• Tidak ada hasil yang ditemukan

Conclusions and Future Perspectives

and they can be precisely controlled to heat the target where required to avoid unnecessary energy wastage by heating all components of the mem- brane module. Superior dewatering performance of magnetic heating has been observed. For example, for pSa-co-nipam nanocomposite hydrogels (swelling ratio of 6 ± 0.8) with 16 wt% mnps, magnetic field (400.5 a, 148 oe and 372 khz) induced heating could increase the hydrogel temperature to 65 °C, leading to around 70% water recovery rate. on the contrary, convec- tion heating at 65 °C could only result in 15% water recovery rate.

References

1. m. a. Shannon, p. W. Bohn, m. elimelech, J. g. georgiadis, B. J. marinas and a. m. mayes, Nature, 2008, 452, 301–310.

2. m. elimelech and W. a. phillip, Science, 2011, 333, 712–717.

3. m. a. montgomery and m. elimelech, Environ. Sci. Technol., 2007, 41, 17–24.

4. r. F. Service, Science, 2006, 313, 1088.

5. m. elimelech, Aqua, 2006, 55, 3–10.

6. r. L. mcginnis and m. elimelech, Environ. Sci. Technol., 2008, 42, 8625–8629.

7. L. Chekli, S. phuntsho, h. K. Shon, S. Vigneswaran, J. Kandasamy and a. Chanan, Desalin. Water Treat., 2012, 43, 167–184.

8. S. Zhao, L. Zou, C. Y. tang and d. mulcahy, J. Membr. Sci., 2012, 396, 1–21.

9. Q. ge, m. Ling and t.-S. Chung, J. Membr. Sci., 2013, 442, 225–237.

10. J. r. mcCutcheon, r. L. mcginnis and m. elimelech, Desalination, 2005, 174, 1–11.

11. J. r. mcCutcheon, r. L. mcginnis and m. elimelech, J. Membr. Sci., 2006, 278, 114–123.

12. e. r. Cornelissen, d. harmsen, K. F. de Korte, C. J. ruiken, J.-J. Qin, h. oo and L. p. Wessels, J. Membr. Sci., 2008, 319, 158–168.

13. r. W. holloway, a. e. Childress, K. e. dennett and t. Y. Cath, Water Res., 2007, 41, 4005–4014.

14. K. B. petrotos, p. C. Quantick and h. petropakis, J. Membr. Sci., 1999, 160, 171–177.

15. K. B. petrotos and h. n. Lazarides, J. Food Eng., 2001, 49, 201–206.

16. K. B. petrotos, p. Quantick and h. petropakis, J. Membr. Sci., 1998, 150, 99–110.

17. a. achilli, t. Y. Cath and a. e. Childress, J. Membr. Sci., 2009, 343, 42–52.

18. a. Seppälä and m. J. Lampinen, J. Membr. Sci., 1999, 161, 115–138.

19. e. m. garcia-Castello, J. r. mcCutcheon and m. elimelech, J. Membr.

Sci., 2009, 338, 61–66.

20. K. L. Lee, r. W. Baker and h. K. Lonsdale, J. Membr. Sci., 1981, 8, 141–171.

21. S. phuntsho, h. K. Shon, S. hong, S. Lee and S. Vigneswaran, J. Membr.

Sci., 2011, 375, 172–181.

22. S. phuntsho, h. Shon, S. hong, S. Lee, S. Vigneswaran and J. Kandasamy, Rev. Environ. Sci. Biotechnol., 2012, 11, 147–168.

23. r. L. mcginnis and m. elimelech, Desalination, 2007, 207, 370–382.

24. J. L. Cartinella, t. Y. Cath, m. t. Flynn, g. C. miller, K. W. hunter and a. e. Childress, Environ. Sci. Technol., 2006, 40, 7381–7386.

25. t. Y. Cath, n. t. hancock, C. d. Lundin, C. hoppe-Jones and J. e. drewes, J. Membr. Sci., 2010, 362, 417–426.

26. B. mi and m. elimelech, Environ. Sci. Technol., 2010, 44, 2022–2028.

27. B. mi and m. elimelech, J. Membr. Sci., 2010, 348, 337–345.

28. a. achilli, t. Y. Cath, e. a. marchand and a. e. Childress, Desalination, 2009, 239, 10–21.

29. K. Y. Wang, m. m. teoh, a. nugroho and t.-S. Chung, Chem. Eng. Sci., 2011, 66, 2421–2430.

30. m. m. Ling and t.-S. Chung, J. Membr. Sci., 2011, 372, 201–209.

31. Q. Yang, K. Y. Wang and t.-S. Chung, Sep. Purif. Technol., 2009, 69, 269–274.

32. a. g. thombre, J. r. Cardinal, a. r. denoto, S. m. herbig and K. L.

Smith, J. Controlled Release, 1999, 57, 55–64.

33. g. Santus and r. W. Baker, J. Controlled Release, 1995, 35, 1–21.

34. C.-Y. Wang, h.-o. ho, L.-h. Lin, Y.-K. Lin and m.-t. Sheu, Int. J. Pharm., 2005, 297, 89–97.

35. t.-S. Chung, S. Zhang, K. Y. Wang, J. Su and m. m. Ling, Desalination, 2012, 287, 78–81.

36. Z. Liu, h. Bai, J. Lee and d. d. Sun, Energy Environ. Sci., 2011, 4, 2582–2585.

37. B. mi and m. elimelech, J. Membr. Sci., 2008, 320, 292–302.

38. C. Y. tang, Q. She, W. C. L. Lay, r. Wang and a. g. Fane, J. Membr. Sci., 2010, 354, 123–133.

39. W. a. phillip, J. S. Yong and m. elimelech, Environ. Sci. Technol., 2010, 44, 5170–5176.

40. g. t. gray, J. r. mcCutcheon and m. elimelech, Desalination, 2006, 197, 41. J. r. mcCutcheon and m. elimelech, J. Membr. Sci., 2006, 284, 237–247.1–8.

42. t. Y. Cath, a. e. Childress and m. elimelech, J. Membr. Sci., 2006, 281, 70–87.

43. g. d. mehta and S. Loeb, J. Membr. Sci., 1978, 4, 261–265.

44. g. d. mehta and S. Loeb, J. Membr. Sci., 1978, 4, 335–349.

45. a. Yokozeki, Appl. Energy, 2006, 83, 15–41.

46. g. W. Batcheldcr, US Pat., uS3171799 a, 1965.

47. d. n. glew, US Pat., uS3216930 a, 1965.

48. J. Yaeli, US Pat., uS5098575 a, 1992.

49. K. Stache, US Pat., uS4879030 a, 1989.

50. J. o. Kessler and C. d. moody, Desalination, 1976, 18, 297–306.

51. Q. ge, J. Su, g. L. amy and t.-S. Chung, Water Res., 2012, 46, 1318–1326.

52. S. K. Yen, n. F. mehnas haja, m. Su, K. Y. Wang and t.-S. Chung, J. Membr.

Sci., 2010, 364, 242–252.

53. m. L. Stone, a. d. Wilson, m. K. harrup and F. F. Stewart, Desalination, 2013, 312, 130–136.

54. Q. ge, p. Wang, C. Wan and t.-S. Chung, Environ. Sci. Technol., 2012, 46, 6236–6243.

55. Q. ge and t.-S. Chung, Chem. Commun., 2013, 49, 8471–8473.

56. J. duan, e. Litwiller, S.-h. Choi and i. pinnau, J. Membr. Sci., 2014, 453, 463–470.

57. Q. ge, J. Su, t.-S. Chung and g. amy, Ind. Eng. Chem. Res., 2010, 50, 382–388.

58. r. Y. hong, B. Feng, L. L. Chen, g. h. Liu, h. Z. Li, Y. Zheng and d. g.

Wei, Biochem. Eng. J., 2008, 42, 290–300.

59. Y. Kim, S. han and S. hong, Water Sci. Technol., 2011, 64, 469–476.

60. m. m. Ling and t.-S. Chung, Desalination, 2011, 278, 194–202.

61. m. m. Ling and t.-S. Chung, Ind. Eng. Chem. Res., 2012, 51, 15463–15471.

62. m. m. Ling, K. Y. Wang and t.-S. Chung, Ind. Eng. Chem. Res., 2010, 49, 5869–5876.

63. m. m. Ling, t.-S. Chung and X. Lu, Chem. Commun., 2011, 47, 10788–10790.

64. Q. Zhao, n. Chen, d. Zhao and X. Lu, ACS Appl. Mater. Interfaces, 2013, 5, 11453–11461.

65. Y. Cai, W. Shen, r. Wang, W. B. Krantz, a. g. Fane and X. hu, Chem. Com- mun., 2013, 49, 8377–8379.

66. r. ou, Y. Wang, h. Wang and t. Xu, Desalination, 2013, 318, 48–55.

67. m. L. Stone, C. rae, F. F. Stewart and a. d. Wilson, Desalination, 2013, 312, 124–129.

68. Y. Cai, W. Shen, S. L. Loo, W. B. Krantz, r. Wang, a. g. Fane and X. hu, Water Res., 2013, 47, 3773–3781.

69. d. Li, X. Zhang, g. p. Simon and h. Wang, Water Res., 2013, 47, 209–215.

70. d. Li, X. Zhang, J. Yao, Y. Zeng, g. p. Simon and h. Wang, Soft Matter, 2011, 7, 10048–10056.

71. a. razmjou, m. r. Barati, g. p. Simon, K. Suzuki and h. Wang, Environ.

Sci. Technol., 2013, 47, 6297–6305.

72. a. razmjou, Q. Liu, g. p. Simon and h. Wang, Environ. Sci. Technol., 2013, 47, 13160–13166.

73. a. razmjou, g. p. Simon and h. Wang, Chem. Eng. J., 2013, 215–216, 913–920.

74. Y. Zeng, L. Qiu, K. Wang, J. Yao, d. Li, g. p. Simon, r. Wang and h. Wang, RSC Adv., 2013, 3, 887–894.

75. d. Li, X. Zhang, J. Yao, g. p. Simon and h. Wang, Chem. Commun., 2011, 47, 1710–1712.

76. J. hubbuch, d. matthiesen, t. hobley and o. t. thomas, Bioseparation, 2001, 10, 99–112.

77. S.-C. Chang, t. anderson, S. Bahrman, C. gruden, a. Khijniak and p. adriaens, J. Ind. Microbiol. Biotechnol., 2005, 32, 629–638.

78. C. t. Yavuz, J. t. mayo, W. W. Yu, a. prakash, J. C. Falkner, S. Yean, L. Cong, h. J. Shipley, a. Kan, m. tomson, d. natelson and V. L. Colvin, Science, 2006, 314, 964–967.

79. W. Wang, Y. Xu, d. i. C. Wang and Z. Li, J. Am. Chem. Soc., 2009, 131, 12892–12893.

80. o. Veiseh, J. W. gunn and m. Zhang, Adv. Drug Delivery Rev., 2010, 62, 284–304.

81. Z. huang, n. pei, Y. Wang, X. Xie, a. Sun, L. Shen, S. Zhang, X. Liu, Y. Zou, J. Qian and J. ge, Biomaterials, 2010, 31, 2130–2140.

82. J. gao, h. gu and B. Xu, Acc. Chem. Res., 2009, 42, 1097–1107.

83. h. Bai, Z. Liu and d. d. Sun, Sep. Purif. Technol., 2011, 81, 392–399.

84. d. Li and h. Wang, J. Mater. Chem. A, 2013, 1, 14049–14060.

85. C. X. guo, d. Zhao, Q. Zhao, p. Wang and X. Lu, Chem. Commun., 2014, 50, 7318–7321.

86. Z. Li, Y. ma and L. Qi, Mater. Res. Bull., 2013, 48, 3157–3163.

87. C. Wang, S. peng, L.-m. Lacroix and S. Sun, Nano Res., 2009, 2, 380–385.

88. g. S. Chaubey, C. Barcena, n. poudyal, C. rong, J. gao, S. Sun and J. p.

Liu, J. Am. Chem. Soc., 2007, 129, 7214–7215.

89. h. han, J. Y. Lee and X. Lu, Chem. Commun., 2013, 49, 6122–6124.

90. J. h. Schenkel, a. Samanta and B. J. ravoo, Adv. Mater., 2014, 26, 1076–1080.

91. S. das, p. ranjan, p. S. maiti, g. Singh, g. Leitus and r. Klajn, Adv. Mater., 2013, 25, 422–426.

92. m. taguchi, K. Yamada, K. Suzuki, o. Sato and Y. einaga, Chem. Mater., 2005, 17, 4554–4559.

93. r. mikami, m. taguchi, K. Yamada, K. Suzuki, o. Sato and Y. einaga, Angew. Chem., Int. Ed., 2004, 43, 6135–6139.

94. J. guo, n. Wang, J. Wu, Q. Ye, C. Zhang, X.-h. Xing and J. Yuan, J. Mater.

Chem. B, 2014, 2, 437–442.

95. S. Chen, C. X. guo, Q. Zhao and X. Lu, Chem.–Eur. J., 2014, 20, 14057–14062.

96. d. Zhao, p. Wang, Q. Zhao, n. Chen and X. Lu, Desalination, 2014, 348, 26–32.

97. p. g. Jessop, S. m. mercer and d. J. heldebrant, Energy Environ. Sci., 2012, 5, 7240–7253.

98. p. g. Jessop, L. Kozycz, Z. g. rahami, d. Schoenmakers, a. r. Boyd, d. Wechsler and a. m. holland, Green Chem., 2011, 13, 619–623.

99. p. g. Jessop, L. phan, a. Carrier, S. robinson, C. J. durr and J. r. harjani, Green Chem., 2010, 12, 809–814.

100. p. g. Jessop, d. J. heldebrant, X. Li, C. a. eckert and C. L. Liotta, Nature, 2005, 436, 1102.

101. d. Buenger, F. topuz and J. groll, Prog. Polym. Sci., 2012, 37, 1678–1719.

102. Y. Samchenko, Z. ulberg and o. Korotych, Adv. Colloid Interface Sci., 2011, 168, 247–262.

103. F. ganji, S. Vasheghani-Farahani and e. Vasheghani-Farahani, Iran Polym. J., 2010, 19, 375–398.

104. i. donati, Y. a. mørch, B. L. Strand, g. Skjåk-Bræk and S. paoletti, J. Phys.

Chem. B, 2009, 113, 12916–12922.

105. J. m. g. Swann, W. Bras, p. d. topham, J. r. howse and a. J. ryan, Lang- muir, 2010, 26, 10191–10197.

106. m. gao, K. gawel and B. t. Stokke, Soft Matter, 2011, 7, 1741–1746.

107. a. pourjavadi and h. Salimi, Ind. Eng. Chem. Res., 2008, 47, 9206–9213.

108. g. d. nicodemus and S. J. Bryant, Tissue Eng., Part B, 2008, 14, 149–165.

109. i. tomatsu, K. peng and a. Kros, Adv. Drug Delivery Rev., 2011, 63, 1257–1266.

110. L. a. Lyon, Z. meng, n. Singh, C. d. Sorrell and a. St. John, Chem. Soc.

Rev., 2009, 38, 865–874.

111. r. Kulkarni and S. Biswanath, J. Appl. Biomater. Biomech., 2006, 5, 125–139.

112. t. miyata, t. uragami and K. nakamae, Adv. Drug Delivery Rev., 2002, 54, 79–98.

113. L. Zha, B. Banik and F. alexis, Soft Matter, 2011, 7, 5908–5916.

114. K. gawel, d. Barriet, m. Sletmoen and B. t. Stokke, Sensors, 2010, 10, 4381–4409.

51 RSC Smart Materials No. 20

Smart Materials for Advanced Environmental Applications Edited by Peng Wang

© The Royal Society of Chemistry 2016

Published by the Royal Society of Chemistry, www.rsc.org

Chapter 3

Superwetting Nanomaterials for Advanced Oil/Water

Separation: From Absorbing Nanomaterials to Separation Membranes

Shoujian Gao

a

and jian jin*

a

anano-Bionics division and i-Lab, Suzhou institute of nano-tech and nano-Bionics, Chinese academy of Sciences, Suzhou, 215123, China

*e-mail: [email protected]