0 (Degree)
J. V. BEITZ
2. Observed spectra of aquated trivalent lanthanidc and aetinide ions
Observed optical absorption spectra of trivalent lanthanide and actinide ions in aqueous solution at ambient temperature (nominally 295 K) are shown in figs. 1-21.
The data are from the files of W.T. Carnall. The lanthanide-ion absorption data from Ce 3 + through Yb 3 + are essentially those reported by Carnall (1979) and the actinide data somewhat extend the spectra given by Carnall (1986) for U 3 ÷ through Es 3 +. The spectra were recorded in dilute mineral acid solution (generally HC104) and solvent
162 J.V. BEITZ
800r ~ , , , i
>~
.-> -6
~. E 600- .~ ~ ~oo-
o LP,3 o E 200- -5~,~
E o-
25000 30000
' ' I ' ' ' I ' ' I
35000 40000 45000 50000
>. 800 -.
1-> ~ " 6 0 0 -
40o,
%
200.-6~,~
E o
0
' ' I '
I 4
5 0 0 0 10000 15000 2 0 0 0 0 2 5 0 0 0
w a v e n u m b e r ( c m -1)
Fig. 1. Observed absorption spectrum (near-infrared to ultraviolet) and Calculated 4f-state energies of aquated Ce 3 +.
>.
.>- "5
~ E
o
E
122 -4
2 . . .
1
0 ~ 25000
122
._> -6 E 62
~ g 2
~ % I- -5~,~
E o-
30000 35000 40000 45000
I
o J
, , , , , , , , , , , , , , , ,
'I ] I I [I I I I I I I I I
5 6 3 4 2 0 2
5000 10000 15000 20000 25000
w G v e n u m b e r ( c m -1)
Fig. 2. Observed absorption spectrum (near-infrared to ultraviolet) and calculated 4f-state energies of aquated Pr a +
| ' I' ' I' ' I i L II I I I I' '1 ' '111 I ill' '11'
16.0 ~ 6 7 8 2 5 6 3 4 5 1
"0 ' ' 'x . . . . . I . . . . ~' . . . . . . .
,>- I I I I II Ill I I Iit1111 I I I / II IL 1~
" ~ 1500 6 2 7 5 3 4 5 8 7
0
5 0 0 0 10000 15000 2 0 0 0 0 2 5 0 0 0
W C l v e n u m b e r ( c m -1)
Fig. 3. Observed absorption spectrum (near-infrared to visible) and calculated f-state energies of aquated Nd 3 + (upper panel) and aquated U 3 ÷ (lower panel).
16.0
~ 8.5-
E O 1-
~,~ E 0 . 5 -
~ 0
.>_.
~
. 1500-0 .(~ 8 0 0
El
~D 100- 0
E 50-
O- 2 5 0 0 0
' ; ' I . . . . L ' / I I
I III I LII L I1 I I
2 2 5 3 4
....
,,:,,,,,.,/:, ,.,,:..: ::.,,.,, :,,.,,,,,,
I I 5
30000 ssooo 40000 45000 5oooo
w o v e n u m b e r (cm -1)
Fig. 4. Observed ultraviolet absorption spectrum and calculated f-state energies of aquated Nd 3+ (upper panel) and aquated U 3 + (lower panel).
164 J.V. BEITZ
"5 5 ~
E 4-
E 3-
~ o 2-
~,~ 1-
~ o
~ . 2550- 2050-
o 1550- n 1050- a 550- 50- -5 40- 30- E 20- lO- o -
' ' ' I ' ' ' ' E .. .. I
I I I I II I I I
5 6 7 8
I I I
5 6
,,' ,,i,',i,',',, ,' ,i,,
1 5 8 3
I . .. . I , , 1 .. ..
II I IIIII I[ I II Ell I IIIII IIIIll
1 5 4
5 0 0 0 10000 15000 2 0 0 0 0 2 5 0 0 0
w a v e n u m b e r ( c m -1)
Fig. 5. Observed absorption spectrum (near-infrared to visible) and calculated f-state energies of aquated P m 3÷ (upper panel) and aquated N p 3+ (lower panel).
I ' ' I ' ' '
l i l ]1 / I1'11 II1'1 I1[ II 5 -
-6 E 4 - E 3 - 0
2 -
o - .>
b
2 5 5 0 - 2 0 = ~ - 0 1 5&9 j~ 1 0
5
0
E
2 5 0 0 0 III I IIIIll III
' I ' ' ~ ' ' '
I[ II J I I I II III III I I I
5 4
}11 ] III I I I 4 I I I I l U l I I I I I I IIII 11111
3 0 0 0 0 3 5 0 0 0 4 0 0 0 0 4 5 0 0 0 5 0 0 0 0 w o v e n u m b e r ( c m -1)
Fig. 6. Observed ultraviolet absorption spectrum and calculated f-state energies of aquated P m 3 + (upper panel) and aquated N p 3 + (lower panel).
__ 4.25 1 5 6 7 1 5 6 3 4
> i I III I I I II I I II Ili I I I I llllilllU
~ . 3 0 5 0 - 4 5 6 7 5 3 6 2
2450 - 0 1850 b~.~_X \
~ 1250 -
o 650- 5 0 c 4 0 E
"5 3 0 c 2O -- 10-- 0--"
5000 10000 15000 20000 25000
w o v e n u m b e r ( c m - 1 )
Fig. 7. Observed absorption spectrum (near-infrared to visible) and calculated f-state energies of aquated Sm 3 ÷ (upper panel) and aquated P u 3 + (lower panel)
4,25- E 2.65 -
1 . 0 5 -
0.25 0.2-
o.1- o.o-
o _
~ 3 0 5 0 2~
0 18 59 _o 12
o E
-6
E
' ' ' t ' I ' ' '
3 10 10
IIIL III IIII II I il I I IIIIII1111 LI II III IllUl 1111111111 IIIII IllilJl IILIII IIIIIII ILII
25000 300o0 35o0o 4oooo 45o00 500o0
wavenumber (cm -1)
Fig. 8. Observed ultraviolet absorption spectrum and calculated f-state energies of acquated Sm 3 + (upper panel) and aquated Pu 3 + (lower panel).
166 J.V. BEITZ
~ - . 2 . 9 5 -
E 2.15~
E 1 . 3 5 -
Z
o.55~
E 0 . 1 5
~v o.1-
~ o-
>
:.C 1 5 2 0 -
0 770 - --(3 2o-
0 15-
5 10-
E 5-
o -
II I I I I I I I F
0 I 2 3
P I I I I I I I II i Ill
1 2 3 4 5 0 1 6 2
5000 10000 15000 20000 25000
w c l v e n u m b e r ( c m - 1 )
Fig. 9. Observed absorption spectrum (near-infrared to visible) and calculated f-state energies of aquated Eu 3 + (upper panel) and aquated Am 3 + (lower panel).
,---, 2 . 9 5 -
-6
E 2 . 1 5 -
E 1.35-
0
0.55 - 0.15 -
v 0.1-
:~ 0
152
o 77
-~ 2
a I
o I
E
25000
' ' I , I ' ' '
I I I I I I I IIII i l l l ' l l II 1
3 0 6
,::t: +
I IIIII II'II 'llll'lllr'rgll'llll'l liFIIl'll lil I
30000 35000 40000 45000 50000
w a v e n u m b e . r ( c m - I )
Fig. 10. Observed ultraviolet absorption spectrum and calculated f-state energies of aquated Eu a+ (upper panel) and aquated Am a + (lower panel).
4 . 5
"0 3.7 2.9
~ 2.1
E 1.3
o
0.50.4
~.~ 0.2 0.3 0.1
~ 0.0
-~ 55 0 45
~,) ..Q 0 0 E
r r ~ T T ~ r ~ ~ ~
I I I I I
4 5 4
0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0
w c w e n u m b e r ( c m -1)
Fig. l 1. Observed absorption spectrum (near-infrared to visible) and calculated f-state energies of aquated G d a + (upper panel) and aquated Cm 3 :~ (lower panel).
.... I .... I .... I ' ' , , I ' ' ' ,
I rl [111 I [111 / i
4 . 5 - 4 4 5
o 5.7 -
~ 2.1,
~ 1.3,
~ 0.4--
~E 0 . 3 2
0.2-
0 . 1 -
0 . 0 . . . . . , . . . . . , , , , , . . . .
.>_ Ill I IIIII II I IIII I I IIIII IIIII IIIIH ]]illlll IIII IIII]11
5 5 - 4 3 7 9 2
4 5 -
0 5 5 £
"Qo 2:5--15E ~///f/~/~/////~/
E
2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0 4 5 0 0 0 5 0 0 0 0
w a v e n u m b e r (cm -1)
Fig. ]2. Observed ultraviolet absorption spectrum and calculated f-state energies of aquated Gd 3 + (upper panel) and aquated Cm 3 + (lower panel).
168 J.V. BEITZ
~-, 351 - E 176 E o
•
~ o.5z
~ o
_ 260 0 m 135 .D C]
~ 10 E 5-
O 0
, , i . . . . i , , , i , , , i , ,
I I IIII I
5 4 4
I I II II I I III I I{11
4 5 1 6 4 ,:3
5000 10000 15000 20000 25000
w a v e n u m b e r ( c m -1)
Fig. 13. Observed absorption spectrum (near-infrared to visible) and calculated f-state energies of aquated Tb 3+ (upper panel) and aquated Bk 3+ (lower panel).
0 E E o
:-~
26o~
o 121 o E
25000
~
111 I III IIII IIIIII II I IIIIIIIIIIlillll I IIIIIIIIIIIIlllllllll IIIII III IIIIIlflll]ll IFig. 14. Observed ultraviolet absorption spectrum and calculated f-state energies of aquated Tb 3+ (upper panel) and aquated Bk 3 + (lower panel).
30000 35000 40000 45000 50000
w o v e n u m b e r ( c m -1)
,---- 3.5-
-6 2.9- E 2.3-
~ . 1.7- 0.4- 0 " 3 2
>. ~ -
>
:,~ 110
~ -
0 6 0 2 r~
10..
0 E 5:
0 - 0
' ' I ' ' ' I I I I
I I I I I I I I I I I
7 6 5 5 3 5 6
II I I I II l i Ill I I {1111 I I
6 7 6 4 8 3 6
5000 10000 15000 20000 25000
wavenumber (cm -1)
Fig. 15. Observed absorption spectrum (near-infrared to visible) and calculated f-state energies of aquated Dy 3+ (upper panel) and aquated Cf 3 + (lower panel).
~ 3 . 5 -
"~ 2"92 2 . 3 5
0 . 4 2 0.31 0 . 2 :
.>_
.. 110 -
_~ 0 60
0
_~ lO
o
E 5
' ' ' ' I .... I ' ' ' I .... I ....
II fll I II] IIII IIIIlll II Ir III II IIII 11 II II I I Jill II
2 3 5 10
I I Irl I IIIIll il II [I II II II Ilill I IIIII llllllll I IIIIIII IIIIIIIIII
2 2
0
2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0 4 5 0 0 0 5 0 0 0 0
wavenumber (cm -1)
Fig. 16. Observed ultraviolet absorption spectrum and calculated f-state energies of aquated Dy 3+ (upper panel) and aquated Cf 3 + (lower panel).
170 J.V. BEITZ
~ 5.5- 0 4 , 5 -
E s,5:
2,5- E 1,5- o 0,5-
0,4-
E 0.3:
v,~ o,2~
0.1-
o
1 0
°i1
E 0
. . . . . .I[ . . I I . . . . I I
5 4 5 2 3 5
... l,', ... ... :
5 7
5000 10000 15000 2 0 0 0 0 25000
w a v e n u m b e r ( c m -1)
Fig. 17. Observed absorption spectrum (near-infrared to visible) and calculated f-state energies of aquated Ho 3 + (upper panel) and aquated Es 3 + (lower panel).
0 5 . 5 - o 4 . 5 - E 3.5-
.ss:
"E" o:s-
~ 0 . 4 -
~ 0 . 3 £ 0 . 2 : 0 . 1 2
>" 0
~ 10- o
13
-6 E
6 -
o
4 -
0 - 25000
II II I i I II II II illl I/I II II Ill. Illl I[ I
4 5 3 4 2 3
. . . . I . . . . I . . . . I . . . . I ' ' ' ,
{I II I III [I [ I I I 1 [ I I I I III I I I Ulq I I I l l I[ II
6 5 3 5
3 0 0 0 0 35000 40000 45000 50000
w o v e n u m b e r ( c m -1)
Fig. 18. Observed ultraviolet absorption spectrum and calculated f-state energies of aquated Ho a+ (upper panel) and aquated Es 3 + (lower panel).
11.0 - ._> -8
E 6.O-
~oE 1.0
o o E 0 . 5
E 0.0
. . . . . . . . . . . . . . I'1 '1 I III I III I I [ I I I I I
6 2 7 5 6
25000 30000 35000 40000 45000 50000
' ~ ' ' I . . . . I t I ' ' ' ' I
I I I II I I1 I
1 1 . 0 7 6 5 5 2 4 3 5
>-5
"- 6 0 ,~,\\"
5000 10000 15000 20000 25000
w a v e n u m b e r (cm -1)
Fig. 19. Observed absorption spectrum (near-infrared to ultraviolet) and calculated 4f-state energies of aquated Er 3 +.
3 -
.> "8
~ - E 2 -
~ I-
E
3- .>_ -8
2
0 0
- 5 - o
E ~ 0
0 25000
' ' 1 .. .. ~ .... I .... I ....
I II I I
2 6 2
A .... ; : A
3 0 0 0 0 35000 40000 45000 50000
' ' ' ' I . . . . ~ . . . . I ' '
I I I I I
4 5 4 3
t 5 0 0 0 1 0 0 0 0 1 5 0 0 0
w a v e n u m b e r ( c m -1)
' ' ' I ' ' , '
I 4
2 0 0 0 0 25000
Fig. 20. Observed absorption spectrum (near-infrared to ultraviolet) and calculated 4f-state energies of aquated Tm a +.
172 J.V. BEITZ
>5 -6
bE
o ~E
.> -~
bE
o ~~ E
- 6 - o v
E
10:
95
6- 5-
O ,
25000 30000 35000 40000
. . . . I . . . . I ' , ' ' I '
I
1 0 3
9
5 4 3
0 . . . . . . . i '
0 5000 10000 15000
w a v e n u m b e r (cm -1)
' i . . . .
20000 25000
45000
Fig. 21. Observed absorption spectrum (near-infrared to ultraviolet) and calculated 4f-state energies of aquated Yb 3 +.
deuteration was used to improve optical transmission at long wavelenghts. Data for ions having the same number of f electrons are presented together for comparison purposes. In many cases, a split molar-absorptivity scale has been employed to improve the visibility of weak bands. The transition point for such split scales is shown as a horizontal dotted line. The absorption spectra are presented as a function of wavenumber (cm-1), the traditional spectroscopic unit of energy (note that 8065.491 cm-1 = leV). At energies below about 6000cm-1 (shown shaded by diag- onal lines), strong interference from solvent absorption bands prevented recording f-state bands. To facilitate comparison, spectral data are plotted using the same energy ranges. Diagonal line shading is used to denote those high-energy regions where no spectral data are available. Broad underlying absorption in the ultraviolet has been subtracted from the reported absorption spectra of Cm 3 + (Carnall and Rajnak 1975) and Es 3+ (Carnall 1986) to improve the definition of f - f absorption bands. No absorption spectra have been reported for Pa 3 + in solution, presumably due to the chemical instability of Pa 3 +. No optical spectra are available for elements heavier than Es. Lanthanide-ion absorption bands are often said to provide a "finger- print" for the element. It is evident from figs. 5-18 that the same can be said of the absorption spectra of trivalent actinide ions.
Comparing the absorption spectra of lanthanide and actinide ions having the same number of f electrons, the most striking differences occur in molar absorptivity at the light end of the actinide series. For example, in fig. 3, approximately 100-fold larger molar-absorptivity values are evident for U 3 + bands whose widths are comparable to those of Nd 3 +. Actinide-ion band molar absorptivities generally decrease across the
actinide series to Am 3+. For Cm 3+ and heavier actinides, molar absorptivities become more or less constant but continue to remain larger, in general, than for heavy lanthanides.