• Tidak ada hasil yang ditemukan

Endapan Primer

N/A
N/A
Protected

Academic year: 2021

Membagikan "Endapan Primer"

Copied!
11
0
0

Teks penuh

(1)

A. Endapan Primer

Endapan primer adalah endapan yang pembentukannya berasosiasi langsung dengan pembentukan magam. Pembentukan bijih primer secara garis besar dapat diklasifikasikan menjadi lima jenis endapan, yaitu : Fase Magmatik Cair, Fase Pegmatitik, Fase Pneumatolitik, Fase Hidrothermal, Fase Vulkanik. Dari kelima jenis fase endapan di atas akan menghasilkan sifat-sifat endapan yang berbeda-beda, yaitu yang berhubungan dengan:

(1) Kristalisasi magmanya

(2) arak endapan mineral dengan asal magma

(a) intra-magmatic, bila endapan terletak di dalam daerah batuan beku

(b) peri-magmatic, bila endapan terletak di luar (dekat batas) batuan beku (c) crypto-magmatic, bila hubungan antara endapan dan batuan beku tidak jelas (d) apo-magmatic, bila letak endapan tidak terlalu jauh terpisah dari batuan beku

(e) tele-magmatic, bila disekitar endapan mineral tidak terlihat (terdapat) batuan beku (3) Bagaimana cara pengendapan terjadi

(a) terbentuk karena kristalisasi magma atau di dalam magma (b) terbentuk pada lubang-lubang yang telah ada

(c) metosomatisme (replacement) yaitu :reaksi kimia antara batuan yang telah ada dengan larutan pembawa bijih

(4) Bentuk endapan, masif, stockwork, urat, atau perlapisan (5) Waktu terbentuknya endapan

(a) syngenetic, jika endapan terbentuk bersamaan waktunya dengan pembentukan batuan (b) epigenetic, jika endapan terbentuk tidak bersamaan waktunya dengan pembentukan batuan 1. FASE MAGMATIK CAIR (LIQUID MAGMATIC PHASE)

Liquid magmatic phase adalah suatu fase pembentukan mineral, dimana mineral terbentuk langsung pada magma (differensiasi magma), misalnya dengan cara gravitational settling (Gambar 1). Mineral yang banyak terbentuk dengan cara ini adalah kromit, titamagnetit, dan petlandit

(2)

Gambar 1. Skematik proses differensiasi magma pada fase magmatik cair (After Buchanan,1981)

Keterangan untuk Gambar 1 :

1. Vesiculation, Magma yang mengandung unsur-unsur volatile seperti air (H2O),

karbon dioksida (CO2), sulfur dioksida (SO2), sulfur (S) dan klorin (Cl). Pada saat

magma naik kepermukaan bumi, unsur-unsur ini membentuk gelombang gas, seperti buih pada air soda. Gelombang (buih) cenderung naik dan membawa serta unsur-unsur yang lebih volatile seperti sodium dan potasium.

2. Diffusion, Pada proses ini terjadi pertukaran material dari magma dengan material dari batuan yang mengelilingi reservoir magma, dengan proses yang sangat lambat. Proses diffusi tidak seselektif proses-proses mekanisme differensiasi magma yang lain. Walaupun demikian, proses diffusi dapat menjadi sama efektifnya, jika magma diaduk oleh suatu pencaran (convection) dan disirkulasi dekat dinding dimana magma dapat kehilangan beberapa unsurnya dan mendapatkan unsur yang lain dari dinding reservoar.

(3)

3. Flotation, Kristal-kristal ringan yang mengandung sodium dan potasium cenderung untuk memperkaya magma yang terletak pada bagian atas reservoar dengan unsur-unsur sodium dan potasium.

4. Gravitational Settling, Mineral-mineral berat yang mengandung kalsium, magnesium dan besi, cenderung memperkaya resevoir magma yang terletak disebelah bawah reservoir dengan unsur-unsur tersebut. Proses ini mungkin menghasilkan kristal badan bijih dalam bentuk perlapisan. Lapisan paling bawah diperkaya dengan mineral-mineral yang lebih berat seperti mineral-mineral silikat dan lapisan diatasnya diperkaya dengan mineral-mineral silikat yang lebih ringan.

5. Assimilation of Wall Rock, Selama emplacement magma, batu yang jatuh dari dinding reservoir akan bergabung dengan magma. Batuan ini bereaksi dengan magma atau secara sempurna terlarut dalam magma, sehingga merubah komposisi magma. Jika batuan dinding kaya akan sodium, potasium dan silikon, magma akan berubah menjadu komposisi granitik. Jika batuan dinding kaya akan kalsium, magnesium dan besi, magma akan berubah menjadi berkomposisi gabroik.

6. Thick Horizontal Sill, Secara umum bentuk ini memperlihatkan proses differensiasi magmatik asli yang membeku karena kontak dengan dinding reservoirl Jika bagian sebelah dalam memebeku, terjadi Crystal Settling dan menghasilkan lapisan, dimana mineral silikat yang lebih berat terletak pada lapisan dasar dan mineral silikat yang lebih ringan.

Gambar 2. Sketsa zona mineralisasi pada komplek pegmatit di San Gabriel Mountains, California (After Buchanan,1981)

Fase magmatik cair ini dapat dibagi atas : a) Magmatik Awal (Early Magmatic).

Deposit magmatik awal dihasilkan dari pembekuan magma langsung yang disebut orthotectic dan orthomagmatic. Deposit ini terbentuk oleh (1) kristalisasi langsung tanpa konsentrasi, (2) segregasi kristal yang terbentuk lebih dahulu, dan (3) injeksi material padat ke tempat lain oleh difrensiasi. Mineral bijih mengkristal lebih dulu dibanding batuan silikat dan sebagian kemudian terpisah karena difrensiasi kristalisasi.

(1) Diseminasi (Dissemination)

Proses kristalisasi magma untuk pertama kali, terjadi relatif pada kedalaman besar, menghasilkan batuan beku granular. Kristal mineral (termasuk mineral bijih dalam bentuk fenokris) yang terbentuk dalam proses ini tidak terkonsentrasi, tapi tersebar merata (disseminated) di dalam tubuh batuan beku intrusive, bisa berbentuk dike, pipa atau massa

(4)

berbentuk stok. Ukuran depositnya sangat besar dibandingkan jenis deposit lainnya. Contoh deposit adalah pipa intan Afrika Selatan yang tersebar merata dalam batuan kimberlite dan korundum yang tersebar dalam nephelin syenite di Ontario.

(2) Segregasi (Segregation)

Segregasi magmatik awal adalah konsentrasi pertama yang menghasilkan unsur-unsur berharga dari magma, terbentuk karena difrensiasi kristalisasi akibat gaya gravitasi. Karena kristalisasi tersebut, sebagian material menjadi lebih berat dari larutan sehingga material tersebut terendapkan dan terakumulasi pada bagian bawah dapur magma. Bentuk deposit mineral jenis ini biasanya lenticular dan berukuran kecil. Kadang juga ditemukan dalam bentuk layer dalam batuan induk. Contoh depositnya adalah deposit kromit Bushveld Igneous Complex (BIC) di Afrika Selatan.

(3) Injeksi (Injections)

Beberapa deposit bijih magmatik terbentuk dalam grup ini. Mineral bijih terbentuk karena difrensiasi kristalisasi lebih dulu atau bersamaan dengan dengan mineral batuan silikat yang berasosiasi dengan mineral bijih tersebut. Mineral-mineral yang terbentuk tidak terakumulasi pada tempatnya terendap, tapi di-injeksi-kan dan terkonsentrasi pada batuan samping. Contoh deposit seperti ini adalah dike titanoferous magnetit di Cumberland, dan pipa platinum di Afrika selatan.

b) Magmatik Akhir (Late magmatic).

Deposit magmatik akhir terdiri atas deposit mineral bijih yang mengkristal dari magma residual setelah pembentukan batuan silikat sebagai bagian akhir dari proses magmatik. Gejala yang sering diperlihatkan berupa pembentukan mineral-mineral kemudian yang memotong endapan magmatik awal, dicirikan oleh adanya reaction rim pada sekeliling mineral yang telah terbentuk. Deposit yang terbentuk berasal dari proses difrensiasi kristalisasi, akumulasi gravitatif dari heavy residual liquid, dan pemisahan liqud sulfide droplets (yang disebut liquid immiscibility), dan berbagai bentuk difrensiasi lainnya. Perbedaan nyata antara proses magmatik awal dan akhir adalah deposit magmatik awal terbentuk pada tempat dimana tubuh intrusi batuan beku (magma) terbentuk dan setelah akumulasi mineral bijih membeku, tidak ada lagi perpindahan tempat. Sedang pada deposit magmatik akhir, kadang-kadang akumulasi tersebut masih berpindah dan diendapkan pada batuan samping.

(1) Gravitative Liquid Accumulation (a) Residual Liquid Segregation

Pemisahan yang terjadi di dalam dapur magma oleh proses difrensiasi kristalisasi sudah terjadi mulai dari tahap awal sampai konsolidasi akhir. Karena mineral-mineral mafik mengkristal lebih dulu, maka magma residu yang lebih bersifat felsik menjadi sangat kaya akan silika, alkali, dan air. Kristal yang terbentuk pertama cenderung akan bergerak ke dasar dapur magma karena berat jenisnya lebih besar dari liquid residu-nya. Deposit mineral pada

(5)

tipe ini terbentuk karena adanya proses difrensiasi kristalisasi dan akumulasi magma residual. Contoh endapannya adalah deposit Titanomagnetik di Bushveld.

(b) Residual Liquid Injection

Liquid residual yang banyak mengandung logam yang terakumulasi di dalam dapur magma, sebelum terkonsolidasi, bisa mengalami pergerakan dan diinjeksikan ke tempat lain yang tekanannya lebih rendah (karena adanya tekanan dari batuan induk atau tekanan dari dalam magmanya sendiri) membentuk mineral-mineral berikutnya secara terkonsentrasi (Residual Liqud Injection).

(2) Residual Liquid Pegmatitic Injection

Pembentukan pegmatitik dihasilkan dari injeksi fluida magmatik yang mengandung bahan-bahan mineral pembentuk batuan yang masih tersisa, air, karbondioksida, konsentrasi rare elements, mineralizers, dan logam. Beberapa deposit pegmatite memiliki deposit mineral berharga dan layak untuk dieksploitasi. Tubuh pegmatitik biasanya berupa intrusi dike atau intrusi irregular. Pegmatit yang memiliki nilai ekonomi umumnya berasosiasi dengan batuan beku felsik seperti granit dan diorit. Deposit pegmatite dicirikan oleh dominasi kuarsa, feldspar, dan mika; mineral tersebut membentuk zonasi dari dinding (wall) ke inti (core) injeksi. Feldspar dan mika dominan pada bagian dinding hingga intermediet, kuarsa dominan pada bagian inti. Kristal-kristal besar pada zona inti dihasilkan dari fluiditas magma yang sangat tinggi (viskositas rendah) memungkinkan ion-ion dapat bergerak lebih cepat untuk membentuk muka kristal. Deposit logam yang cukup penting adalah tantalium, niobium, tin, tungsten, molybdenum, dan uranium. Disamping itu, terdapat pula deposit mineral industri seperti feldspar, mika, kuarsa, korondum, kriolit, gemstone, rare earth, dan mineral-mineral yang mengandung beryllium, lithium, cesium, dan rubidium.

(3) Immiscible Liquid

(a) Immiscible Liquid Segregation

Pada tahap ini, terjadi penetrasi larutan magma yang tersisa dan kemudian membentuk mineral-mineral berikutnya secara terkonsentrasi (Immiscible Liquid Separation & Acumulation). Skinner & Peck menemukan suatu larutan immiscible sulfide melt pada tahap akhir pendinginan lava Hawai yang jenuh akan sulfide sulfur pada temperatur 1065oC. Sulfide-rich phases terdiri atas dua, yang pertama immiscible sulfide-rich liquid dan yang kedua adalah copper-rich pyrrhotite solid solution. Sulfide-rich liquid terdiri atas kombinasi pyrrhotite, chalcopyrite, dan magnetite. Larutan tersebut mengandung oksigen yang cukup banyak, yang menurunkan permukaan sulfide liquidus. Skinner & Peck menyimpulkan bahwa pada

Fase pertama yang mengkristal adalah copper-nickel-rich pyrrhotite solid solution. Jadi fase pertama kristalisasi immiscible sulfide liquid dapat mengkonsentrasikan copper dan nickel yang dapat menghasilkan suatu ore bodies yang komersial. Vogt dalam Jensen & Bateman, 1981, melihat bahwa iron-nickel-copper sulfides larut sekitar 6 atau 7 persen dalam magma mafik dan selama pendinginan larutan tersebut memisahkan diri sebagai immiscible sulfide drops, yang kemudian terakumulasi pada dasar dapur magma dan membentuk liquid

(6)

sulfide segregation. Dalam hal ini segregasi tersebut akan menyerupai akumulasi molten copper (matte) yang terkumpul pada bagian bawah tungku peleburan.

Sulfida-sulfida akan tetap dalam bentuk liquid hingga semua silikat mengkristal; karenanya sulfida-sulfida tersebut melakukan penetrasi dan merusak silikat yang terbentuk lebih dulu dan kemudian mengkristal disekitarnya. Jadi sulfida adalah mineral pyrogenic yang mengkristal paling akhir, dan karena sulfida-sulfida tersebut melakukan penetrasi dan merusak silikat yang terbentuk sebelumnya, kadan mereka dinterpretasikan sebagai hidrotermal.

(c) Immiscible Liquid Injection

Jika fraksi yang kaya akan sulfida telah terakumulasi (seperti dijelaskan diatas) dankemudian mengalami gangguan sebelum terkonsolidasi, fraksi tersebut akan mendesak ke dinding dapur magma membentuk celah atau membentuk daerah breksiasi pada batuan samping dan akhirnya terkonsolidasi membentuk immiscible liquid injection, Setelah proses-proses di atas terjadi (Early Magmatic Process dan Late Magmatic Process) jika magma asalnya banyak mengandung unsur volatile, maka unsureunsur volatile tersebut bersama larutan sisa, disebut larutan magma sisa (rest magma) akan membentuk jebakan transisi ke pegmatitit-pneumatolitis. Apabila pembentukan deposit pegmatitit-pneumatolitis sudah berakhir, maka larutan sisa magmanya akan sangat encer, karena tekanan gasnya sudah menurun dengan cepat. Larutan terakhir ini akan membentuk jebakan hidrotermal

2. FASE PEGMATITIK (PEGMATITIC PHASE)

Pegmatit adalah batuan beku yang terbentuk dari hasil injeksi magma. Sebagai akibat kristalisasi pada magmatik awal dan tekanan disekeliling magma, maka cairan residual yang mobile akan terinjeksi dan menerobos batuan disekelilingnya sebagai dyke, sill, dan stockwork.

Kristal dari pegmatit akan berukuran besar, karena tidak adanya kontras tekanan dan temperatur antara magma dengan batuan disekelilingnya, sehingga pembekuan berjalan dengan lambat. Mineral-mineral pegmatit antara lain : logam-logam ringan (Li-silikat, Be-silikat (BeAl-Be-silikat), Al-rich Be-silikat), logam-logam berat (Sn, Au, W, dan Mo), unsur-unsur jarang (Niobium, Iodium (Y), Ce, Zr, La, Tantalum, Th, U, Ti), batuan mulia (ruby, sapphire, beryl, topaz, turmalin rose, rose quartz, smoky quartz, rock crystal). Sifat endapan pegmatitik a) Seperti dike

b) Kristal-kristalnya (pseudomorf) berukuran sangat besar, hal ini disebabkan,

(1) Pada waktu magma membeku magma banyak mengandung uap yang mengandung unsure silica.

(2) Kristalisasi yang lamban.

c) Bersifat asam, berasal dari magma asam (± 98% asam) d) Mineral-mineralnya kwarsa, orthoklas dan mika.

3. FASE PNEUMATOLITIK (PNEUMATOLITIK PHASE)

Pneumatolitik adalah proses reaksi kimia dari gas dan cairan dari magma dalam lingkungan yang dekat dengan magma. Dari sudut geologi, ini disebut kontak-metamorfisme, karena adanya gejala kontak antara batuan yang lebih tua dengan magma yang lebih muda.

(7)

Mineral kontak ini terbentuk bila uap panas dengan temperatur tinggi dari magma mengalami kontak dengan batuan dinding yang reaktif. Mineral-mineral kontak yang terbentuk antara lain : wolastonit (CaSiO3), amphibol, kuarsa, epidot, garnet, vesuvianit, tremolit, topaz, aktinolit, turmalin, diopsit, dan skarn.

Gejala kontak metamorfisme tampak dengan adanya perubahan pada tepi batuan beku intrusi dan terutama pada batuan yang diintrusi, yaitu: baking (pemanggangan) dan hardening (pengerasan).

Igneous metamorfism ialah segala jenis pengubahan (alterasi) yang berhubungan dengan penerobosan batuan beku. Batuan yang diterobos oleh masa batuan pada umumnya akan ter-rekristalisasi, terubah (altered), dan tergantikan (replaced). Perubahan ini disebabkan oleh panas dan fluida-fluida yang memencar atau diaktifkan oleh terobosan tadi. Oleh karena itu endapan ini tergolong pada metamorfisme kontak. Proses pneomatolitis ini lebih menekankan peranan temperatur dari aktivitas uap air. Pirometamorfisme menekankan hanya pada pengaruh temperatur sedangkan pirometasomatisme pada reaksi penggantian (replacement), dan metamorfisme kontak pada sekitar kontak. Letak terjadinya proses umumnya di kedalaman bumi, pada lingkungan tekanan dan temperatur tinggi.

(8)

Gambar 3. Contoh endapan Igneous Metamorfism berupa endapan iron rich fluids di Granite Mount, Utah (Dari Park, 1975 p 285).

(9)

Mineral bijih pada endapan kontak metasomatisme umumnya sulfida sederhana dan oksida misalnya spalerit, galena, kalkopirit, bornit, dan beberapa molibdenit. Sedikit endapan jenis ini yang betul-betul tanpa adanya besi, pada umumnya akan banyak sekali berisi pirit atau bahkan magnetit dan hematit. Scheelit juga terdapat dalam endapan jenis ini (Singkep-Indonesia).

- See more at: http://beni-punya.blogspot.com/2014/02/ganesa-bahan-galian.html#sthash.KdC2HCqi.dpuf

B. Endapan Sekunder

Jika mineral-mineral primer telah terubah melalui pelapukan atau proses-proses luar (superficial processes) disebut dengan endapan sekunder (supergen).

Terjadinya endapan atau cebakan mineral sekunder dipengaruhi empat faktor yaitu : sumber dari mineral, metal atau metaloid, supergene atau hypogene (primer atau sekunder), erosi dari daerah mineralisasi yang kemudian diendapkan dalam cekungan (supergene), dari biokimia akibat bakteri, organisme seperti endapan diatomae, batubara, dan minyak bumi, serta dari magma dalam kerak bumi atau vulkanisme (hypogene).

1. Mineral Bijih Dibentuk oleh Hasil Rombakan dan Proses Kimia Sebagai Hasil Pelapukan Permukaan dan Transportasi

Secara normal material bumi tidak dapat mempertahankan keberadaanya dan akan mengalami transportasi geokimia yaitu terdistribusi kembali dan bercampur dengan material lain. Proses dimana unsur-unsur berpindah menuju lokasi dan lingkungan geokimia yang baru dinamakan dispersi geokimia. Berbeda dengan dispersi mekanis, dispersi kimia mencoba mengenal secara kimia penyebab suatu dispersi.

Dalam hal ini adanya dispersi geokimia primer dan dispersi geokimia sekunder. Dispersi geokimia primer adalah dispersi kimia yang terjadi di dalam kerak bumi, meliputi proses penempatan unsur-unsur selama pembentukan endapan bijih, tanpa memperhatikan bagaimana tubuh bijih terbentuk. Dispersi geokimia sekunder adalah dispersi kimia yang terjadi di permukaan bumi, meliputi pendistribusian kembali pola-pola dispersi primer oleh proses yang biasanya terjadi di permukaan, antara lain proses pelapukan, transportasi, dan pengendapan. Bahan terangkut pada proses sedimentasi dapat berupa partikel atau ion dan akhirnya diendapkan pada suatu tempat. Mobilitas unsur sangat mempengaruhi dispersi. Unsur dengan mobilitas yang rendah cenderung berada dekat dengan tubuh bijihnya, sedangkan unsur-unsur dengan mobilitas tinggi cenderung relatif jauh dari tubuh bijihnya. Selain itu juga tergantung dari sifat kimianya Eh dan Ph suatu lingkungan seperti Cu dalam kondisi asam akan mempunyai mobilitas tinggi sedangkan dalam kondisi basa akan

mempunyai mobilitas rendah.

Sebagai contoh dapat diberikan pada proses pengkayaan sekunder pada endapan lateritik. Dari pelapukan dihasilkan reaksi oksidasi dengan sumber oksigen dari udara atau air

(10)

permukaan. Oksidasi berjalan ke arah bawah sampai batas air tanah. Akibat proses oksidasi ini, beberapa mineral tertentu akan larut dan terbawa meresap ke bawah permukaan tanah, kemudian terendapkan (pada zona reduksi). Bagian permukaan yang tidak larut, akan jadi berongga, berwarna kuning kemerahan, dan sering disebut dengan gossan. Contoh endapan ini adalah endapan nikel laterit.

2. Cebakan Mineral Dibentuk oleh Pelapukan Mekanik

Mineral disini terbentuk oleh konsentrasi mekanik dari mineral bijih dan pemecahan dari residu. Proses pemilahan yang mana menyangkut pengendapan tergantung oleh besar butir dan berat jenis disebut sebagai endapan plaser. Mineral plaser terpenting adalah Pt, Au, kasiterit, magnetit, monasit, ilmenit, zirkon, intan, garnet, tantalum, rutil, dsb.

Berdasarkan tempat dimana diendapkan, plaser atau mineral letakan dapat dibagi menjadi :

1. Endapan plaser eluvium, diketemukan dekat atau sekitar sumber mineral bijih primer. Mereka terbentuk dari hanya sedikit perjalanan residu (goresan), material mengalami pelapukan setelah pencucian. Sebagai contoh endapan platina di Urals.

2. Plaser aluvium, ini merupakan endapan plaser terpenting. Terbentuk di sungai bergerak kontinu oleh air, pemisahan tempat karena berat jenis, mineral bijih yang berat akan bergerak ke bawah sungai. Intensitas pengayaan akan didapat kalau kecepatan aliran

menurun, seperti di sebelah dalam meander, di kuala sungai dsb. Contoh endapan tipe ini adalah Sn di Bangka dan Belitung. Au-plaser di California.

3. Plaser laut/pantai, endapan ini terbentuk oleh karen aktivitas gelombang memukul pantai dan mengabrasi dan mencuci pasir pantai. Mineral yang umum di sini adalah ilmenit, magnetit, monasit, rutil, zirkon, dan intan, tergantung dari batuan terabrasi.

4. Fossil plaser, merupakan endapan primer purba yang telah mengalami pembatuan dan kadang-kadang termetamorfkan. Sebagai contoh endapan ini adalah Proterozoikum Witwatersand, Afrika Selatan, merupakan daerah emas terbesar di dunia, produksinya lebih 1/3 dunia. Emas dan uranium terjadi dalam beberapa lapisan konglomerat. Mineralisasi menyebar sepanjang 250 km. Tambang terdalam di dunia sampai 3000 meter, ini dimungkinkan karena gradien geotermis disana sekitar 10 per 130 meter.

3. Cebakan Mineral Dibentuk oleh Proses Pengendapan Kimia a. Lingkungan Darat

Batuan klastik yang terbentuk pada iklim kering dicirikan oleh warna merah akibat oksidasi Fe dan umumnya dalam literatur disebut “ red beds”. Kalau konsentrasi elemen logam dekat permukaan tanah atau di bawah tanah tempat pengendapan tinggi

memungkinkan terjadi konsentrasi larutan logam dan mengalami pencucian

(11)

klastik. Koloid bijih akan alih tempat oleh penukaran kation antara Fe dan mineral lempung atau akibat penyerapan oleh mineral lempung itu sendiri.

b. Lingkungan Laut

Kejadian cebakan mieral di lingkungan laut sangat berbeda dengan lingkungan darat yang umumnya mempunyai mempunyai pasokan air dengan kadar elemen yang tinggi dibandingkan kandungan di laut. Kadar air laut mempunai elemen yang rendah. Sebagai contoh kadar air laut untuk Fe 2 x 10-7 % yag membentuk konsentrasi mineral logam yang berharga hal ini dapat terjadi kalau mempunyai keadaan yang khusus (terutama Fe dan Mn) seperti :

a. Adanya salah satu sumber logam yang berasal dari pelapkan batuan di daratan atau dari sistem hidrotermal bawah permukaan laut.

b. Transport dalam larutan, mungkin sebagai koloid. Besi adalah logam yang dominan dan terbawa sebagai Fe(OH) soil partikel.

c. Endapan di dalam cebakan sedimenter, sebagai Fe(OH)3, FeCO3 atau Fe-silikat tergantung perbedaanpotensial reduksi (Eh).

Bijih dalam lingkungan laut ini dapat berupa oolit, yang dibentuk oleh larutan koloid membungkus material lain seperti pasir atau pecahan fosil. Bentuk kulit yang simetris disebabkan perubahan komposisi (Fe, Al, SiO2). Dengan pertumbuhan yang terus menerus, oolit tersebut akan stabil di dasar laut dimana tertanam dalam material lempungan karbonatan yang mengandung beberapa besi yang bagus. Di dasar laut mungkin oolit tersebut reworked. Dengan hasil keadaan tersebut bijih besi dan mangan sebagai contoh ferromanganese nodules yang sekarang ini menutupi daerah luas lautan.

Referensi

Dokumen terkait

Tujuan pengukuran topografi dalam pekerjaan ini adalah mengumpulkan data koordinat dan ketinggian permukaan tanah sepanjang rencana jembatan di dalam koridor yang ditetapkan

Sebagai contohnya potensi dalam kegiatan bentuk ekonomi sumber daya perairan, berarti kata potensi disini memiliki arti bahwa kita berusaha meningkatkan atau mengembangkan

Eισχωρεί στο βάθος, εξηγεί τους λγους του φαινομένου, δείχνει την αλληλουχία, την ιεραρχία των αξιών, ανακαλύπτει τους ρυθμούς των

Berdasarkan temuan baik di SD Inpres BTN IKIP 1 maupun di SD Inpres BTN IKIP II diketahui bahwa tindak lanjut yang dilakukan oleh kepala SD Inpres BTN IKIP 1 menggunakan

Alhamdulillahirabbil’alamin, segala puji dan syukur penulis panjatkan kehadirat Allah SWT atas berkat rahmat, hidayah dan atas izin-Nya penulis dapat menyelesaikan skripsi

2014 Evaluasi Peran Kelembagaan Dan Kapasitas Pengelolaan Mikro-Finance Pada Program Nasional Pemberdayaan Masyarakat- Mandiri Perdesaan (PNPM MPD) Di Provinsi Jawa Timur, Tahun

Menurut Ruslan Abdul gani bimbingan karir adalah “uatu proses bantuan layanan dan pendekatan terhadap individu (siswa atau remaja) agar individu yang bersangkutan dapat

Jika memburuknya kondisi ekonomi tersebut menimbulkan keraguan besar auditor tentang kelangsungan hidup entitas yang diaudit dan sudah diungkapkan oleh klien secara