• Tidak ada hasil yang ditemukan

Temperature (K)427.2

5.6 Chapter Summary

In this chapter, we have investigated the dissipation in single-crystal 3C-SiC nanomechanical resonators operating at ultra-high frequencies, to gain understanding and develop engineering solutions that make optimal trade-offs between scaling up resonance frequency and attaining high Q’s for UHF NEMS resonators. It is found that the temperature dependence of the dissipation in the 3C-SiC NEMS resonators studied follows Q-1Tα, with α≈0.3. It is clear that in-depth theoretical models and analyses are needed to reveal the underlying microscopic mechanisms. The magnetomotive damping effect can be appreciable, but it is relatively well understood and (to some

extent) controlled. Thermoelastic dissipation is found to be negligible for the devices of this study. The losses from metallization layers contribute ≤1% of the observed total dissipation. However, a major source of the dissipation is clamping losses through the supports for these doubly-clamped beam UHF resonators. The measured data show that the theoretical prediction Qclamp-1∝(w/L)3 provides a rough but reasonable model for these clamping losses. Verifying and understanding the dominant clamping losses can lead to new designs and optimization guidelines for UHF NEMS enabling attainment of high Q’s.

Moreover, because SiC can be deposited both in polycrystalline form as well as in several single-crystal polytypes with excellent properties (including 3C-SiC, 6H-SiC, 4H-SiC and 2H-SiC), it represents a particularly promising material for NEMS applications.

Future collective studies of dissipation in SiC NEMS with all these SiC variations would be beneficial.

For future Q-engineering while scaling the frequency up, we propose and are exploring the following possibilities and promising solutions.

(i) Geometric mechanical design and optimization: By engineering and optimizing the anchoring, supports and vibrational modes (e.g., free-free beams, tuning-forks, disks with wine-glass and extensional modes), the clamping losses can be reduced or minimized.

(ii) Processes engineering: By developing suitable annealing process [39], high-temperature and high-vacuum encapsulation packaging process [40,41], surface loss, interfacial loss at inhomogeneous interfaces, metallization layer dissipation and thermoelastic damping are expected to be alleviated.

(iii) Materials engineering: The development of highly-doped conducting single-crystal materials, metallic single-crystal nanowires, very-low internal loss

metallization layers, can also be anticipated to reduce the surface and interfacial losses, the internal friction in metallization and the thermoelastic damping effects.

(iv) Electrical design: In the electrical domain, engineering and development of the transduction schemes and circuit models are expected to create technologies in which the loaded-Q effects are minimized.

Bibliography

[1] V.B. Braginsky, V.P. Mitrofanov, V.I. Panov, Systems with Small Dissipation, Chicago: The University of Chicago Press (1985).

[2] R.N. Kleiman, G.K. Kaminsky, J.D. Reppy, R. Pindak, D.J. Bishop, “Single-crystal silicon high-Q torsional oscillators”, Rev. Sci. Instrum. 56, 2088-2091 (1985).

[3] C. Zener, “Internal friction in solids-I”, Phys. Rev. 52, 230-235 (1937); and C. Zener, “Internal friction in solids-II”, Phys. Rev. 53, 90-99 (1938).

[4] T.V. Roszhart, “The effect of thermoelastic internal friction on the Q of micromachined silicon resonators”, Tech. Digest, 1990 IEEE Solid-State Sensors and Actuators Workshop (Hilton Head 1990), 13-16, Hilton Head Island, SC, June 4-7 (1990).

[5] F.R. Blom, S. Bouwstra, M. Elwenspoek, J.H.J. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry”, J. Vac. Sci. Tech. B 10, 19-26 (1992).

[6] M.L. Roukes, “Nanoelectromechanical systems”, Tech. Digest, 2000 Solid-State Sensors and Actuator Workshop (Hilton Head 2000), 1-10, Hilton Head Island, SC, June 4-8 (2000).

[7] X.M.H. Huang, K.L. Ekinci, Y.T. Yang, M.L. Roukes, et al., unpublished data (2002).

[8] X.M.H. Huang, X.L. Feng, C.A. Zorman, M. Mehregany, M.L. Roukes, “VHF, UHF and microwave frequency nanomechanical resonators” (invited article), New J. Phys. 7, 247 (2005).

[9] M.L. Roukes, “Nanoelectromechanical systems face the future”, Physics World 14, 25-31 (2001).

[10] D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui, “Single spin detection by magnetic resonance force microscopy”, Nature 430, 329-332 (2004).

[11] J.L. Arlett, J.R. Maloney, B. Gudlewski, M. Muluneh, M.L. Roukes, “Self-sensing micro- and nanocantilevers with attonewton-scale force resolution”, Nano Lett. 6, 1000-1006 (2006).

[12] K.L. Ekinci, X.M.H. Huang, M.L. Roukes, “Ultrasensitive nanoelectromechanical mass detection”, Appl. Phys. Lett. 84, 4469-4471 (2004).

[13] Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, M.L. Roukes, “Zeptogram-scale nanomechanical mass sensing”, Nano Lett. 6, 583-586 (2006).

[14] C.T.C. Nguyen, “Frequency-selective MEMS for miniaturized low-power communication devices”, IEEE Trans. Microwave Theory & Techniques 47, 1486-1503 (1999).

[15] M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, “Approaching the quantum limit of a nanomechanical resonator”, Science 304, 74-77 (2004).

[16] R.G. Knobel, A.N. Cleland, “Nanometre-scale displacement sensing using a single electron transistor”, Nature 424, 291-293 (2003).

[17] X.M.H. Huang, C.A. Zorman, M.Mehregany, M.L. Roukes, “Nanodevice motion at microwave frequencies”, Nature 421, 496 (2003).

[18] L. Sekaric, J.M. Parpia, H.G. Craighead, T. Feygelson, R.H. Houston, J.E. Bulter,

“Nanomechanical resonant structures in nanocrystalline diamond”, Appl. Phys. Lett. 81, 4455-4457 (2002).

[19] A. Husain, J. Hone, H.W.Ch. Postma, X.M.H. Huang, T. Drake, M. Barbic, A. Scherer, & M.L.

Roukes, “Nanowire-based very-high-frequency electromechanical resonator”, Appl. Phys. Lett. 83, 1240-1242 (2003).

[20] V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T.A. Arias, & P.L. McEuen, “A tunable carbon nanotube electromechanical cscillator”, Nature 431, 284-287 (2004).

[21] P. Mohanty, D.A. Harrington, K.L. Ekinci, Y.T. Yang, M.J. Murphy, M.L. Roukes, “Intrinsic dissipation in high-frequency micromechanical resonators”, Phys. Rev. B 66, 085416 (2002).

[22] H. Jiang, M.F. Yu, B. Liu, Y. Huang, “Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator”, Phys. Rev. Lett. 93, 185501 (2004).

[23] D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, K. Takatoir,

“Ultrahigh-quality silicon carbide single crystal”, Nature 430, 1009-1012 (2004); and (in news &

views), R. Madar, “Silicon carbide in contention”, Nature 430, 974-975 (2004).

[24] C.A. Zorman, A.J. Fleischman, A.S. Dewa, M. Mehregany, C. Jacob, S. Nishino, P. Pirouz,

“Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition”, J. Appl. Phys. 78, 5136-5138 (1995).

[25] X.A. Fu, C.A. Zorman, M. Mehregany, “Surface roughness control of 3C-SiC films during the epitaxial growth process”, J. Electrochem. Society 151, G910-G914 (2004).

[26] A.N. Cleland, M.L. Roukes, “External control of dissipation in a nanometer-scale radiofrequency mechanical resonator”, Sensors and Actuators 72, 256-261 (1999).

[27] X.L. Feng, C.J. White, A. Hajimiri, M.L. Roukes, “Ultra-high frequency low-noise self-sustaining oscillator with vibrating nanodevice”, to be published (2006).

[28] A.B. Hutchinson, P.A. Truitt, K.C. Schwab, L. Sekric, J.M. Parpia, H.G. Graighead, J.E. Bulter,

“Dissipation in nanocrystalline-diamond nanomechanical resonators”, Appl. Phys. Lett. 84, 972-974 (2004).

[29] R. Lifshitz, M.L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems”, Phys.

Rev. B 61, 5600-5609 (2000).

[30] Y.S. Touloukian, E.H. Buyco, Thermophysical Properties of Matter Volume 5Specific Heat:

Nonmetallic Solids, IFI/Plenum, New York-Washington, 448-449 (1970); and, Y.S. Touloukian, R.K. Kirby, R.E. Taylor, T.Y.R. Lee, Thermophysical Properties of Matter Volume 13Thermal Expansion: Nonmetallic Solids, IFI/Plenum, New York-Washington, 873-878 (1977).

[31] X.X. Li, T. Ono, Y.L. Wang, M. Esashi, “Ultrathin single-crystalline cantilever resonators:

fabrication technology and significant specimen size effect on Young’s modulues”, Appl. Phys.

Lett. 83, 3081-3083 (2003).

[32] W. Fon, K.C. Schwab, J.M. Worlock, M.L. Roukes, “Phonon scattering mechanisms in suspended nanostructures from 4 to 40K”, Phys. Rev. B 66, 045302 (2002).

[33] D.Y. Li, Y.Y. Wu, P. Kim, L. Shi, P.D. Yang, A. Majumdar, “Thermal conductivity of individual silicon nanowires”, Appl. Phys. Lett. 83, 2934-2926 (2003).

[34] M.C. Cross, R. Lifshitz, “Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport and vibrations in mesoscopic systems”, Phys. Rev. B 64, 085324 (2001).

[35] B.E. White Jr., R.O. Pohl, “Elastic properties of thin films”, Mat. Res. Soc. Symp. Proc. 356, 567-572 (1995).

[36] X. Liu, E. Thompson, B.E. White Jr., R.O. Pohl, “Low-temperature internal friction in metal films and in plastically deformed bulk aluminum”, Phys. Rev. B 59, 11767-11776 (1999); and, P.D. Vu, X. Liu, R.O. Pohl, “Phonon scattering and internal friction in dielectric and metallic films at low temperatures”, Phys. Rev. B 63, 125421 (2001).

[37] K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar,

“Quality factors in micron- and submicron-thick cantilevers”, J. Microelectromech. Systems 9, 117-125 (2000).

[38] J. Yang, T. Ono, M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers”, J. Microelectromech. Systems 11, 775-783 (2000); and, J. Yang, T. Ono, M. Esashi,

“Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers”, Appl. Phys.

Lett. 77, 3860-3862 (2000).

[39] D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, “Ultra-high-Q toroid microcavity on a chip”, Nature 421, 925-928 (2003).

[40] A. Partridge, A.E. Rice, T.W. Kenny, M. Lutz, “New thin film epitaxial polysilicon encapsulation for piezoresistive accelerometers”, Tech. Digest, 14th Int. Conf. on MEMS (MEMS’01), 54-59 (2001).

[41] A. Partridge, “A new paradigm in time: silicon MEMS resonators vs. quartz crystals”, R&D Magazine, April (2006).

Chapter 6

High-Performance Silicon Nanowire VHF