toLp(Rn). But ifHp(Rn) is replaced by a suitable atomic spaceH~bp(Rn) andHK˙α,p

q,~b(R

n)(see[1], [7], [12]), then [b, T] maps continuously H~bp(Rn) into Lp(Rn) andHK˙α,p

q,~b(R

n) into ˙Kα,p

q . In addition we have easily known that H~bp(Rn) Hp(Rn), K˙α,p

q,~b(R

n)HK˙α,p

q (Rn). The main purpose of this paper is to consider the continuity of the multilinear commutators related to the Littlewood-Paley operators and BM O(Rn) functions on certain Hardy and Herz-Hardy spaces. Let us first introduce some definitions(see [1], [3-10], [12], [13]). Given a positive integer m and 1≤ j ≤ m, we denote by Cjm the family of all finite subsets σ={σ(1),· · ·, σ(j)}of{1,· · ·, m}ofj different elements. Forσ ∈Cm

j , set σc = {1,· · ·, m} \σ. For~b = (b1,· · ·, bm) and σ = {σ(1),· · ·, σ(j)} ∈ Cjm, set

~bσ = (bσ(1),· · ·, bσ(j)),bσ =bσ(1)· · ·bσ(j)and||~bσ||BM O=||bσ(1)||BM O· · · ||bσ(j)||BM O. Definition 1. Let bi (i = 1,· · · , m) be a locally integrable functions and 0 <

p≤1. A bounded measurable functiona onRn is called a (p,~b) atom, if

(1) supp a⊂B=B(x0, r)

(2) ||a||L∞ ≤ |B(x0, r)|−1/p (3) R

Ba(y)dy=

R

Ba(y)

Q

l∈σbl(y)dy= 0 for any σ ∈Cjm ,1≤j≤m .

A temperate distribution(see[14][15]) f is said to belong to H~bp(Rn), if, in the Schwartz distribution sense, it can be written as

f(x) = ∞

X

j=1

λjaj(x).

where a′

js are (p,~b) atoms, λj ∈ C and P∞j=1|λj|p < ∞. Moreover, ||f||H~p

b

≈ (P∞

j=1|λj|p)1/p.

Definition 2. Let 0 < p, q <, αR. For kZ, set Bk ={x Rn:|x| ≤ 2k} and C

k = Bk\Bk−1,andχk = χCk for k ∈ Z,where χCk is the characteristic

function of set Ck. Denote the characteristic function of B0 by χ0. (1)The homogeneous Herz space is defined by

˙

Kqα,p(Rn) =nf ∈Lqloc(Rn\ {0}) :||f||K˙α,p q <∞

o

.

where

||f||K˙α,p

q =

" X

k=−∞

2kαp||f χk||pLq #1/p

(3)

(2)The nonhomogeneous Herz space is defined by Kqα,p(Rn) =nf ∈Lqloc(Rn) :||f||Kα,p

q <∞ o

.

where

||f||Kα,p

q =

" X

k=1

2kαp||f χk||pLq+||f χ0||pLq #1/p

.

Definition 3. Let α Rn, 1< q <, αn(11/q), bi BM O(Rn), 1

i≤m. A function a(x) is called a central (α, q,~b) -atom (or a central (α, q,~b)-atom of restrict type ), if

(1) supp a⊂B=B(x0, r)(or for some r ≥1),

(2) ||a||Lq ≤ |B(x0, r)|−α/n,

(3) R

Ba(x)xβdx =

R

Ba(x)xβ

Q

i∈σbi(x)dx = 0 for any σ ∈ Cjm ,1 ≤ j ≤ m, 0 ≤ |β| ≤ α, where β = (β1, ..., βn) is the multi-indices with βi ∈N for 1 ≤i ≤n

and |β|=Pn

i=1βi.

A temperate distributionf is said to belong toHK˙α,p

q,~b(R

n)(orHKα,p q,~b(R

n)), if it can be written as f =P∞

j=−∞λjaj (or f =Pj∞=0λjaj), in the S′(Rn) sense, where

aj is a central (α, q,~b)-atom(or a central (α, q,~b)-atom of restrict type ) supported on B(0,2j) and P∞

−∞|λj|p <∞(or P∞j=0|λj|<∞). Moreover,

||f||HK˙α,p q,~b

( or ||f||HKα,p q,~b

) = inf(X j

|λj|p)1/p,

where the infimum are taken over all the decompositions of f as above.

Definition 4. Let ε > 0 and ψ be a fixed function which satisfies the following

properties:

(1) R

Rnψ(x)dx= 0,

(2) |ψ(x)| ≤C(1 +|x|)−(n+1),

(3) |ψ(x+y)−ψ(x)| ≤C|y|ε(1 +|x|)−(n+1+ε) when 2|y|<|x|;

The Littlewood-Paley multilinear commutator is defined by

S~bψ(f)(x) =

"

Z Z

Γ(x)

|Ft~b(f)(x, y)|2dydt

tn+1

#1/2

,

where

Ft~b(f)(x, y) =

Z

Rn 

m

Y

j=1

(bj(x)−bj(z))

(4)

Γ(x) = {(y, t) ∈ Rn++1 : |x −y| < t} and ψt(x) = t−nψ(x/t) for t > 0. Set

Ft(f)(y) =RRnψt(y−x)f(x)dx. We also define that

Sψ(f)(x) =

Z Z

Γ(x)

|Ft(f)(x, y)|2dydt

tn+1

!1/2

,

which is the Littlewood-Paley operator(see [15]).

2.Theorems and Proofs

Theorem 1. Let ε >0,bi BM O, 1im, ~b= (b1,· · · , bm), n/(n+ε) <

p≤1. Then the multilinear commutatorS~bψ is bounded from H~bp(Rn) toLp(Rn). Proof. It suffices to show that there exist a constantC >0, such that for every (p,~b) atom a,

||S~bψ(a)||Lp ≤C.

Let abe a (p,~b) atom supported on a ballB =B(x0, r). When m= 1 see [7], and now we prove m >1. Write

Z

Rn

|S~bψ(a)(x)|pdx=

Z

|x−x0|≤2r

|S~bψ(a)(x)|pdx+

Z

|x−x0|>2r

|S~bψ(a)(x)|pdx=I+II.

ForI, takingq > 1, by H¨older’s inequality and theLq− boundedness ofS~bψ,we have

I ≤

Z

|x−x0|≤2r

|S~bψ(a)(x)|qdx

!p/q

· |B(x0,2r)|1−p/q

≤ C||S~bψ(a)(x)||pLq· |B(x0,2r)|1−p/q

≤ C||~b||pBM O||a||pLq|B|1−p/q

≤ C||~b||pBM O.

For II, denoting λ= (λ1,· · · , λm) with λi = (bi)B, 1 ≤i≤m, where (bi)B = |B(x0, r)|−1

R

B(x0,r)bi(x)dx, by H¨older’s inequality and the vanishing moment of a,

we get

II = ∞

X

k=1

Z

2k+1r≥|x−x0|>2kr

|S~bψ(a)(x)|pdx

≤ C

X

k=1

|B(x0,2k+1r)|1−p

Z

2k+1r≥|x−x 0|>2kr

|S~bψ(a)(x)|dx

(5)

≤ C

X

k=1

|B(x0,2k+1r)|1−p

·

 Z

2k+1r≥|x−x 0|>2kr

Z Z

Γ(x)

|

Z

B m

Y

j=1

(bj(x)−bj(z))ψt(y

−z)a(z)dz|2dydt

tn+1

1/2

dx

#p

≤ C

X

k=1

|B(x0,2k+1r)|1−p×

" Z

2k+1r≥|x−x0|>2kr

Z Z

Γ(x)

Z

B

|ψt(y−z)

−ψt(y−x0)|

m

Y

j=1

|(bj(x)−bj(z))||a(z)|dz

2 dydt tn+1

1/2

dx

 

p

;

noting that z∈B, x∈B(x0,2k+1r)\B(x0,2kr), then

S~bψ(a)(x) =

"

Z Z

Γ(x)

Z

B

|ψt(y−z)−ψt(y−x0)|

· m

Y

j=1

|bj(x)−bj(z)||a(z)|dz

2 dydt tn+1

1/2

≤ C

Z Z

Γ(x)

 Z

B

t−n|a(z)| m

Y

j=1

|bj(x)−bj(z)|

· (|x0−z|/t) ε

(1 +|x0−y|/t)n+1+εdz

2

dydt tn+1

#1/2

≤ C

Z Z

Γ(x)

t1−n

(t+|x0−y|)2(n+1+ε)dydt

(6)

·

Z

B m

Y

j=1

|bj(x)−bj(z)||x0−z|ε|a(z)|dz

≤ C

Z Z

Γ(x)

t1−n22(n+1+ε)

(2t+ 2|x0−y|)2(n+1+ε) dydt

!1/2

·

Z

B m

Y

j=1

|bj(x)−bj(z)||x0−z|ε|a(z)|dz;

Notice that

2t+|x0−y|>2t+|x0−x| − |x−y|> t+|x0−x| when |x−y|< t, and it is easy to calculate that

Z ∞

0

tdt

(t+|x−x0|)2(n+1+ε)

=C|x−x0|−2(n+ε);

then, we deduce

S~bψ(a)(x) ≤ C

Z Z

Γ(x)

t1−n

(2t+|x0−y|)2(n+1+ε) dydt

!1/2

·

Z

B m

Y

j=1

|bj(x)−bj(z)||x0−z|ε|a(z)|dz

≤ C

Z Z

Γ(x)

t1−n

(t+|x−x0|)2(n+1+ε) dydt

!1/2

·

Z

B m

Y

j=1

|bj(x)−bj(z)||x0−z|ε|a(z)|dz

≤ C

Z ∞

0

tdt

(t+|x−x0|)2(n+1+ε)

1/2

·

Z

B m

Y

j=1

|bj(x)−bj(z)||x0−z|ε|a(z)|dz

≤ C|B|ε/n−1/p|x−x0|−(n+ε)

Z

B m

Y

j=1

(7)

So

II ≤ C|B|ε/n−1/p ∞

X

k=1

|B(x0,2k+1r)|1−p

·

 Z

2k+1r≥|x−x 0|>2kr

|x−x0|−(n+ε)

 Z

B m

Y

j=1

|bj(x)−bj(z)|dz

dx 

p

≤ C|B|ε/n−1/p ∞

X

k=1

|B(x0,2k+1r)|1−p

·

m

X

j=0

X

σ∈Cm j

Z

2k+1r≥|x−x0|>2kr

|x−x0|−(n+ε)|(~b(x)−λ)σ|dx

·

Z

B

|(~b(z)−λ)σc|dz p

≤ C|B|ε/n−1/p m

X

j=0

X

σ∈Cm j

Z

B

|(~b(z)−λ)σc|dz p

× ∞

X

k=1

|B(x0,2k+1r)|1−p

" Z

2k+1r≥|x−x0|>2kr

|x−x0|−(n+ε)|(~b(x)−λ)σ|dx

#p

≤ C

m

X

j=0

X

σ∈Cm j

||~bσc||p

BM O· ||~bσ|| p BM O

X

k=1

|B(x0,2k+1r)|1−(n+ε)p/nkp|B|(1+ε/n−1/p)p

≤ C||~b||pBM O

X

k=1

kp·2kn(1−p(n+ε)/n) ≤ C||~b||BM O.

This finishes the proof of Theorem 1.

Theorem 2. Let 0 < p < , 1 < q < , n(11/q) α < n(11/q) +ε,

ε >0,and bi ∈BM O(Rn),1≤i≤m,~b= (b1,· · ·, bm).Then S~bψ is bounded from

HK˙α,p

q,~b(R

n) to K˙α,p q (Rn).

Proof. Let f ∈ HK˙α,p

q,~b(R

n) and f(x) =P∞

(8)

decom-position for f as in Definition 3, we write

||S~bψ(f)(x)||K˙α,p

q =

X

k=−∞

2kαp||S~bψ(f)χk||pLq !1/p

≤ C

X

k=−∞ 2kαp(

X

j=−∞

|λj|||S~bψ(aj)χk||Lq)p   1/p ≤ C   ∞ X

k=−∞ 2kαp(

k−3

X

j=−∞

|λj|||S~bψ(aj)χk||Lq)p   1/p +C   ∞ X

k=−∞ 2kαp(

X

j=k−2

|λj|||S~bψ(aj)χk||Lq)p 

1/p

= I+II.

For II, by the boundedness ofS~bψ on Lq and the H¨older’s inequality, we have

II ≤ C

X

k=−∞ 2kαp

X

j=k−2

|λj|||S~bψ(aj)χj||Lq   p  1/p ≤ C   ∞ X −∞ 2kαp   ∞ X

j=k−2

|λj|||aj||Lq   p  1/p ≤ C   ∞ X

k=−∞ 2kαp

X

j=k−2

|λj| ·2−jα

  p  1/p ≤ C      h P∞

j=−∞|λj|pPkj+2=−∞2(k−j)αp

i1/p

, 0< p≤1

h

P∞

j=−∞|λj|p

Pj+2

k=−∞2(k−j)p/2

i1/p

, 1< p <∞

≤ C

X

j=−∞ |λj|p

1/p

≤ C||f||HK˙α,p q,~b

(9)

ForI, whenm= 1, letb1j =|Bj|−1

R

Bjb1(x)dx. We have

Sb1

ψ(aj)(x) =

"

Z Z

Γ(x)

|

Z

Bj

(b1(x)−b1(z))ψt(y−z)aj(z)dz|2

dydt tn+1

#1/2

"

Z Z

Γ(x)

Z

Bj

|ψt(y−z)−ψt(y−x0)|

·|b1(y)−b1(z)||aj(z)|dz)2 dydt

tn+1

1/2

"

Z Z

Γ(x)

Z

Bj

t−n|aj(z)||b1(x)−b1(z)|

· (|x0−z|/t) ε

(1 +|x0−y|/t)n+1+ε dy

2

dydt tn+1

#1/2

≤ C

Z Z

Γ(x)

t1−n

(t+|x0−y|)2(n+1+ε) dydt

!1/2

·

Z

Bj

|x0−z|ε|aj(z)||b1(x)−b1(z)|dz

≤ C

Z Z

Γ(x)

t1−n

(2t+|x0−y|)2(n+1+ε) dydt

!1/2

·

Z

Bj

|x0−z|ε|aj(z)||b1(x)−b1(z)|dz

≤ C

Z Z

Γ(x)

t1−n

(t+|x−x0|)2(n+1+ε) dydt

!1/2

·

Z

Bj

|x0−z|ε|aj(z)||b1(x)−b1(z)|dz

≤ C

Z ∞

0

tdt

(t+|x−x0|)2(n+1+ε)

1/2

·

Z

Bj

|x0−z|ε|aj(z)||b1(x)−b1(z)|dz

(10)

≤ C|x−x0|−(n+ε)

Z

Bj

|x0−z|ε|aj(z)|b1(x)−b1(z)|dz

≤ C|x−x0|−(n+ε)

Z

Bj

|x0−z|ε|aj(z)||b1(x)−b1j|dz

+C|x−x0|−(n+ε)

Z

Bj

|x0−z|ε|aj(z)||b1(z)−b1j|dz ≤ C|x−x0|−(n+ε)

|b1(x)−b1j|2j(ε+n(1−1/q)−α)+ 2j(ε+n(1−1/q)−α)||b1||BM O

.

So

||Sb1

ψ(aj)χk||Lq

≤ C2j(ε+n(1−1/q)−α)

" Z

Bk

|b1(x)−b1j||x−x0|−q(n+ε)dx

1/q

+

Z

Bk

|x−x0|−q(n+ε)dx

1/q

||b1||BM O

#

≤ C2j(ε+n(1−1/q)−α)h2−k(n+ε)· |Bk|1/q||b1||BM O+ 2−k(n+ε)· |Bk|1/q||b1||BM O

i

≤ C||b1||BM O2[j(ε+n(1−1/q)−α)−k(n+ε)+kn/q]; thus

I = C

X

j=−∞ 2kαp

k−3

X

j=−∞

|λj|||Sψb1(aj)χk||Lq 

p

1/p

≤ C||b1||BM O

X

k=−∞ 2kαp

k−3

X

j=−∞

|λj|2[j(ε+n(1−1/q)−α)−k(n+ε)+kn/q]

p

(11)

≤ C||b1||BM O                                  " ∞ P

k=−∞

2kαp k−P3

j=−∞

|λj|p2[j(ε+n(1−1/q)−α)−k(n+ε)+kn/q]p

#1/p

,

0< p≤1

"

P

k=−∞

2kαp k−P3

j=−∞

|λj|p2p[j(ε+n(1−1/q)−α)−k(n+ε)+kn/q]/2

!

× k−P3

j=−∞

2p′[j(ε+n(1−1/q)−α)−k(n+ε)+kn/q]/2

!p/p′

1/p

,

1< p <∞

≤ C||b1||BM O

             h P∞

j=−∞|λj|pP∞k=j+32(j−k)(ε+n(1−1/q)−α)p

i1/p

,

0< p≤1

"

P

j=−∞

|λj|pP∞k=j+32(j−k)(ε+n(1−1/q)−α)p/2

#1/p

, 1< p <∞

≤ C||b1||BM O

X

j=−∞ |λj|p

1/p

≤ C||f||HK˙α,p q,~b

.

When m >1, Let bij =|Bj|−1

R

Bjbi(x)dx, 1≤i≤m, ~b

= (b1

j,· · ·, bmj ).We have

S~bψ(aj)(x) =

"

Z Z

Γ(x)

| Z Bj m Y i=1

(bi(x)−bi(z))ψt(y−z)aj(z)dz|2

dydt tn+1

#1/2

"

Z Z

Γ(x)

Z

Bj

m

Y

i=1

|bi(x)−bi(z)||ψt(y−z)

−ψt(y−x0)||aj(z)|dz)2

dydt tn+1

1/2

≤ C|x−x0|−(n+ε)

Z

Bj

|x0−z|ε|aj(z)| m

Y

i=1

|bi(x)−bi(z)|dz

≤ C|x−x0|−(n+ε)

Z

Bj

|x0−z|ε|aj(z)| m

Y

i=1

(12)

≤ C|x−x0|−(n+ε)

m

X

i=0

X

σ∈Cm i

|(~b(x)−~b)σ|

·

Z

Bj

|x0−z|ε|aj(z)||(~b(y)−~b)σc|dz

≤ C|x−x0|−(n+ε)

m

X

i=0

X

σ∈Cm i

|(~b(x)−~b)σ|2jε·2−jα·2jn(1−1/q)||~bσc||BM O

≤ C|x−x0|−(n+ε)·2j(ε+n(1−1/q)−α)

m

X

i=0

X

σ∈Cm i

|(~b(x)−~b)σ|||~bσc||BM O;

So

||S~bψ(aj)χk||Lq

≤ C2j(ε+n(1−1/q)−α)||~bσc||BM O

 Z

Bk 

|x|−(n+ε)

m

X

i=0

X

σ∈Cm i

|(~b(x)−~b)σ|

q

dx

1/q

≤ C||~bσc||BM O2j(ε+n(1−1/q)−α)·2−k(n+ε)+kn/q

≤ C||~b||BM O; then

I = C

X

j=−∞ 2kαp

k−3

X

j=−∞

|λj|||S~bψ(aj)χk||Lq 

p

1/p

≤ C||~b||BM O

X

k=−∞ 2kαp

k−3

X

j=−∞

|λj|2[j(ε+n(1−1/q)−α)−k(n+ε)+kn/q]

p

(13)

≤ C||~b||BM O

               

               

"

P

k=−∞

2kαp k−P3

j=−∞

|λj|p2[j(ε+n(1−1/q)−α)−k(n+ε)+kn/q]p

#1/p

,

0< p≤1

"

P∞

k=−∞2kαp k−3

P

j=−∞

|λj|p2p[j(ε+n(1−1/q)−α)−k(n+ε)+kn/q]/2

!

× k−P3

j=−∞

2p′[j(ε+n(1−1/q)−α)−k(n+ε)+kn/q]

!p/p′

1/p

,

1< p <∞

≤ C||~b||BM O

   

   

h

P∞

j=−∞|λj|p

P∞

k=j+32(j−k)(ε+n(1−1/q)−α)p

i1/p

, 0< p≤1

"

P

j=−∞ |λj|p

P

k=j+3

2(j−k)(ε+n(1−1/q)−α)p/2

#1/p

, 1< p <∞

≤ C||~b||BM O

X

j=−∞ |λj|p

1/p

≤ C||f||HK˙α,p q,~b

.

Remark. Theorem 2 also hold for nonhomogeneous Herz-type spaces, we omit the details.

References

[1] J. Alvarez,Continuity properties for linear commutators of Calder´on-Zygmund operators, Collect. Math., 49(1998), 17-31.

[2] R.Coifman, R.Rocherg and G.Weiss, Factorization theorem for Hardy space in several variables, Ann. of Math., 103(1976), 611-635.

[3] J.Garcia-Cuerva and M.L.Herrero, A Theory of Hardy spaces associated to Herz Spaces, Proc. London Math. Soc., 69(1994), 605-628.

[4] L.Z.Liu,Weighted weak type(H1, L1)estimates for commutators of Littlewood-Paley operators, Indian J. of Math., 45(1)(2003), 71-78.

[5] L.Z.Liu,Weighted Block-Hardy spaces estimates for commutators of Littlewood-Paley operators, Southeast Asian Bull. of Math., 27(2004), 833-838.

[6] L.Z.Liu, Weighted weak type estimates for commutators of Littlewood-Paley operator, Japanese J. of Math., 29(1)(2003), 1-13.

(14)

[8] S.Z.Lu and D.C.Yang, The local versions of Hp(Rn) spaces at the origin, Studia. Math., 116(1995), 147-158.

[9] S.Z.Lu and D.C.Yang,The decomposition of the weighted Herz spaces and its applications, Sci. in China(ser.A), 38(1995), 147-158.

[10] S.Z.Lu and D.C.Yang, The weighted Herz type Hardy spaces and its appli-cations, Sci. in China(ser.A), 38(1995), 662-673.

[11] S.Z.Lu and D.C.Yang, The continuity of commutators on Herz-type space, Michigan Math. J., 44(1997), 255-281.

[12] C.P´erez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal., 128(1995), 163-185.

[13] C.P´erez and R.Trujillo-Gonzalez , Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65(2002), 672-692.

[14] E.M.Stein, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ., 1993.

[15] A.Torchinsky, The real variable methods in harmonic analysis, Pure and Applied Math., 123, Academic Press, New York, 1986.

Changhong Wu

Orient Science and Technology College of HAU, Changsha, 410128, China

E-mail: [email protected]

Lanzhe Liu

Department of Mathematics,

Changsha University of Science and Technology, Changsha, 410076 , China

Referensi

Dokumen terkait

We consider Toeplitz operators with symbols enjoying a uniform radial limit on Segal–Bargmann type spaces.. We show that such an operator is compact if and only if the limiting

We consider Toeplitz operators with symbols enjoying a uniform radial limit on Segal–Bargmann type spaces.. We show that such an operator is compact if and only if the limiting

In this paper we consider a class of symbols of infinite order and develop a global calculus for the related pseudodifferential operators in the functional frame of the

In this section we will consider constructing optimal jumping patterns to infinity along the real numbers for certain weight functions.. Our main result will be to show that

Abstract In this paper we consider the operator D λ α f in terms of the generalized S˘al˘agean and Ruschweyh operators, and we study several differ- ential subordinations generated by

Thus in the ternary case, the only case we shall consider here, from a certain perspective, questions about coefficients of cyclotomic polyno- mials are really questions about coe

We consider the vanishing problem for higher cohomology groups on certain infinite-dimensional complex spaces: good branched coverings of suitable projective spaces and

This future is based on the ISO-index, which measures the amount of claims occurred in a certain period and reported to a participating insurance company until a certain time..