• Tidak ada hasil yang ditemukan

This chapter has provided background on electrochemical interfaces and the relationships between impedance spectra and electrochemical interface, for fuel cell researchers or engineers who may not be electrochemists but will apply EIS as

136 X-Z. Yuan, C. Song, H. Wang and J. Zhang

a method of analysis. This chapter should also facilitate better understanding of data analysis methods for EIS results.

Electrochemical impedance spectroscopy can yield valuable information.

However, experience and knowledge are necessary to conduct EIS measurements for fuel cells. Attention should be paid to the following:

• Noise

• Input impedance of the instrument (which gives systematic errors)

• Bandwidth of the instrument

• Integration time

• Steady-state

• Stability of the combination cell and instrument (no oscillations)

• Amplitude of the signal (linearity of the cell, use the oscilloscope and frequency spectrum window)

• Voltammetric curve measurements

• Data validation (for instance, using the Kramers–Kronig test)

References

1. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York

2. Wu HQ, Li YF (1998) Electrochemical kinetics. China Higher Education Press, Beijing 3. Schmickler W (1996) Interfacial electrochemistry. Oxford University Press, New York 4. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and

applications, 2nd edn. Wiley, Hoboken, NJ

5. Breiter MW(1969) Electrochemical process in fuel cells. Springer-Verlag, Berlin 6. LaConti AB, Hamdan M, McDonald RC (2003) Mechanisms of membrane

degradation. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells:

fundamentals, technology, and applications. Wiley, Chichester, England

7. Feldheim DL, Lawson DR, Martin CR (1993) Influence of the sulfonate countercation on the thermal stability of Nafion perfluorosulfonate membranes. J Polym Sci Part B:

Polym Phys 31(8):953–7

8. Patil YP, Seery TAP, Shaw MT, Parnas RS (2005) In situ water sensing in a Nafion membrane by fluorescence spectroscopy. Ind Eng Chem Res 44(16):6141–7

9. Huang C, Tan KS, Lin J, Tan KL (2003) XRD and XPS analysis of the degradation of the polymer electrolyte in H2–O2 fuel cell. Chem Phys Lett 371(1–2):80–5

10. Kadirov MK, Bosnjakovic A, Schlick S (2005) Membrane-derived fluorinated radicals detected by electron spin resonance in UV-irradiated Nafion and Dow ionomers: effect of counterions and H2O2. J Phys Chem B 109(16):7664–70

11. Bosnjakovic A, Schlick S (2004) Nafion perfluorinated membranes treated in Fenton media: radical species detected by ESR spectroscopy. J Phys Chem B 108(14):4332–7 12. Brunetto C, Tina G, Squadrito G, Moschetto A (2004) PEMFC diagnostics and

modelling by electrochemical impedance spectroscopy. In: Matijasevic M, Pejcinovic B, Tomsic Z, Butkovic Z (eds) Proceedings of the 12th IEEE Mediterranean electrochemical conference. IEEE, Piscataway, NJ

13. Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S (1996) Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc 143(2):587–99

14. Barbir F (2005) PEM fuel cells: theory and practice. Elsevier Academic Press, New York

15. Lim CY, Haas HR (2006) A diagnostic method for an electrochemical fuel cell and fuel cell components. WO patent 2006029254

16. Hirschenhofer JH, Stauffer DB, Engleman RR, Klett MG (1998) Fuel cell handbook, 4th edn. Department of Energy/Federal Energy Technology Center-99/1076, Orinda, CA

17. Ju H, Wang CY (2004) Experimental validation of a PEM fuel cell model by current distribution data. J Electrochem Soc 151(11):A1954–60

18. Li X (2006) Principles of fuel cells. Taylor & Francis, New York

19. Hoare JP (1962) Rest potentials in the platinum-oxygen-acid system. J Electrochem Soc 109(9):858–65

20. Thacker R, Hoare JP (1971) Sorption of oxygen from solution by noble metals: I.

Bright platinum. J Electroanal Chem 30(1):1–14

21. Tang Y, Zhang J, Song C, Liu H, Zhang J, Wang H, Mackinnon S, Peckham T, Li J, McDermid S, Kozak P (2006) Temperature dependent performance and in situ AC impedance of high-temperature PEM fuel cells using the Nafion-112 membrane. J Electrochem Soc 153(11):A2036–43

22. Yuan XZ, Sun JC, Wang H, Zhang (2007). AC impedance diagnosis of PEM fuel cells. Int J Hydrogen Energy 32(17):4365–80

23. Wagner N (2002) Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy. J Appl Electrochem 32(8):859–63

24. Perry MI, Newman J, Cairns EJ (1998) Mass transport in gas-diffusion electrodes: a diagnostic toll for fuel cell cathodes. J Electrochem Soc 145(1):5–15

25. Jaouen F, Lindbergh G, Sundholm G (2002) Investigation of mass-transport limitations in the solid polymer fuel cell cathode. J Electrochem Soc 149(4):A437–47

26. Wruck WJ, Machado RM, Chapman TW (1987) Current interruption—instrumentation and applications. J Electrochem Soc 134(3):539–46

27. Büchi FN, Marek A, Scherer GG (1995) In situ membrane resistance measurements in polymer electrolyte fuel cells by fast auxiliary current pulses. J Electrochem Soc 142(6):1895–901

28. Büchi FN, Scherer GG (2001) Investigation of the transversal water profile in Nafion membranes in polymer electrolyte fuel cells. J Electrochem Soc 148(3):A1838 29. Büchi FN, Scherer GG (1996) In-situ resistance measurements of Nafion® 117

membranes in polymer electrolyte fuel cells. J Electroanal Chem 404(1):3743

30. Jaouen F, Lindbergh G (2003) Transient techniques for investigating mass-transport limitations in gas diffusion electrodes. J Electrochem Soc 150(1):A1699–710

31. Abe T, Shima H, Watanabe K, Ito Y (2004) Study of PEFCs by AC impedance, current interrupt, and dew point measurements: I. Effect of humidity in oxygen gas. J Electrochem Soc 151(1):A101–5

32. Andreaus B, Scherer GG (2004) Proton-conducting polymer membranes in fuel cells—

humidification aspects. Solid State Ionics 168(3–4):311–20

33. Tsampas MN, Pikos A, Brosda S, Katsaounis A, Vayenas CG (2006) The effect of membrane thickness on the conductivity of Nafion. Electrochimica Acta 51(13):2743–

55

34. Li G, Pickup PG (2003) Ionic conductivity of PEMFC electrodes: effect of Nafion loading. J Electrochem Soc 150(11):C745–52

35. Retter U, Lohse H (2002) Electrochemical impedance spectroscopy. In: Scholz F (ed) Electroanalytical methods: guide to experiments and applications. Springer, Berlin

138 X-Z. Yuan, C. Song, H. Wang and J. Zhang

36. Popkirov GS, Schindler RN (1995) Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy. Electrochimica Acta 40(15):2511–17

37. Heeger, D (1999) Linear systems theory handout. http://www.cim.mcgill.ca/~siddiqi/

linear-systems.pdf. Accessed 19 April 1999

38. Guo Q, Cayetano M, Tsou Y, De-Castro ES, White RE (2003) Study of ionic conductivity profiles of the air cathode of a PEMFC by AC impedance spectroscopy. J Electrochem Soc 150(11):A1440–9

39. Easton EB, Pickup PG (2005) An electrochemical impedance spectroscopy study of fuel cell electrodes. Electrochim Acta 50(12):2469–74

40. Gode P, Jaouen F, Lindbergh G, Lundblad A, Sundholm G (2003) Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode.

Electrochim Acta 48(15):4175–87

EIS Equivalent Circuits