Development and Applicability
6.7 APPLICATION OF ZEBRAFISH AS A MODEL WHOLE ORGANISM: A LANDMARK IN PRECLINICAL
Social Aspects of Drug Discovery, Development and Commercialization 144
6.6.3.1 UDP-Glucuronosyltransferases
The UDP-glucuronosyltransferases (UGTs) are Phase II enzymes that induce drug metabolism through covalent addition of a glucuronic moi- ety to a drug or endogenous compound. The three major ones are UGT1A1, UGT1A4, and UGT2B7, which account for 15, 20, and 35% of the UGT-metabolized drugs, respectively [60].
6.7 APPLICATION OF ZEBRAFISH AS A MODEL
require data from whole organism animal models for IND application.
Whole organisms retain the characteristics comparative to the human sys- tems in an in vivo model.
REFERENCES
[1] MacGregor JT, Collins JM, Sugiyama Y, Tyson CA, Dean J, Smith L, Andersen M, Cur- ren RD, Houston JB, Kadlubar FF, Kedderis GL, Krishnan K, Li AP, Parchment RE, Thummel K, Tomaszewski JE, Ulrich R, Vickers AE, Wrighton SA. In vitro human tis- sue models in risk assessment: report of a consensus-building workshop. Toxicol Sci 2001;59(1):17–36.
[2] Tilakaratne N, Christopoulos G, Zumpe ET, Foord SM, Sexton PM. Amylin recep- tor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment.
J Pharmacol Exp Ther 2000;294(1):61–72.
[3] Kenakin T. Efficacy at G-protein-coupled receptor. Nat Rev Drug Discov 2002;1(2):103–10.
[4] Dzhambazov B, Teneva I, Koleva L, Asparuhova D, Popov N. Morphological, genetic and functional variability of a T-cell hybridoma line. Folia Biol (Praha) 2003;49(2):
87–94.
[5] Rasgele PG, Muranli FD, Kekeçog˘lu M. Assessment of the genotoxicity of propineb in mice bone marrow cells using micronucleus assay. Tsitol Genet 2014;48(4):39–43.
[6] Legler UF. Experiences with GLP/GCP from the pharmaceutical industry’s viewpoint.
Methods Find Exp Clin Pharmacol 1993;15(4):233–6.
[7] Spielmann H, Liebsch M. Lessons learned from validation of in vitro toxicity test: from failure to acceptance into regulatory practice. Toxicol In Vitro 2001;15(4-5):585–90.
[8] Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3:711–6.
[9] Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, Obach RS. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development.
Drug Metab Dispos 2013;41:1975–93.
[10] Fowler BA. Molecular biomarkers: challenges and prospects for the future. Toxicol Appl Pharmacol 2005;7206(2):97.
[11] Michielan L, Moro S. Pharmaceutical perspectives of nonlinear QSAR strategies.
J Chem Inf Model 2010;50:961–78.
[12] Gleeson MP, Hersey A, Hannongbua S. In silico ADME models: a general assessment of their utility in drug discovery applications. Curr Top Med Chem 2011;11:358–81.
[13] Van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction para- dise? Nat Rev Drug Discov 2003;2:192–204.
[14] Kier LD, Neft R, Tang L, Suizu R, Cook T, Onsurez K, Tiegler K, Sakai Y, Ortiz M, No- lan T, Sankar U, Li AP. Applications of microarrays with toxicologically-relevant genes (tox genes) for the evaluation of chemical toxicants in Sprague Dawley rats in vivo and human hepatocytes in vitro. Mutat Res 2004;549:101–13.
[15] Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, Hamilton GA, Ingber DE.
Microfabrication of human organs-on-chips. Nat Protoc 2013;8(11):2135–57.
[16] Adams CP, Brantner VV. Estimating the cost of new drug development: is it really $802 million? Health Affairs 2006;25:420–8.
[17] Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014;32:760–72.
[18] Sharma P, Butters CJ, Smith V, Elsby R, Surry D. Prediction of the in vivo OATP1B- 1mediated drug-drug interaction potential of an investigational drug against a range of statins. Eur J Pharm Sci 2012;47:244–55.
Social Aspects of Drug Discovery, Development and Commercialization 146
[19] Soars MG, Barton P, Ismair M, Jupp R, Riley RJ. The development, characterization, and application of an OATP1B1 inhibition assay in drug discovery. Drug Metab Dispos 2012;40:1641–8.
[20] Li AP. Preclinical in vitro screening assays for drug-like properties. Drug Discov Today Technol 2005;2(2):179–185.
[21] Varma MV, Chang G, Lai Y, Feng B, El-Kattan AF, Litchfield J, Goosen TC. Physico- chemical property space of hepatobiliary transport and computational models for pre- dicting rat biliary excretion. Drug Metab Dispos 2012;40:1527–37.
[22] Esch MB, King TL, Shuler ML. The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 2011;13:55–72.
[23] Gattei V, Aldinucci D, Petti MC, Da Ponte A, Zagonel V, Pinto A. In vitro and in vivo ef- fects of 5-aza-29-deoxycytidine (Decitabine) on clonogenic cells from acute myeloid leukemia patients. Leukemia 1993;7(Suppl. 1):42–8.
[24] Dimitrova DS, Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 2002;115:4037–51.
[25] Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011;21:745–54.
[26] Chen SY, Hung PJ, Lee PJ. Microfluidic array for three-dimensional perfusion culture of human mammary epithelial cells. Biomed Microdevices 2011;13(4):753–8.
[27] Annaert PP, Brouwer KL. Assessment of drug interactions in hepatobiliary transport using rhodamine 123 in sandwich-cultured rat hepatocytes. Drug Metab Dispos 2005;33:294–388.
[28] Ibrahim AE, Feldman J, Karim A, Kharasch ED. Simultaneous assessment of drug in- teractions with low- and high-extraction opioids: application to parecoxib effects on the pharmacokinetics and pharmacodynamics of fentanyl and alfentanil. Anesthesiology 2003;98(4):853–61.
[29] Anene-Nzelu CG, Peh KY, Fraiszudeen A, Kuan YH, Ng SH, Toh YC, Leo H, Yu H.
Scalable alignment of three-dimensional cellular constructs in a microfluidic chip. Lab Chip 2013;13:4124–33.
[30] Three “Organs-on-Chips” ready to serve as disease models, drug testbeds. Available from: http://wyss.harvard.edu/viewpage/484/
[31] Sam H, Chamberlain MD, Mahesh S, Seftonabc MV, Wheeler AR. Hepatic organoids for microfluidic drug screening. Lab Chip 2014;14:3290–9.
[32] Chan CY, Huang PH, Guo F, Ding X, Kapur V, Mai JD, Yuen PK, Huang TJ. Accelerat- ing drug discovery via organs-on-chips. Lab Chip 2013;13(24):4697.
[33] Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development.
Nat Biotechnol 2008;26:120–6.
[34] Wang J, Bettinger CJ, Langer RS, Borenstein JT. Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly (ester amide) elastomers. Or- ganogenesis 2010;6(4):212–6.
[35] Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. Microfluidic scaffolds for tissue engineering. Nat Mater 2007;6:908–15.
[36] Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, Ingber DE. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.
Integr Biol (Camb) 2013;5(9):1119–29.
[37] Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos 2006;34:880–6.
[38] Paine MF, Shen DD, Kunze KL, Perkins JD, Marsh CL, McVicar JP, Barr DM, Gillies BS, Thummel KE. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996;60:14–24.
[39] Thummel KE. Gut instincts: CYP3A4 and intestinal drug metabolism. J Clin Invest 2007;117:3173–6.
[40] Bode C. The nasty surprise of a complex drug–drug interaction. Drug Discov Today 2010;15(9-10):391––395.
[41] US Department of Health and Human Services, FDA Guidance for Industry, Drug metabolism/drug interaction studies in the drug development process: studies in vitro;
1999. Available from: http://www.fda.gov/downloads/Drugs/
[42] Available from: http://www.GuidanceComplianceRegulatoryInformation/Guidances/
ucm072104.pdf
[43] Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008;21:70–83.
[44] Clark SE, Jones BC. Human cytochromes P450 and their role in metabolism-based drug–drug interactions. In: David Rodrigues A, editor. Drug–drug interactions. CRC Press; 2001. Chapter 3, p. 55–88.
[45] Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Dis- cov Today 2001;6:357–66.
[46] Li AP. In vitro approaches to evaluate ADMET drug properties. Curr Top Med Chem 2004;4(7):701–6.
[47] Li AP, Jurima-Romet M. Overview: pharmacokinetic drug–drug interactions. Adv Pharmacol 1997;43:1–6.
[48] Li AP, Hartman NR, Lu C, Collins JM, Strong JM. Effects of cytochrome P450 inducers on 17a-ethinyloestradiol (EE2) conjugation by primary human hepatocytes. Br J Clin Pharmacol 1999;48(5):733–42.
[49] Shitara Y, Itoh T, Sato H, Li AP, Sugiyama Y. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug–drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther 2003;304:610–6.
[50] Li AP, Kato Y, Lu C, Ito K, Itoh T, Sugiyama Y. Function of uptake transporters for tauro- cholate and estradiol 17 betaD-glucuronide in cryopreserved human hepatocytes. Drug Metab Pharmacokinet 2003;18:33–41.
[51] He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature 1992;358:209–15.
[52] Otagiri M. A molecular functional study on the interactions of drugs with plasma pro- teins. Drug Metab Pharmacokinet 2005;20:309–23.
[53] Sheppard GS, Wang J, Kawai M, Fidanze SD, BaMaung NY, Erickson SA, Barnes DM, Tedrow JS, Kolaczkowski L, Vasudevan A, Park DC, Wang GT, Sanders WJ, Mantei RA, Palazzo F, Tucker-Garcia L, Lou P, Zhang Q, Park CH, Kim KH, Petros A, Olejnic- zak E, Nettesheim D, Hajduk P, Henkin J, Lesniewski R, Davidsen SK, Bell RL. Dis- covery and optimization of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2: a structural basis for the reduction of albumin binding. J Med Chem 2006;49:3832–49.
[54] Wendt MD, Shen W, Kunzer A, McClellan WJ, Bruncko M, Oost TK, Ding H, Joseph MK, Zhang H, Nimmer PM, Ng SC, Shoemaker AR, Petros AM, Oleksijew A, Marsh K, Bauch J, Oltersdorf T, Belli BA, Martineau D, Fesik SW, Rosenberg SH, Elmore SW. Discovery and structure–activity relationship of antagonists of B-cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. J Med Chem 2006;49:1165–81.
[55] Lombardo F, Obach RS, Dicapua FM, Bakken GA, Lu J, Potter DM, Gao F, Miller MD, Zhang Y. A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human. J Med Chem 2006;49:2262–7.
[56] Pajeva I, Wiese M. Application of in silico methods to study ABC transporters involved in multidrug resistance. In: Miteva MA, editor. Silico Lead Discovery. Bentham Science Publishers; 2011. Chapter 8, p. 144–62.
[57] Masereeuw R, Russel FG. Mechanisms and clinical implications of renal drug excre- tion. Drug Metab Rev 2001;33:299–351.
Social Aspects of Drug Discovery, Development and Commercialization 148
[58] Syvänen S, Lindhe O, Palner M, Kornum BR, Rahman O, Långström B, Knudsen GM, Hammarlund-Udenaes M. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport.
Drug Metab Dispos 2009;37(3):635–43.
[59] Shen H, Yang Z, Mintier G, Han YH, Chen C, Balimane P, Jemal M, Zhao W, Zhang R, Kallipatti S, Selvam S, Sukrutharaj S, Krishnamurthy P, Marathe P, Rodrigues AD.
Cynomolgus monkey as a potential model to assess drug interactions involving hepatic organic anion transporting polypeptides (OATPs), in vitro, in vivo and in vitro-to-in vivo extrapolation. J Pharmacol Exp Ther 2013;344:673–85.
[60] Williams JA, et al. Drug–drug interactions for UDP-glucuronosyltransferase substrates:
a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ra- tios. Drug Metab Dispos 2004;32:1201–8.
[61] Safa AR. Identification and characterization of the binding sites of Pglycoprotein for multidrug resistance-related drugs and modulators. Curr Med Chem Anticancer Agents 2004;4:1–17.
[62] Barros TP, Alderton WK, Reynolds HM, Roach AG, Berghmans S. Zebrafish: an emerg- ing technology for in vivo pharmacological assessment to identify potential safety liabili- ties in early drug discovery. Br J Pharmacol 2008;54(7):1400–13.
[63] Smith AC, Raimondi AR, Salthouse CD, Ignatius MS, Blackburn JS, Mizgirev IV, Storer NY, de Jong JL, Chen AT, Zhou Y, Revskoy S, Zon LI, Langenau DM. High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood 2010;115:3296–303.
[64] Park SW, Davison JM, Rhee J, Hruban RH, Maitra A, Leach SD. KRAS induces pro- genitor cell expansion and malignant transformation in zebrafish exocrine pancreas.
Gastroenterol Oncogen 2008;134:2080–90.
[65] Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD. TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2006;103:15166–71.
[66] Rudner LA, et al. Shared acquired genomic changes in zebrafish and human T-ALL.
Oncogene 2011;30:4289–96.
[67] Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI, Look AT. Myc-induced T cell leukemia in transgenic zebrafish.
Science 2003;299:887–90.
[68] Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, Partecke LI, Heidecke CD, Lerch MM, Bagowski CP. Metastatic behaviour of primary human tu- mours in a zebrafish xenotransplantation model. BMC Cancer 2009;9:128.
[69] Eguiara A, Holgado O, Beloqui I, Abalde L, Sanchez Y, Callol C, Martin AG. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identifi- cation. Cell Cycle 2011;10:3751–7.
[70] Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Parinov S, Gong Z. An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screen- ing. Dis Model Mech 2012;5(1):63–72.
[71] Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005;4:35–44.
[72] Lukianova-Hleb EY, Santiago C, Wagner DS, Hafner JH, Lapotko DO. Generation and detection of plasmonic nanobubbles in zebrafish. Nanotechnology 2010;21(22):225102.
[73] Wagner DS, Delk NA, Lukianova-Hleb EY, Hafner JH, Farach-Carson MC, Lapotko DO. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials 2010;31(29):7567–74.
Social Aspects of Drug Discovery, Development and Commercialization Copyright © 2016 Elsevier Inc.
http://dx.doi.org/10.1016/B978-0-12-802220-7.00007-7 All rights reserved. 149