• Tidak ada hasil yang ditemukan

0 (Degree)

K. BALASUBRAMANIAN

8. Conclusion

In summary there has been considerable progress in our understanding of the spectroscopy of diatomic lanthanide oxides, fluorides and hydrides. Due to the ionic nature of these compounds, ligand-field models and more recently ab initio effective core potentials have made significant impact in the interpretation of the observed

1 4 2 5 1 4 5 0 1 4 7 5 1 5 0 0 1 5 2 5 1 5 5 0 1 5 7 5 1 6 0 0 ( G m u )

Fig. 51. FT-ICR mass spectrum showed the presence of fullerenes containing up to 3 La atoms. Re- produced from Chai et al. (1991).

spectra and in assisting the assignment of the observed spectra. Relativistic effects were shown to play a key role both in lanthanide and actinide compounds. The anomalous behavior exhibited by post-lanthanide transition-metal compounds was considered and explained. We also considered RECP CASSCF/SOCI computations on several La- and Hf-containing species. It was shown that lanthanide contraction is more important for Hf-containing molecules while relativistic contraction is more important for Pt- and Au-containing molecules. The bonding in LnO was primarily ionic (Ln + 20-2), whereas the Ln 4f orbital was essentially localized on the lanthanide.

Recent experimental and theoretical developments in the area of polyatomics containing lanthanides and actinides, especially sandwich and cage molecules consist- ing of these elements, were considered. The nature of bonding in simple diatomics and polyatomic oxide clusters containing U atoms was also discussed. The recent synthesis of macroscopic quantities of La® C 8 z and other carbon cages containing small clusters of La containing up to three atoms by Chai et al. (1991) should certainly stimulate further theoretical calculations on carbon cages containing one or more lanthanides inside. The computations by Chang et al. (1991) on La®C6o , U®C6o , Eu®C6o , etc., have provided significant insight which, in fact, served as the basis for qualitative interpretation of the unusual stability of La®C82. Chang et al.'s RECP/RHF calcula- tion on La®C6o showed that the La atom donates two 6s electrons to the carbon cage.

In spite of significant development in both spectroscopic studies and the ligand-field model interpretations of lanthanide oxides, there is less understanding of actinide chemistry. At present, relativistic ab initio studies on molecules containing actinides are restricted to very few species. While a ligand-field model has been applied to almost all diatomic oxides containing Ln'atoms, this is not the case as far as ab initio methods are concerned. Even in cases to which such calculations have been applied (EuO, GdO, YbO, etc.), very few low-lying electronic states have been studied using such techniques.

The INDO/S-CI method of R6sch, Zerner and co-workers, on the other hand, has enjoyed more success, although typically in this method all calculations are made at single experimental geometry and the integrals are parametrized. Consequently, there is a real need for further developments and application ofab initio-based techniques for molecules containing lanthanides and actinides. Of course, the recent computations of Chang and Pitzer (1989) and Chang et al. (1991) on both uranocene and carbon cages containing lanthanides have evidently demonstrated that indeed such calculations are doable and play a significant role in our comprehension of the nature of bonding in polyatomics containing lanthanides and actinides. Likewise, the CASSCF com- putation on U 2 by Pepper and Bursten (1990) has shown that relativistic ab initio computations are possible on species containing actinide-actinide bonds. Spectro- scopic data and their interpretation of actinide compounds need to be addressed more rigorously in the future. It is evident from this chapter that relativistic effects cannot be ignored for such compounds even to gain a qualitative insight. Furthermore, the primarily non-bonding nature of the open 5f shells, at least in very ionic compounds containing actinides, is likely to result in a large array of electronic states due to the spin-orbit coupling. It is hoped that this chapter will stimulate more of such experi- mental studies, which in turn, will provide impetus for theoretical studies.

154 K. BALASUBRAMANIAN

Acknowledgments

I thank the U.S. Department of Energy for supporting our work on Sc-, Y-, La-, Hf-, Pt- and Au-containing molecules, considered in this chapter, through the grant No. DEFG02-86ER13558. I thank my co-workers, Drs. Kalyan Das, Ch. Ravimohan and D. Dingguo, for their contributions to this topic. I am deeply indebted to Professors R.M. Pitzer, K.S. Pitzer, M. Zerner, N. R6sch, D. Bursten, H. Preuss, R.W.

Field, P. Pyykk6, M. Krauss, B. Simard and R.E. Smalley who not only provided preprints of their works but also permission to reproduce some of their tables and figures. Finally, ! express my indebtedness to Ms. Debra Wolf in typing this chapter.

References

Aglada, J., EJ. Bruna, S.D. Peyerimhoff and R.J. Buenker, 1981, J. Mol. Spectrosc. 93, 299.

Allen, C.L., E.-J. Baerends, E Vernooijs, J.M. Dyke, A.M. Ellis, M. Feher and A. Moris, 1988, J. Chem. Phys. 89, 5363.

Alvarado-Swaisgood, A.E., and J.E Harrison, 1985, J. Phys. Chem. 89, 5198.

Arhlichs, R., 1985, J. Chem. Phys. 82, 890.

Armentrout, EB., and J.L. Beauchamp, 1989, Acc.

Chem. Res. 22, 315.

Atkins, RW., 1991, Eur. J. Solid State & Inorg.

Chem. 28, 9.

Bagus, ES., Y.S. Lee and K.S. Pitzer, 1975, Chem.

Phys. Lett. 33, 408.

Balasubramanian, K., 1987, Chem. Phys. Lett.

135, 288.

Balasubramanian, K., 1988, Int. J. Quantum Chem., Symp. 22, 465.

Balasubramanian, K., 1989a, J. Phys. Chem. 93, 6585.

Balasubramanian, K., 1989b, Chem. Rev. 89, 1801.

Balasubramanian, K., 1990a, Chem. Rev. 90, 93.

Balasubramanian, K., 1990b, J. Chem. Phys. 93, 8061.

Balasubramanian, K., and D.G. Dai, 1990, J.

Chem. Phys. 93, 7243.

Balasubramanian, K., and K.K. Das, 1991, J. Mol.

Spectrosc. 145, 142.

Balasubramanian, K., and K.S. Pitzer, 1983, L Chem. Phys. 78, 321.

Balasubramanian, K., and K.S. Pitzer, 1987, Adv.

Chem. Phys. 67, 287.

Balasubramanian, K., and Ch. Ravimohan, 1988, Chem. Phys. Lett. 145, 39.

Balasubramanian, K., and J.Z. Wang, 1989a, J.

Mol. Spectrosc. 133, 82.

Balasubmmanian, K., and J.Z. Wang, 1989b, Chem.

Phys. Lett. 154, 525.

Balasubramanian, K., RA. Christiansen and K.S. Pitzer, 1991, Phys. Rev. A 43, 2581.

Ballster, J.L, ER. Antoniewicz and R. Smolu- chowski, 1990, Astrophys. J. 356, 507.

Barrow, R.E, B.W. Bastin, D.L.G. Moore and C.J. Pott, 1967, Nature 215, 1072.

Barrow, R.E, R.M. Clements, S.M. Harris and RE Jenson, 1979, Astrophys. J. 229, 439.

Bartlett, R.J., 1989, J. Phys. Chem. 93, 1697.

Bauschlicher Jr, C.W., and S.R. Langhoff, 1989, Chem. Phys. Lett. 161, 383.

Bauschlicher Jr, C.W., and S.R. Langhoff, 1991, J. Phys. Chem. 95, 2278.

Bauschlicher Jr, C.W., and S.E Walch, 1982, J.

Chem. Phys. 76, 4560.

Bauschlicher Jr, C.W., and S.R Walch, 1983, J.

Chem. Phys. 78, 4597.

Beanfils, J.C.L., R Carette and J.M. Blondeau, 1979, J. Mol. Spectrosc. 77, 1.

Becke, A., 1986, Phys. Rev. A 33, 2786.

Bernard, A., and R. Baeis, 1976, Can. J. Phys.

54, 1509.

Bernard, A., and R. Bacis, 1977, Can. J. Phys.

55, 1322.

Brechignac, C., Ph. Cahuzac, E Carlier, M. de Fratos, A. Masson and J.Ph. Roux, 1991, Z.

Phys. D 19, 195.

Brooks, B.R., and H.E Schaefer, 1979, J. Chem.

Phys. 70, 5092.

Bujin, G., and C. Linton, 1989, J. Mol. Spectrosc.

137, 114.

Bujin, G., and C. Linton, 1991, J. Mol. Spectrosc.

147, 120.

Bursten, B.E., and R.J. Strittmatter, 1987, J. Am.

Chem. Soc. 109, 6606.

Bursten, B.E., and R.J. Strittmatter, 1991, Angew.

Chem. 30, 1069.

Carette, R, 1990, J. Mol. Spectrosc. 140, 269.

Carette, E, and A. Hocquet, 1988, J. Mol.

Spectrosc. 16, 301.

Carette, E, A. Hocquet, M. Douay and B. Pinchemel, 1987, J. Mol. Spectrosc. 124, 243.

Case, D.A., 1982, Annu. Rev. Phys. Chem. 33, 51.

Chai, Y., T. Guo, C. Jin, R.E. Haufler, L.EE Chibante, J. Fure, L. Wang, J.M. Alforld and R.E. Smalley, 1991, J. Phys. Chem. 95, 7564.

Chang, A.H.H., and R.M. Pitzer, 1989, J. Am.

Chem. Soc. 111, 2500.

Chang, A.H.H., and R.M. Pitzer, 1991, unpublished results.

Chang, A.H.H., WC. Ermler and R.M. Pitzer, 1991, J. Chem. Phys. 94, 5004.

Chen, Y.M., D.E. Clemmer and EB. Armentrout, 1991, J. Chem. Phys. 95, 1228.

Childs, WJ., O. Poulsen and T.C. Steimle, 1988, J. Chem. Phys. 88, 598.

Chong, D.E, S.R. Langhoff, C.W Bauschlicher Jr, S.R Walch and H. Partridge, 1986, J. Chem.

Phys. 85, 285.

Chfistiansen, P.A., Y.S. Lee and K.S. Pitzer, 1979, J. Chem. Phys. 71, 4445.

Christiansen, P.A., K. Balasubramanian and K.S. Pitzer, 1982, J. Chem. Phys. 76, 5087.

Christiansen, P.A., WC. Ermler and K.S. Pitzer, 1985, Armu. Rev. Phys. Chem. 36, 407.

Cotton, EA., and G.W. Wilkinson, 1976, Basic Inorganic Chemistry (Wiley, New York).

Cousson, A., S. Dabos, H. Abazli, E Nectoux, M. Pages and G.R. Choppin, 1984, J. Less- Common Met. 99, 233.

Cox, D.W., D.J. Trevor, K.C. Reichmarm and A. Kaldor, 1986, J. Am. Chem. Soc. 108, 2457.

Cox, D.W., K.C. Reichmann and A. Kaldor, 1988, J. Chem. Phys. 88, 1588.

Das, K.K., and K. Balasubramanian, 1989, J.

Chem. Phys. 91, 2433.

Das, K.K., and K. Balasubramanian, 1990, Chem.

Phys. Lett. 172, 372.

Das, K.K., and K. Balasubramanian, 1991a, J.

Phys. Chem. 95, 42.

Das, K.K., and K. Balasubramanian, 1991c, J.

Chem. Phys. 94, 3722.

Das, K.K., and K. Balasubramanian, 1991d, J.

Phys. Chem. 95, 3979.

Dayane, D., A. Benamar, P. Melinon, B. Tribollet and M. Broyer, 1991, Z. Phys. D 19, 191.

Dekock, R.L., and W. Weltner Jr, 1971, J. Phys.

Chem. 75, 514.

Delaval, J.M., J. Van Heems and J.C.L. Beaufils, 1977, Can. J. Spectrosc. 22, 117.

Denning, R.G., 1983, Gmelin Handbook, Supplement A6 (Springer, Berlin) pp. 31-79.

Desclanx, J.E, 1973, Atomic and Nuclear Data 12, 312.

Desclanx, J.R, 1975, Comput. Phys. Commun. 9, 31.

Desclaux, J.R, and R PyykkS, 1974, Chem. Phys.

Lett. 29, 534.

Desclaux, J.E, and R Pyykk6, 1976, Chem. Phys.

Lett. 39, 300.

Dickson, C.R., and R.N. Zare, 1975, Chem. Phys.

7, 361.

Diederich, E, R. Ette, Y. Rubin, R.L. Whetten, R. Bell, M. Alvarez, S. Anz, D. Mesharma, E Wudl, K.C. Khomani and A. Koch, 1991, Science 252, 1548.

Dolg, M., and H. Stoll, 1989, Theor. Chim. Acta 75, 369.

Dolg, M., H. Stoll, A. Savin and H. Preuss, 1988, Stud. Phys. & Theor. Chem. 62, 265.

Dolg, M., H. Stoll, A. Savin and H. Preuss, 1989a, Theor. Chim. Acta. 75, 173.

Dolg, M., H. Stoll and H. Preuss, 1989b, J. Chem.

Phys. 90, 1730.

Dolg, M., H. Stoll and H. Preuss, 1990a, Chem.

Phys. Lett. 174, 208.

Dolg, M., H. Stoll and H. Preuss, 1990b, Chem.

Phys. 148, 219.

Dolg, M., E Fulde, W Kuchle, C.-S. Neumann and H. Stoll, 1991a, J. Chem. Phys. 94, 3011.

Dolg, M., H. Stoll, H.-J. Flad and H. Preuss, 1992, J. Chem. Phys. 97, 1162.

Dulick, M., and R.W Field, 1985, J. Mol.

Spectrosc. 113, 105.

Dulick, M.E., and R.E Barrow, 1986, J. Chem.

Phys. 85, 385.

Effantin, C., and J. d'Incan, 1974, Can. J. Phys.

52, 523.

Elkind, J.L., and P.B. Armentrout, 1986a, Inorg.

Chem. 25, 1078.

Elkind, J.L., and P.B. Armentrout, 1986b, J. Phys.

Chem. 90, 5736.

Elkind, J.L., L.S. Sunderlin and P.B. Armentrout, 1989, J. Phys. Chem. 93, 3159.

Ermler, WC., Y.S. Lee, P.A. Christiansen and K.S. Pitzer, 1981, Chem. Phys. Lett. 81, 70.

Ermler, W.C., R.B. Ross and P.A. Christiansen, 1988, Adv. Quantum Chem. 19, 139.

156 K. BALASUBRAMANIAN Field, R.W, 1982, Ber. Bunsenges. Phys. Chem.

86, 771.

Field, R.W, D.E Baldwin, E.J. Hill, M. Li and M.C. McCarthy, 1989, in: Future Trends in Spectroscopy, Spectrochim. Acta A, Special Supplement, pp. 75-90.

Fischell, D.R., H.C. Brayman and T.A. Cool, 1980, J. Chem. Phys. 73, 4260.

Gabelnick, S.D., G.T. Reedy and M.G. Chasanov, 1973, J. Chem. Phys. 58, 4468.

Gabelnick, S.D., G.T. Reedy and M.G. Chasanov, 1984, J. Chem. Phys. 60, 1167.

Gingerich, K.A., 1980, Symp. Faraday Soc. 14, 109.

Glebov, V.A., 1 9 8 3 , Electronic Structure and Properties of Uranyl Compounds (Energoatmoizdat, Moscow). In Russian.

Gmelin Handbook of Inorganic Chemistry, 1983, V. Supplement (Springer, Berlin) A6.

Gotkis, I., 1991, J. Phys. Chem. 95, 6086.

Green, D.W., S.D. Gabelnick and G.T. Reedy, 1976, J. Chem. Phys. 64, 1697.

Guiodin, A.G., A. Mele, G. Pizzella and R. Teghie, 1991, Z. Phys. D 20, 89.

Hafner, P., and W.H.E. Schwarz, 1978, J. Phys.

B 11, 217.

Hafner, E, and WH.E. Schwarz, 1979, Chem.

Phys. Lett. 65, 537.

Hannigan, M.C., 1983, J. Mol. Spectrosc. 99, 235.

Hay, B.E, 1991, Inorg. Chem. 30, 2876.

Hay, PJ., and WR. Wadt, 1985a, J. Chem. Phys.

82, 270.

Hay, EJ., and W.R. Wadt, 1985b, J. Chem. Phys.

82, 299.

Hay, PJ., WR. Wadt, L.R. Kahn, R.C. Rafenetti and D.H. Phillips, 1979, J. Chem. Phys. 71, 1767.

Hay, RJ., R.R. Ryan, K.V. Salazar, D.A. Wrobloski and A.R Sattelberger, 1986, J. Am. Chem. Soc.

108, 313.

Hayes, R.G., and N.M. Edelstein, 1972, J. Am.

Chem. Soc. 94, 8688.

Heath, J.R., S.C. O'Brien, Q. Zhang, Y. Liu, R.E Curl, H.W Kroto, EK. Tittel and R.E. Smalley, 1985, J. Am. Chem. Soc. 107, 7779.

Heaven, M.C., J.-E Nicolai, S.L Riley and E.K. Parks, 1985, Chem. Phys. Lett. 119, 229.

Hoekstra, H.R., and S. Siegel, 1964, J. Inorg. &

Nucl. Chem. 26, 693.

Hoffman, D.C., 1990, in: Fifty Years with Transuranium Elements, Robert A. Welch Foundation Conf. on Chemical Research XXXIV, Houston, TX, October 1990.

Hohenberg, R, and W. Kohn, 1964, Phys. Rev. B 136, 864.

Huber, K.R, and G. Herzberg, 1979, Spectroscopic Constants of Diatomie Molecules (Van Nostrand Reinhold, Princeton, N J).

Hurley, M.M., L.I. Pacios, RA. Christiansen, R.B. Rossand and W.C. Ermler, 1986, J. Chem.

Phys. 84, 6840.

Igelmann, G., H. Stoll and H. Preuss, 1988, Mol.

Phys. 65, 1321.

Jorgensen, C.K., and R. Reisfeld, 1982, Struct. &

Bonding 50, 121.

Kaldor, A., D.M. Cox, D.J. Trevor and M.R. Zakin, 1986, Z. Phys. D 3, 95.

Kaledin, L.A., and E.A. Shenyavskaya, 1981, J.

Mol. Spectrosc. 90, 590.

Karraker, D.G., 1972, Inorg. Chem. 12, 1t05.

Karraker, D.G., A.J. Stone, E.R. Jones and N.M. Edelstein, 1970, J. Am. Chem. Soc. 92,

4841.

Katz, J.J., G.T. Seaborg and L.R. Morss, eds, 1986, The Chemistry of Actinide Elements, 2nd Ed. (Chapman and Hall, London) 2 volumes, 1677pp.

Kell6, V, and A.J. Sadlej, 1991a, J. Chem. Phys.

95, 8248.

Kell6, V., and A.J. Sadlej, 1991b, Chem. Phys.

Lett. 174, 641.

Kohn, W., and L.J. Sham, 1965, Phys. Rev. A 140, 1133.

Kotzian, M., and N. R6sch, 1991a, Eur. J. Solid State & Inorg. Chem. 28, 127.

Kotzian, M., and N. R6sch, 1991b, J. Mol.

Spectrosc. 147, 346.

Kotzian, M., N. ROsch, N. SchrOder and M.C. Zerner, 1989a, J. Am. Chem. Soc. 111, 7687.

Kotzian, M., N. R6sch, R.M. Pitzer and M.C. Zerner, 1989b, Chem. Phys. Lett. 160, 168.

Kotzian, M., N. R6sch and M.C. Zerner, 1991a, Theor. Chim. Acta 81, 201.

Kotzian, M., N. R6sch and M.C. Zerner, 1991b, Int. J. Quantum Chem. 25, 545.

Krauss, M., and WJ. Stevens, 1983a, J. Comput.

Chem. 4, 127.

Krauss, M., and WJ. Stevens, 1983b, Chem. Phys.

Lett. 99, 417.

Krauss, M., and WJ. Stevens, 1984, Annu. Rev.

Phys. Chem. 35, 357.

Kroto, H.W., J.R. Heath, S.C. O'Bden, R.E Curl and R.E. Smalley, 1985, Nature (London) 318, 162.

La John, L.A., P.A. Christiansen, R.B. Ross,

T. Atashroo and W.C. Ermler, 1987, J. Chem.

Phys. 87, 2812.

Langhoff, S.R., and E.R. Davidson, 1974, Int. J.

Quantum Chem. 8, 61.

Langhoff, S.R., L.G.M. Pettersson, C.W. Bausch- licher Jr and H. Partridge, 1987, J. Chem. Phys.

87, 268.

Langhoff, S.R., C.W. Bauschlicher Jr and H. Partridge, 1988, J. Chem. Phys. 89, 396.

Larsson, S., and P. Pyykk6, 1986, Chem. Phys.

101, 355.

Lee, Y.S., and A.D. McLean, 1982a, J. Chem.

Phys. 76, 735.

Lee, Y.S., and A.D. McLean, 1982b, Stud. Phys.

& Theor. Chem. 21, 219.

Lee, Y.S., WC. Ermler and K.S. Pitzer, 1977, J.

Chem. Phys. 75, 1861.

Linton, C., and M. Dulick, 1981, J. Mol. Spectrosc.

89, 569.

Linton, C., and Y.C. Liu, 1988, J. Mol. Spectrosc.

131, 367.

Linton, C., M. Dulick and R.W. Field, 1979, J.

Mol. Spectrosc. 78, 428.

Linton, C., M. Dulick, R.W. Field, P. Carette and R.E Barrow, 1981, J. Chem. Phys. 74, 189.

Linton, C., M. Dulick, R.W. Field, P. Carette, P.C. Leyland and R.E Barrow, 1983a, J. Mol.

Spectrosc. 102, 441.

Linton, C., S.A. McDonald, S. Rice, M. Dulick, Y.C. Liu and R.W. Field, 1983b, J. Mol.

Spectrosc. 101, 322.

Linton, C., D.M. Gaudet and H. Schall, 1986, J.

Mol. Spectrosc. 115, 58.

Linton, C., G. Bujin, R.S. Rana and J.A. Gray, 1987, J. Mol. Spectrosc. 126, 370.

Liu, B., and M. Yoshimine, 1981, J. Chem. Phys.

74, 612.

Liu, Y.C., C. Linton, H. Schall and R.W. Field, 1984, J. Mol. Spectrosc. 104, 72.

Makhyoun, M.A., B.D. El-Issa and A.B. Salsa, 1987, J. Mol. Structure (Theochem.) 153, 241.

Malli, G.L., ed., 1982a, Relativistic Effects in Atoms, Molecules and Solids (Plenum, New York).

Malli, G.L., 1982b, Stud. Phys. & Theor. Chem.

21, 199.

Malmquist, P.A., A. Rennel and B.O. Roos, 1990, J. Phys. Chem. 94, 5477.

Marian, C.M., U. Wahlgren, O. Gropen and P. Pyykk6, 1988, J. Mol. Struct. (Theochem.) 169, 339.

Martinho, J.A., and J.L. Beauchamp, 1990, Chem.

Rev. 90, 629.

McDonald, S.A., 1985, Ph.D. Thesis (MIT, Boston, MA).

McDonald, S.A., S.F. Rice, R.W Field and C. Linton, 1990, J. Chem. Phys. 93, 7676.

McLean, A.D., M. Yoshimine, B.H. Lengsfield, P.S. Bagus and B. Liu, 1990, in: Modern Techiques in Computational Chemistry, ed. E.

Clementi (Escom, Leiden) pp. 593-637.

Merch~n, M., P.A. Malmquist and B.O. Roos, 1991, Theor. Chim. Acta 79, 81.

Meyer, H.L, and R. Hoffmann, 1991, Inorg. Chem.

30, 963.

Moore, C.E., 1971, Table of Atomic Energy Levels (National Institute of Standards and Technology, Washington, DC).

M~ller, W., J. Flesch and W. Meyer, 1984, J.

Chem. Phys. 80, 3297.

Nessler, R., and K.S. Pitzer, 1987, J. Phys. Chem.

91, 1084.

O'Brien, S.C., J.R. Heath, H.W Kroto, R.E Curl and R.E. Smalley, 1986, Chem. Phys. Lett. 132, 99.

Okada, K., Y. Kaizu, H. Kobayashi, K. Tanara and E Marumo, 1984, Mol. Phys. 54, 1293.

Olsen, J., P Jorgensen and J. Simons, 1990, Chem.

Phys. Lett. 169, 463.

Ortiz, J.V, 1986, J. Am. Chem. Soc. 108, 550.

Pacios, L.E, and P.A. Christiansen, 1985, J. Chem.

Phys. 82, 2664.

Paldus, J., 1976, in: Theoretical Chemistry:

Advances and Perspectives, eds H. Eyring and D.J. Henderson (Academic, New York).

Paldus, J., and J. Cizek, 1989, J. Chem. Phys. 90, 4356.

Parr, R.G., and W Yang, 1989, Density Functional Theories of Atoms and Molecules (Oxford University Press, New York).

Pepper, M., and D.E. Bursten, 1990, J. Am. Chem.

Soc. 112, 7803.

Pepper, M., and D.E. Bursten, 1991, Chem. Rev.

91, 719.

Pitzer, K.S., 1979, Acc. Chem. Res. 12, 271.

Pitzer, R.M., and N.W. Winter, 1988, J. Phys.

Chem. 92, 3061.

Pople, J.A., D.L. Beveridge and RA. Dobush, 1967, J. Chem. Phys. 47, 2026.

Pyykk6, P, 1979, Phys. Scripta 20, 647.

Pyykk6, P, 1986, Relativistic Theory of Atoms and Molecules 1916-1985 (Springer, Berlin).

Pyykk6, P., 1987, Inorg. Chim. Acta 139, 243.

Pyykk6, E, 1988, Chem. Rev. 88, 563.

Pyykk6, P, 1993, Relativistic Theory of Atoms and Molecules 1986-1992 (Springer, Berlin).

158 K. BALASUBRAMANIAN Pyykk6, P., and J.P. Desclaux, 1978, Chem. Phys.

34, 261.

Pyykk6, P., and J.P. Desclanx, 1979, Acc. Chem.

Res. 79, 276.

Pyykk6, R, and J. Joy6, 1991, New J. Chem. 15, 717.

Pyykk6, P., and L.L. Lohr Jr, 1981, Inorg. Chem.

20, 1950.

Pyykk6, P, and Y. Zhao, 1991, Inorg. Chem. 30, 3787.

Pyykk6, R, L.J. Laakonen and K. Tatsumi, 1989, Inorg. Chem. 28, 1801.

Ramos, A.E, N.C. Pyper and G.L. Malli, 1988, Phys. Rev. A 38, 2729.

Ridley, J., and M.C. Zerner, 1973a, Theor. Chim.

Acta 32, 111.

Ridley, J., and M.C. Zerner, 1973b, Theor. Chim.

Acta 42, 223.

Roos, B.O., 1987, Adv. Chem. Phys. 67, 399.

Rosen, A., and B. Wfistberg, 1988, J. Am. Chem.

Soc. I10, 8701.

Rosen, A., and B. W~istberg, 1989, Z. Phys. D 12, 387.

Rosi, M., and C.W. Banschlicher, 1990, Chem.

Phys. Lett. 166, 189.

Ross, R.B., J.M. Powers, T. Atashroo, W.C. Ermler, L.A. LaJohn and P.A. Chfistiansen, 1990, J.

Chem. Phys. 93, 6654.

Sadlej, AJ., and M. Urban, 1991, Chem. Phys.

Lett. 176, 293.

Salahuh, D., 1987, Adv. Chem. Phys. 69, 447.

Salahub, D., and M.C. Zerner, 1989, The Challenge of d and f Electrons, American Chemical Society Symp., No. 394.

Schall, H., C. Linton and R.W. Field, 1983, J.

Mol. Spectrosc. 100, 437.

Schall, H., J.A. Gray, M. Dulick and R.W. Field, 1986, J. Chem. Phys. 85, 751.

Schall, H., M. Dulick and R.W. Field, 1987, J.

Chem. Phys. 87, 2898.

Schilling, J . B . , W . A . Goddard IIl and J.L. Beauchamp, 1987, J. Phys. Chem. 87, 481.

Shavitt, I., 1978, Int. J. Quantum Chem. Symp.

12, 5.

Shenyavskaya, E.A., and L.A. Kaledin, 1982, J.

Mol. Spectrosc. 91, 22.

Shenyavskaya, E.A., I.V. Egorova and V.N. Lupanov, 1973, J. Mol. Spectrosc. 47, 355.

Shirley, J., S.C. Scurlock, T.C. Steimle, B. Simard, M. Vasseur and RA. HackeR, 1990, J. Chem.

Phys. 93, 8580.

Shirley, J., W.L. Barclay Jr, L.M. Ziurys and T.C. Steimle, 1991, Chem. Phys. Lett. 183, 363.

Simard, B., H. Niki, W.J. Balfour, M. Vasseur and RA. Hackett, 1991, unpublished results.

Starks, D.E, and A. Streitwieser Jr, 1973, J. Am.

Chem. Soc. 95, 3424.

Steimle, T.C., and Y. A1-Ramadin, 1989, Chem.

Phys. Lett. 130, 76.

Streitwieser Jr, A., and S. Kinsley, 1985, in:

Fundamental and Technological Aspects of Organic f-Elemental Chemistry, eds Y.J. Marks and I.L. Fragale (Reidel, Dordrecht) pp. 77-114.

Streitwieser Jr, A., and U. Mfiller-Westerhof, 1968, J. Am. Chem. Soc. 90, 7364.

Streitwieser Jr, A., U. Mfiller-Westerhoff, U.G. Sonnichsen, E Mares, D.G. Morrel, K.O. Hodgson and C.A. Harmon, t973, J.

Am. Chem. Soc. 95, 8644.

Suneram, R.D., EJ. Lovas, G.T. Fraser and K. Matsumura, 1991, prepfint.

Szentpaly, L.V, R Fuentelaba, H. Preuss and H. Stoll, 1982, Chem. Phys. Lett. 93, 555.

van Wezenbeek, E.M., EJ. Baerends and J.G. Snijders, 1991, Theor. Chim. Acta. 81, 139.

Van Zee, R.J., M.L. Seely and W. Weltner Jr, 1977, J. Chem. Phys. 67, 861.

Van Zee, R.J., R.E Ferrante, K.J. Zeringue and W. Weltner Jr, 1981, J. Chem. Phys. 75, 5297.

Wadt, W.R., 1981, J. Am. Chem. Soc, 103, 6053.

Wadt, W.R., and EJ. Hay, 1985, J. Chem. Phys.

82, 284.

Wang, J.Z., K.K. Das and K. Balasubramanian, 1990, Mol. Phys. 69, 147.

Wang, S., and RR. Buseck, 1991, Chem. Phys.

Lett. 182, 1.

Weiss, ED., J.L. Elkind, S.C. O'Brien, R.E Curl and R.E. Smalley, 1988, J. Am. Chem. Soc.

110, 4464.

Xin, X., J.G. Edvinsson and L. Klynning, 1991, J. Mol. Spectrosc. 148, 59.

Yadav, B.R., S.B. Rai and D.K. Rai, 1981, J. Mol.

Spectrosc. 89, 1.

Vol. 18 - Lanthanides/Actinides: Chemistry

edited by K.A. Gschneidner, Jr., L. Eyring, G.R. Choppin and G.H. Lander

© 1994 Elsevier Science B.E All rights reserved

Chapter 120

SIMILARITIES A N D D I F F E R E N C E S IN T R I V A L E N T L A N T H A N I D E - A N D A C T I N I D E - I O N S O L U T I O N

A B S O R P T I O N S P E C T R A A N D L U M I N E S C E N C E S T U D I E S James V. BEITZ

Chemistry Division, Argonne National Laboratory, Argonne, IL 60439, USA

Contents

Symbols and abbreviations 1. Introduction

1.1. Scope

1.2. Historical development

2. Observed spectra of aquated trivalent lanthanide and actinide ions 3. Theoretical treatment of f-state spectra

3.1. Application of atomic theory

3.2. C o m p a r i s o n of "free-ion" states and observed spectra 3.3. Transition intensities

3.4. Hypersensitive bands 3.5. Vibronic bands

4. Luminescence of trivalent-ion f states 4.1. Radiative and nonradiative decay rates 4.2. Experimental observations

4.2.1. L a n t h a n i d e ions 4.2.2. Actinide ions

4.3. Trends in luminescence dynamics 4.4. Calculation of nonradiative decay rates 4 5 Hydration and structure of aquated ions 4.6. Photochemistry

4,7. Selected applications 5. Concluding remarks References

159 160 160 160 161 173 173 174 177 180 181 184 184 185 185 186 187 189 189 191 191 192 193

Symbols and abbreviations

A r total purely radiative decay rate of a state C energy-gap law parameter

Bq k crystal-field parameters (k even) F k Slater parameters (k = 0, 2, 4, 6)

J q u a n t u m n u m b e r associated with the total 159

angular m o m e n t u m of all the electrons in an a t o m

q u a n t u m n u m b e r associated with the total orbital angular m o m e n t u m of all electrons in an a t o m

160 M h LIF pI S T i

laser-induced fluorescence

Marvin-integral parameters (h = 0, 2, 4) two-body pseudo-magnetic operator parameters (f= 2, 4, 6)

quantum number associated with total spin angular momentum for all the electrons in an atom

three-body operator parameters (i = 2, 3,4,6, 7,8)