• Tidak ada hasil yang ditemukan

Band structure analysis

Dalam dokumen Superconducting Circuits (Halaman 177-184)

SUPPLEMENTARY INFORMATION FOR CHAPTER 5

D.1 Band structure analysis

A p p e n d i x D

where ๐‘€ = 2๐‘ +1 is the total number of periods in the waveguide. Using the Fourier relation we find the Lagrangian in ๐‘˜-space as

๐ฟ =ร•

๐œ…

1

2(๐ถ0+๐ถg) | ยคฮฆa๐œ…|2โˆ’

1โˆ’๐‘’โˆ’๐‘–2๐œ‹(๐œ…/๐‘€)

2 |ฮฆa๐œ…|2 2๐ฟ0 + 1

2(๐ถg+๐ถr) | ยคฮฆb๐œ…|2โˆ’ |ฮฆb๐œ…|2 2๐ฟr

โˆ’๐ถg

ฮฆยคb๐œ…ฮฆยคaโˆ’๐œ…+ ยคฮฆbโˆ’๐œ…ฮฆยคa๐œ… 2

.

To proceed further, we need to find the canonical node charges which are defined as๐‘„a,b

๐œ… = ๐œ• ๐ฟ

๐œ•ฮฆยคa๐œ…,b

, and subsequently derive the Hamiltonian of the system by using a Legendre transformation. Doing so we find

๐ป =ร•

๐œ…

๐‘„a

๐œ…๐‘„aโˆ’๐œ… 2๐ถ0

0

+

1โˆ’๐‘’โˆ’๐‘–2๐œ‹(๐œ…/๐‘€)

2ฮฆa๐œ…ฮฆaโˆ’๐œ… 2๐ฟ0

+ ๐‘„b

๐œ…๐‘„bโˆ’๐œ… 2๐ถ0r

+ ฮฆb๐œ…ฮฆbโˆ’๐œ… 2๐ฟr

+ ๐‘„a

๐œ…๐‘„bโˆ’๐œ…+๐‘„aโˆ’๐œ…๐‘„b

๐œ…

2๐ถg0

.

Here, we have defined the following quantities ๐ถ0

0=

๐ถg๐ถr+๐ถg๐ถ0+๐ถ0๐ถr ๐ถg+๐ถr

, ๐ถ0

r =

๐ถg๐ถr+๐ถg๐ถ0+๐ถ0๐ถr ๐ถg+๐ถ0

, ๐ถ0

g=

๐ถg๐ถr+๐ถg๐ถ0+๐ถ0๐ถr ๐ถg

.

The canonical commutation relation[ฮฆ๐‘–๐œ…, ๐‘„

๐‘—

โˆ’๐œ…0] =๐‘–โ„๐›ฟ๐‘–, ๐‘—๐›ฟ๐œ…,๐œ…0 allows us to define the following annihilation operators as a function of charge and flux operators

ห† ๐‘Ž๐œ… =

s ๐ถ0

0ฮฉ๐‘˜

2โ„

ฮฆa๐œ…+ ๐‘– ๐ถ0

0ฮฉ๐‘˜

๐‘„a

๐œ…

, ๐‘ห†๐œ… = r

๐ถ0

r๐œ”0 2โ„

ฮฆb๐œ…+ ๐‘– ๐ถr0๐œ”0

๐‘„b

๐œ…

. (D.3)

Here, we have defined the resonance frequency for each mode as ฮฉ๐‘˜ =

s

4sin2(๐‘˜ ๐‘‘/2) ๐ฟ0๐ถ0

0

, ๐œ”0= 1 p

๐ฟr๐ถr0

, (D.4)

where ๐‘˜ = 2๐œ‹ ๐œ…/(๐‘€ ๐‘‘) is the wavenumber. It is evident that ฮฉ๐‘˜ has the expected dispersion relation of a discrete periodic transmission line and๐œ”0 is the resonance frequency of the loaded microwave resonators. Using the above definitions for ห†๐‘Ž๐œ…,๐‘ห†๐œ…

ห† ๐ป = โ„

2 ร•

๐‘˜

ฮฉ๐‘˜

ห† ๐‘Žโ€ 

๐‘˜๐‘Žห†๐‘˜+๐‘Žห†โˆ’๐‘˜๐‘Žห†โ€ 

โˆ’๐‘˜

+๐œ”0

๐‘ห†โ€ 

๐‘˜

ห†

๐‘๐‘˜+๐‘ห†โˆ’๐‘˜๐‘ห†โ€ 

โˆ’๐‘˜

โˆ’๐‘”๐‘˜

๐‘ห†โˆ’๐‘˜ โˆ’๐‘ห†โ€ 

๐‘˜ ๐‘Žห†๐‘˜ โˆ’๐‘Žห†โ€ 

โˆ’๐‘˜

โˆ’๐‘”๐‘˜

ห† ๐‘Žโ€ 

๐‘˜ โˆ’๐‘Žห†โˆ’๐‘˜ ๐‘ห†โ€ 

โˆ’๐‘˜ โˆ’๐‘ห†๐‘˜

, (D.5)

along with the coupling coefficient ๐‘”๐‘˜ =

p๐ถ0

0๐ถ0r 2๐ถg0

p

๐œ”0ฮฉ๐‘˜ =

๐ถg

โˆš ๐œ”0ฮฉ๐‘˜

2p

(๐ถ0+๐ถg) (๐ถr+๐ถg)

. (D.6)

An alternative structure for coupling microwave resonators is depicted in the bottom panel of Fig. D.1. In this geometry, the coupling is controlled by the inductive element๐ฟg. Repeating the analysis above for this case, we find

ฮฉ๐‘˜ = s

4sin2(๐‘˜ ๐‘‘/2) ๐ถ0๐ฟ0

0

, ๐œ”0= 1 p

๐ถr๐ฟ0

r

, ๐‘”๐‘˜ = p๐ฟ0

0๐ฟ0

r

2๐ฟ0

g

p

๐œ”0ฮฉ๐‘˜. (D.7) We have defined the modified inductance values as

๐ฟ0

0=

๐ฟg๐ฟr+๐ฟg๐ฟ0+๐ฟ0๐ฟr ๐ฟg+๐ฟr

, ๐ฟ0

r =

๐ฟg๐ฟr+๐ฟg๐ฟ0+๐ฟ0๐ฟr ๐ฟg+๐ฟ0

, ๐ฟ0

g =

๐ฟg๐ฟr+๐ฟg๐ฟ0+๐ฟ0๐ฟr ๐ฟg

.

Band structure calculation with RWA

Using the rotating wave approximation, the Hamiltonian in Eq. (D.5) can be simpli- fied to

ห†

๐ป = โ„ร•

๐‘˜

ฮฉ๐‘˜๐‘Žห†โ€ 

๐‘˜๐‘Žห†๐‘˜ +๐œ”0๐‘ห†โ€ 

๐‘˜

ห† ๐‘๐‘˜+๐‘”๐‘˜

๐‘ห†โ€ 

๐‘˜๐‘Žห†๐‘˜ +๐‘Žห†โ€ 

๐‘˜

ห† ๐‘๐‘˜

. (D.8)

Note that this approximation is applicable only when the coupling is sufficiently weak, ๐‘”๐‘˜ min(๐œ”0,ฮฉ๐‘˜), and the detuning is sufficiently small |๐œ”0 โˆ’ ฮฉ๐‘˜| (๐œ”0+ฮฉ๐‘˜). Assumingฮฉ๐‘˜ and๐œ”0 are of the same order, this condition is satisfied when๐ถg 2p

(๐ถ0๐ถr).

The simplified Hamiltonian can be written in the compact form ห†

๐ป = โ„ร•

๐‘˜

xโ€ ๐‘˜H๐‘˜x๐‘˜, (D.9)

where

H๐‘˜ =

"

ฮฉ๐‘˜ ๐‘”๐‘˜ ๐‘”๐‘˜ ๐œ”0

#

, x๐‘˜ =

"

ห† ๐‘Ž๐‘˜

ห† ๐‘๐‘˜

#

. (D.10)

We desire to transform the Hamiltonian to a diagonalized form Hหœ๐‘˜ =

"

๐œ”+, ๐‘˜ 0 0 ๐œ”โˆ’, ๐‘˜

#

. (D.11)

It is straightforward to use the eigenvalue decomposition to find๐œ”ยฑ, ๐‘˜ as ๐œ”ยฑ, ๐‘˜ = 1

2

(ฮฉ๐‘˜ +๐œ”0) ยฑ q

(ฮฉ๐‘˜โˆ’๐œ”0)2+4๐‘”2

๐‘˜

, (D.12)

along with the corresponding eigenstates|ยฑ, ๐‘˜i =๐›ผห†ยฑ, ๐‘˜|0i, where ห†

๐›ผยฑ, ๐‘˜ = (๐œ”ยฑ, ๐‘˜โˆ’๐œ”0) q

(๐œ”ยฑ, ๐‘˜โˆ’๐œ”0)2+๐‘”2

๐‘˜

ห†

๐‘Ž๐‘˜+ ๐‘”๐‘˜ q

(๐œ”ยฑ, ๐‘˜โˆ’๐œ”0)2+๐‘”2

๐‘˜

๐‘ห†๐‘˜. (D.13)

Band structure calculation beyond RWA

The exact Hamiltonian in Eq. (D.5) can be written in the compact form ห†

๐ป = โ„ 2

ร•

๐‘˜

xโ€ ๐‘˜H๐‘˜x๐‘˜, (D.14)

where

H๐‘˜ =

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

ฮฉ๐‘˜ 0 ๐‘”๐‘˜ โˆ’๐‘”๐‘˜ 0 ฮฉ๐‘˜ โˆ’๐‘”๐‘˜ ๐‘”๐‘˜ ๐‘”๐‘˜ โˆ’๐‘”๐‘˜ ๐œ”0 0

โˆ’๐‘”๐‘˜ ๐‘”๐‘˜ 0 ๐œ”0

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

, x๐‘˜ =

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ห† ๐‘Ž๐‘˜ ห† ๐‘Žโ€ 

โˆ’๐‘˜

๐‘ห†๐‘˜ ๐‘ห†โ€ 

โˆ’๐‘˜

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

. (D.15)

To find the eigenstates of the system, we can use a linear transform to map the state vector หœx๐‘˜ =S๐‘˜x๐‘˜ such thatxโ€ ๐‘˜H๐‘˜x๐‘˜ = หœxโ€ ๐‘˜Hหœ๐‘˜หœx๐‘˜ with the transformed diagonal Hamiltonian matrix

Hหœ๐‘˜ =

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

๐œ”+, ๐‘˜ 0 0 0

0 ๐œ”+, ๐‘˜ 0 0

0 0 ๐œ”โˆ’, ๐‘˜ 0 0 0 0 ๐œ”โˆ’, ๐‘˜.

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

(D.16)

In order to preserve the canonical commutation relations, the matrix S๐‘˜ has to be symplectic, i.e. J = S๐‘˜JSโ€ ๐‘˜, with the matrix J = diag(1,โˆ’1,1,โˆ’1). A linear transformation (such asS๐‘˜) that diagonalizes a set of quadratically coupled boson fields while preserving their canonical commutation relations is often referred to as a Bogoliubov-Valatin transformation. While it is generally difficult to find the transform matrixS๐‘˜, it is easy to find the eigenvalues of the diagonalized Hamiltonian by exploiting some of the properties ofS๐‘˜. Note that sinceJ=S๐‘˜JSโ€ ๐‘˜, the matrices J หœH๐‘˜ andJH๐‘˜share the same set of eigenvalues. The eigenvalues ofJ หœH๐‘˜are the two frequencies๐œ”ยฑ, ๐‘˜, and thus we have

๐œ”2

ยฑ, ๐‘˜ = 1 2

"

ฮฉ2๐‘˜ +๐œ”2

0

ยฑ r

ฮฉ2

๐‘˜โˆ’๐œ”2

0

2

+16๐œ”0ฮฉ๐‘˜๐‘”2

๐‘˜

#

. (D.17)

Circuit theory derivation of the band structure

Consider the pair of equations that describe the propagation of a monochromatic electromagnetic wave of the form ๐‘ฃ(๐‘ฅ , ๐‘ก) = ๐‘‰(๐‘ฅ)๐‘’โˆ’๐‘– ๐‘˜ ๐‘ฅ๐‘’๐‘–๐œ”๐‘ก (along with the corre- sponding current relation) inside a transmission line

d d๐‘ฅ

๐‘‰(๐‘ฅ) =โˆ’๐‘(๐œ”)๐ผ(๐‘ฅ), d d๐‘ฅ

๐ผ(๐‘ฅ) =โˆ’๐‘Œ(๐œ”)๐‘‰(๐‘ฅ). (D.18)

Here,๐‘(๐œ”)and๐‘Œ(๐œ”)are frequency dependent impedance and admittance functions that model the linear response of the series and parallel portions of a transmission line with length๐‘‘. It is straightforward to check that the solutions to these equation satisfy ๐‘˜(๐œ”) = ๐‘›๐œ”/๐‘ = p

โˆ’๐‘(๐œ”)๐‘Œ(๐œ”)/๐‘‘. For a loss-less waveguide and in the absence of dispersion we have๐‘(๐œ”) =๐‘–๐œ” ๐ฟ0and๐‘Œ(๐œ”)=๐‘–๐œ”๐ถ0, and thus we find the familiar dispersion relation๐‘˜(๐œ”) =๐œ”

โˆš

๐ฟ0๐ถ0/๐‘‘. Nevertheless, the pair of equations above remain valid for arbitrary impedance and admittance functions ๐‘(๐œ”) and ๐‘Œ(๐œ”), provided that the dimension of the model circuit remains much smaller than the wavelength under consideration. In this model, a real and negative quantity for the product๐‘๐‘Œ results in an imaginary wavenumber and subsequently creates a stop band in the dispersion relation. This situation can be achieved by periodically loading a transmission line with an array of resonators [343, 344]. Assuming a unit length of๐‘‘ we find

๐‘˜2= ๐œ”

๐‘ 2

๐‘›2

"

1+ 2๐‘๐›พe ๐‘›๐‘‘

1 ๐œ”2

0โˆ’๐œ”2

#

. (D.19)

Here,๐œ”0is the resonance frequency, and๐›พeis the external coupling decay rate of an individual resonator in the array. For moderate values of gap-midgap ratio (ฮ”/๐œ”๐‘š), the frequency gap can be found as

ฮ” = ๐‘ ๐‘›๐‘‘

๐›พe ๐œ”0

, (D.20)

and๐œ”๐‘š =๐œ”0+ฮ”/2. We have defined the gap as the range of frequencies where the wavenumber is imaginary.

Although a microwave resonator can be realized by using a two-element LC-circuit, the three-element circuits in Fig. D.1 provide an additional degree of freedom which enables setting the coupling๐›พe independent of the resonance frequency๐œ”0. Using circuit theory, it is straightforward to show

๐œ”0 = 1

p

๐ฟr(๐ถr+๐ถg)

, ๐›พe = ๐‘0 2๐ฟr

๐ถg ๐ถr+๐ถg

2

. (D.21)

Here, ๐‘0 is the characteristic impedance of the unloaded waveguide. It is easy to check that for small values of ๐ถg/๐ถr, the resonance frequency is only a weak function of๐ถg. As a result, it is possible to adjust the coupling rate๐›พeby setting the capacitor๐ถgwhile keeping the resonance frequency almost constant. Fig. D.1 also depicts an alternative strategy for coupling microwave resonators to the waveguide.

In this design, the inductive element ๐ฟg is used to set the coupling in a โ€œcurrent

divider" geometry. We provide experimental results for implementation of bandgap waveguide based on both designs in the next section.

While the โ€œcontinuum" model described above provides a heuristic explanation for formation of bandgap in a waveguide loaded with resonators, its results remains valid as far as ๐‘˜ 2๐œ‹/๐‘‘. To avoid this approximation, we can use the transfer matrix method to find the exact dispersion relation for a system with discrete periodic symmetry [180]. In this case, Equation (D.19) is modified to

cos(๐‘˜ ๐‘‘) =1โˆ’ ๐œ” ๐‘

2๐‘›2๐‘‘2

2 โˆ’ ๐‘›๐‘‘ ๐›พe ๐‘

๐œ”2 ๐œ”2

0โˆ’๐œ”2

. (D.22)

Note that this relation still requires๐‘‘to be much smaller than the wavelength of the unloaded waveguide๐œ†=2๐œ‹ ๐‘/(๐‘›๐œ”).

Dispersion and group index near the band-edges

Equation (D.17) can be reversed to find the wavenumber๐‘˜as a function of frequency.

Assuming, a linear dispersion relation of the form๐‘˜ =๐‘›ฮฉ๐‘˜/๐‘for the bare waveguide we find

๐‘˜ = ๐‘›๐œ” ๐‘

s

๐œ”2โˆ’๐œ”2๐‘+

๐œ”2โˆ’๐œ”2๐‘โˆ’

. (D.23)

Here, ๐œ”๐‘+ = ๐œ”0 and ๐œ”๐‘โˆ’ = ๐œ”0 q

1โˆ’4๐‘”2

๐‘˜/(ฮฉ๐‘˜๐œ”0) are the upper and lower cut- off frequencies, respectively. The quantity ๐‘”2

๐‘˜/(ฮฉ๐‘˜๐œ”0) is a unit-less parameter quantifying the size of the bandgap and is independent of the wavenumber๐‘˜. The dispersion relation can be written in simpler forms by expanding the wavenum- ber in the vicinity of the two band-edges

๐‘˜ =

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

๐‘›๐œ”๐‘โˆ’

๐‘

q ฮ”

โˆ’๐›ฟโˆ’ for๐œ” โ‰ˆ๐œ”๐‘โˆ’,

๐‘›๐œ”๐‘+

๐‘

q

๐›ฟ+

ฮ” for๐œ” โ‰ˆ๐œ”๐‘+.

(D.24) Here, ฮ” = ๐œ”๐‘+ โˆ’๐œ”๐‘โˆ’ is the frequency span of the bandgap and ๐›ฟยฑ =๐œ” โˆ’๐œ”๐‘ยฑ are the detunings from the band-edges.

The form of the dispersion relation Eq. (D.17) suggests that the maxima of the group index happens near the band-edges. Having the wavenumber, we can evaluate the group velocity๐‘ฃ๐‘” =๐œ• ๐œ”/๐œ• ๐‘˜ and find the group index๐‘›๐‘”=๐‘/๐‘ฃ๐‘”as

๐‘›๐‘” =

๏ฃฑ๏ฃด

๏ฃด๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃด

๏ฃณ

๐‘›๐œ”๐‘โˆ’

โˆš

โˆš ฮ”

โˆ’4(๐›ฟโˆ’โˆ’๐‘– ๐›พ๐‘–)3 for๐œ”โ‰ˆ ๐œ”๐‘โˆ’,

๐‘›๐œ”๐‘+

โˆš

4ฮ”(๐›ฟ+โˆ’๐‘– ๐›พ๐‘–) for๐œ”โ‰ˆ ๐œ”๐‘+.

(D.25)

Note that we have replaced ๐›ฟยฑ with ๐›ฟยฑ โˆ’๐‘– ๐›พ๐‘– to account for finite internal quality factor of the resonators in the structure.

Coupling a Josephson junction qubit to a metamaterial waveguide

We consider the coupling of a Josephson junction qubit to the metamaterial waveg- uide. Assuming rotating wave approximation (valid for weak coupling ๐‘“๐‘˜ ๐œ”๐‘˜, ๐œ”q), the Hamiltonian of this system can be written as

ห†

๐ป = โ„ร•

๐‘˜

๐œ”๐‘˜๐‘Žห†โ€ 

๐‘˜๐‘Žห†๐‘˜ + ๐œ”q

2 ๐œŽห†๐‘ง+ ๐‘“๐‘˜

ห† ๐‘Žโ€ 

๐‘˜๐œŽห†โˆ’+๐‘Žห†๐‘˜๐œŽห†+

.

(D.26) Here ๐‘“๐‘˜ is the coupling factor of the qubit to the waveguide photons, and๐œ”๐‘˜ =๐œ”ยฑ, ๐‘˜, where the plus or minus sign is chosen such that the qubit frequency๐œ”qlies within the band. Without loss of generality, we assume ๐‘“๐‘˜ to be a real number. The Heisenberg equations of motions for the qubit and the photon operators can be written as

๐œ•

๐œ• ๐‘ก ห†

๐‘Ž๐‘˜ =โˆ’๐‘–๐œ”๐‘˜๐‘Žห†๐‘˜ โˆ’๐‘– ๐‘“๐‘˜๐œŽห†โˆ’ (D.27)

๐œ•

๐œ• ๐‘ก๐œŽห†โˆ’ =โˆ’๐‘–๐œ”q๐œŽห†โˆ’โˆ’๐‘– ร•

๐‘˜

๐‘“๐‘˜๐‘Žห†๐‘˜ (D.28)

The equation for ห†๐‘Ž๐‘˜ can be formally integrated and substituted in the equation for ห†

๐œŽโˆ’ to find

๐œ•

๐œ• ๐‘ก๐œŽห†โˆ’ =โˆ’๐‘–๐œ”q๐œŽห†โˆ’โˆ’๐‘– ร•

๐‘˜

๐‘“๐‘˜๐‘’โˆ’๐‘–๐œ”๐‘˜(๐‘กโˆ’๐‘ก0)๐‘Žห†๐‘˜(๐‘ก0)

โˆ’ร•

๐‘˜

๐‘“2

๐‘˜

โˆซ ๐‘ก

๐‘ก0

๐‘’โˆ’๐‘–(๐œ”๐‘˜) (๐‘กโˆ’๐œ)๐œŽห†โˆ’(๐œ)d๐œ . (D.29) We now use the Markov approximation to write ห†๐œŽโˆ’(๐œ) โ‰ˆ๐œŽห†โˆ’(๐‘ก)๐‘’โˆ’๐‘–(๐œ”q) (๐œโˆ’๐‘ก), and thus

๐œ•

๐œ• ๐‘ก ห†

๐œŽโˆ’ =โˆ’๐‘–๐œ”q๐œŽห†โˆ’โˆ’๐‘– ร•

๐‘˜

๐‘“๐‘˜๐‘’โˆ’๐‘–๐œ”๐‘˜(๐‘กโˆ’๐‘ก0)๐‘Žห†๐‘˜(๐‘ก0)

โˆ’ร•

๐‘˜

๐‘“2

๐‘˜

โˆซ ๐‘ก ๐‘ก0

๐‘’โˆ’๐‘–(๐œ”๐‘˜โˆ’๐œ”q) (๐‘กโˆ’๐œ)d๐œ

ห†

๐œŽโˆ’(๐‘ก). (D.30) Considering the generic equation of motion for a linearly decaying qubit,(๐œ•/๐œ• ๐‘ก)๐œŽห†โˆ’ =

โˆ’๐‘–๐œ”q๐œŽห†โˆ’โˆ’ (๐›พ/2)๐œŽห†โˆ’, we can identify real part of the last term in the equation above as the decay rate due to radiation of the qubit into the waveguide. We can extend the integralโ€™s bound to approximately evaluate this term as๐›พ โ‰ˆ 2๐œ‹ร

๐‘˜ ๐‘“2

๐‘˜๐›ฟ(๐œ”๐‘˜ โˆ’๐œ”q).

Band Frequency (GHz) ๐‘”/2๐œ‹(MHz) ๐‘„e(ร—103) ๐‘„i(ร—103)

Lower 4.2131 15.3 49.47 74.99

Lower 4.6012 19.74 35.09 76.25

Lower 4.7395 18.14 43.58 75

Lower 4.8044 16.53 94.17 75.59

Lower 4.8373 14.03 152.06 73.77

Lower 4.856 9.73 455.8 76.47

Lower 4.8654 4.48 2100 72

Upper 6.6768 39.44 15.74 68.06

Upper 7.309 58.06 12.02 70.44

Table D.1: Measured resonance parameters for metamaterial waveguide. The values are measured for the waveguide of Figs. 5.2-5.4. The resonances are measured in reflection from the input 50-ฮฉ CPW port. The qubit-resonance coupling, ๐‘”, is inferred from the anti-crossing observed as the qubit is tuned through each waveguide resonance.

Assuming the coupling rate ๐‘“๐‘˜ is a smooth function of the๐‘˜-vector, we can evaluate this some in the continuum limit as

๐›พ =2๐œ‹ ร•

๐‘˜

๐‘“2

๐‘˜๐›ฟ(๐œ”๐‘˜ โˆ’๐œ”q) โ‰ˆ ๐‘€ ๐‘‘

โˆซ

d๐‘˜ ๐‘“2

๐‘˜๐›ฟ(๐œ”๐‘˜โˆ’๐œ”q)

=๐ฟ

โˆซ d๐œ”

๐œ• ๐‘˜

๐œ• ๐œ”

๐‘“2

๐‘˜๐›ฟ(๐œ”๐‘˜ โˆ’๐œ”q) = ๐ฟ ๐‘

๐‘“(๐œ”q)2๐‘›g(๐œ”q).

It is evident that reducing the group velocity increases the radiation decay rate of the qubit. A similar analysis can be applied to find the decay rate of a linear cavity with resonance frequency of๐œ”0(i.e. a harmonic oscillator) that has been coupled to the waveguide with coupling constant๐‘”(๐œ”). In this case we find

๐›พ = ๐ฟ ๐‘

๐‘”(๐œ”0)2๐‘›g(๐œ”0), ๐‘„e =๐œ”0/๐›พ = ๐œ”0๐‘ ๐ฟ

1 ๐‘”(๐œ”0)2๐‘›g(๐œ”0)

.

Dalam dokumen Superconducting Circuits (Halaman 177-184)