• Tidak ada hasil yang ditemukan

Summary and Perspective

Water Separation

3.5 Summary and Perspective

neglected but is very important for building up a theoretical direction for designing high-performance membranes.

Fourthly, during the separation process of emulsified oil/water mixtures by superwetting membranes, oil droplets will more or less block the membrane pores and lead to the loss of the superwetting property and a quick decline of separation flux and efficiency. Surfactants or other soluble contaminants in the emulsified oily water can be absorbed onto membrane surface and lead to this problem, too. and the higher the separation flux is, the more serious this fouling issue is. at the same time, removing these fouling contaminants during the separation pro- cess is a very important barrier we must solve.

We believe the realization process of practical and large-scale treatment of real oily water is only at an early stage. these as-reported superwetting nanomaterials are a good beginning for the realization of mass-producing stable and durable superwetting materials for the large-scale treatment of real oily water.

Future works can be focused on the following major works.

Firstly, people should develop separation materials which process superwetting property not only on the outer surface but also inside inner part. or people should develop enough stable and robust surface structures to ensure the durability of the separation materials.

Secondly, underwater superoleophilic membranes even for high-viscos- ity oils like crude oil and heavy oil should be developed for the separa- tion of emulsified oily water from oil spills.

thirdly, more attention should be focused on how the oil droplets demulsify and coalesce together at membrane surfaces during the sep- aration process.

Fourthly, superwetting separation membranes or films with self-clean- ing ability should be developed to synchronously removing the fouling contaminants including oil droplets and surfactants during the separa- tion process.

Fifthly, inexpensive and easily scaled-up fabrication methods to obtain these superwetting nanomaterials should be developed for mass production.

References

1. p. Kajitvichyanukul, Y.-t. hung and L. K. Wang, in Handbook of Environ- mental Engineering: Membrane and Desalination Technologies, ed. L. K.

Wang, j. p. Chen, Y.-t. hung and n. K. Shammas, the humana press inc., new York, 2011, ch. 15, vol. 13, pp. 639–668.

2. C. h. peterson, S. d. rice, j. W. Short, d. esler, j. L. Bodkin, B. e. Ballachey and d. B. irons, Science, 2003, 302, 2082.

3. e. Kintisch, Science, 2010, 329, 735.

4. j. aurell and B. K. Gullett, Environ. Sci. Technol., 2010, 44, 9431.

5. B. Wang, W. Liang, Z. Guo and W. Liu, Chem. Soc. Rev., 2015, 44, 336.

6. M. a. Shannon, p. W. Bohn, M. elimelech, j. G. Georgiadis, B. j. Mariñas and a. M. Mayes, Nature, 2008, 452, 301.

7. t. oki and S. Kanae, Science, 2006, 313, 1068.

8. j. Yeston, r. Coontz, j. Smith and C. ash, Science, 2006, 25, 1067.

9. h. Wang, K.-Y. Lin, B. jing, G. Krylova, G. e. Sigmon, p. McGinn, Y. Zhu and C. na, Water Res., 2013, 47, 4198.

10. t. G. Mason, j. n. Wilking, K. Meleson, C. B. Chang and S. M. Graves, J. Phys.: Condens. Matter, 2006, 18, r635.

11. t. ichikawa, Colloids Surf., A, 2007, 302, 581.

12. a. B. nordvik, j. L. Simmons, K. r. Bitting, a. Lewisa and t. S. Kristiansen, Spill Sci. Technol. Bull., 1996, 3, 107.

13. a. el-Kayar, M. hussein, a. a. Zatout, a. Y. hosny and a. a. amer, Sep.

Technol., 1993, 3, 25.

14. K. Gaaseidnes and j. turbeville, Pure Appl. Chem., 1999, 71, 95.

15. a. Y. hosny, Sep. Technol., 1996, 6, 9.

16. B. tansel and j. regula, J. Environ. Sci. Health, Part A: Toxic/Hazard.

Subst. Environ. Eng., 2000, 35, 1557.

17. t. L. Sun, L. Feng, X. F. Gao and L. jiang, Acc. Chem. Res., 2005, 38, 644.

18. X. Yao, Y. L. Song and L. jiang, Adv. Mater., 2011, 23, 719.

19. j. Lahann, Nat. Nanotechnol., 2008, 3, 320.

20. M. M. pendergast and e. M. V. hoek, Energy Environ. Sci., 2011, 4, 1946.

21. L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. jiang and d. Zhu, Angew.

Chem., Int. Ed., 2004, 43, 2012.

22. Y. Zhu, d. Wang, L. jiang and j. jin, NPG Asia Mater., 2014, 6, e101.

23. j. Y. Lv, Y. L. Song, L. jiang and j. j. Wang, ACS Nano, 2014, 8, 3152.

24. h. Yang, h. Zhu, M. M. r. M. hendrix, n. j. h. G. M. Lousberg, G. d.

With, C. C. esteves and j. h. Xin, Adv. Mater., 2013, 25, 1150.

25. p.-C. Cheng and Z.-K. Xu, Sci. Rep., 2013, 3, 2776.

26. B. Wang, Y. B. Zhang, W. X. Liang, G. Y. Wang, Z. G. Guo and W. M. Liu, J. Mater. Chem. A, 2014, 2, 7845.

27. j. Ge, Y. d. Ye, h. B. Yao, X. Zhu, X. Wang, L. Wu, j. L. Wang, h. ding, n.

Yong, L. h. he and S. h. Yu, Angew. Chem., Int. Ed., 2014, 53, 3612.

28. t. Young, Philos. Trans. R. Soc. London, 1805, 95, 65.

29. r. n. Wenzel, Ind. Eng. Chem., 1936, 28, 988.

30. a. Cassie and S. Baxter, Trans. Faraday Soc., 1994, 40, 546.

31. a. Marmur, Langmuir, 2004, 20, 3517.

32. Y. tian, B. Su and L. jiang, Adv. Mater., 2014, 26, 6872.

33. a. Lafuma and d. Quéré, Nat. Mater., 2003, 2, 457.

34. C. ishino, K. okumura and d. Quéré, Europhys. Lett., 2004, 68, 419.

35. M. reyssat, j. M. Yeomans and d. Quéré, Europhys. Lett., 2008, 81, 26006.

36. d. Bartolo, F. Bouamrirene, e. Verneuil, a. Buguin, p. Silberzan and S.

Moulinet, Europhys. Lett., 2006, 74, 299.

37. Y. C. jung and B. Bhushan, Langmuir, 2009, 25, 9208.

38. V. Bahadur and S. V. Garimella, Langmuir, 2007, 23, 4918.

39. j. Bico, C. tordeux and d. Quéré, Colloids Surf., A, 2002, 206, 41.

40. X. Feng and L. jiang, Adv. Mater., 2006, 18, 3063.

41. M. j. Liu, S. t. Wang, Z. X. Wei, Y. L. Song and L. jiang, Adv. Mater., 2009, 21, 665.

42. Y. C. jung and B. Bhushan, Langmuir, 2009, 25, 14165.

43. e. a. Vogler, Adv. Colloid Interface Sci., 1998, 74, 69.

44. Y. tian and L. jiang, Nat. Mater., 2013, 12, 291.

45. e. F. hare, e. G. Shafrin and W. a. Zisman, J. Phys. Chem., 1954, 58, 46. a. K. Kota and a. tuteja, in 236. Advances in Fluorine-Containing Polymers, ed. d. W. Smith, S. t. iacono, d. j. Boday and S. C. Kettwich, american Chemical Society, Washington, dC, uSa, 2012, ch. 11, vol. 1106, aCS Symposium Series, pp. 171–185.

47. a. K. Kota, G. Kwon and a. tuteja, NPG Asia Mater., 2014, 6, e109.

48. K. Liu, M. Zhang, j. Zhai, j. Wang and L. jiang, Appl. Phys. Lett., 2008, 92, 183103.

49. X. F. Gao and L. jiang, Nature, 2004, 432, 36.

50. L. jiang, Y. Zhao and j. Zhai, Angew. Chem., Int. Ed., 2004, 43, 4338.

51. G. r. j. artus, S. jung, j. Zimmermann, h. p. Gautschi, K. Marquardt and S. Seeger, Adv. Mater., 2006, 18, 2758.

52. j. Zhang and S. Seeger, Angew. Chem., Int. Ed., 2011, 50, 6652.

53. W. Choi, a. tuteja, S. Chhatre, j. M. Mabry, r. e. Cohen and G. h. McKinley, Adv. Mater., 2009, 21, 2190.

54. S. pan, a. K. Kota, j. M. Mabry and a. tuteja, J. Am. Chem. Soc., 2013, 135, 578.

55. a. K. Kota, Y. Li, j. M. Mabry and a. tuteja, Adv. Mater., 2012, 24, 5838.

56. K. Golovin, d. h. Lee, j. M. Mabry and a. tuteja, Angew. Chem., Int. Ed., 2013, 52, 13007.

57. a. raza, B. ding, G. Zainab, M. el-newehy, S. S. al-deyab and j. Y. Yu, J.

Mater. Chem. A, 2014, 2, 10137.

58. Y. dong, j. Li, L. Shi, X. B. Wang, Z. G. Guo and W. M. Liu, Chem. Com- mun., 2014, 50, 5586.

59. n. Liu, Y. n. Chen, F. Lu, Y. Z. Cao, Z. X. Xue, K. Li, L. Feng and Y. Wei, ChemPhysChem, 2013, 14, 3489.

60. L.-p. Xu, j. Zhao, B. Su, X. L. Liu, j. t. peng, Y. B. Liu, h. L. Liu, G. Yang, L.

jiang, Y. Q. Wen, X. j. Zhang and S. t. Wang, Adv. Mater., 2013, 25, 606.

61. M. j. Liu, S. t. Wang, Z. X. Wei, Y. L. Song and L. jiang, Adv. Mater., 2009, 21, 665.

62. Z. X. Xue, S. t. Wang, L. Lin, L. Chen, M. j. Liu, L. Feng and L. jiang, Adv.

Mater., 2011, 23, 4270.

63. M. Liu, Z. Xue, h. Liu and L. jiang, Angew. Chem., Int. Ed., 2012, 51, 8348.

64. p. Calcagnile, d. Fragouli, i. S. Bayer, G. C. anyfantis, L. Martiradonna, p. d. Cozzoli, r. Cingolani and a. athanassiou, ACS Nano, 2012, 6, 5413.

65. Q. Zhu, Y. Chu, Z. Wang, n. Chen, L. Lin, F. Liu and Q. pan, J. Mater.

Chem. A, 2013, 1, 5386.

66. j. Li, L. Shi, Y. Chen, Y. Zhang, Z. Guo, B. Su and W. Liu, J. Mater. Chem., 2012, 22, 9774.

67. C.-F. Wang and S.-j. Lin, ACS Appl. Mater. Interfaces, 2013, 5, 8861.

68. j. Zhang and S. Seeger, Adv. Funct. Mater., 2011, 21, 4699.

69. B. Wang, j. Li, G. Y. Wang, W. X. Liang, Y. B. Zhang, L. Shi, Z. G. Guo and W. M. Liu, ACS Appl. Mater. Interfaces, 2013, 5, 1827.

70. W. X. Liang and Z. G. Guo, RSC Adv., 2013, 3, 16469.

71. j. Wu, n. Wang, h. dong, Y. Zhao and L. jiang, ACS Appl. Mater. Inter- faces, 2012, 4, 3207.

72. B. deng, r. Cai, Y. Yu, h. Q. jiang, C. L. Wang, j. Li, L. F. Li, M. Yu, j. Y. Li, L. d. Xie, Q. huang and C. h. Fan, Adv. Mater., 2010, 22, 5473.

73. L. Wu, j. p. Zhang, B. C. Li and a. Q. Wang, Polym. Chem., 2014, 5, 2382.

74. X. Zhou, Z. Zhang, X. Xu, F. Guo, X. Zhu and X. Men, ACS Appl. Mater.

Interfaces, 2013, 5, 7208.

75. d. d. nguyen, n.-h. tai, S.-B. Lee and W.-S. Kuo, Energy Environ. Sci., 2012, 5, 7908.

76. a. Li, h. X. Sun, d. Z. tan, W. j. Fan, S. h. Wen, X. j. Qing, G. X. Li, S. Y.

Li and W.-Q. deng, Energy Environ. Sci., 2011, 4, 2062.

77. L. Wu, L. Li, B. Li, j. Zhang and a. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 4936.

78. L. Zhang, Z. Zhang and p. Wang, NPG Asia Mater., 2012, 4, e8.

79. Q. Zhu and Q. pan, ACS Nano, 2014, 8, 1402.

80. X. Gui, j. Wei, K. Wang, a. Cao, h. Zhu, Y. jia, Q. Shu and d. Wu, Adv.

Mater., 2010, 22, 617.

81. Z.-Y. Wu, C. Li, h.-W. Liang, Y.-n. Zhang, X. Wang, j.-F. Chen and S.-h.

Yu, Sci. Rep., 2014, 4, 4079.

82. a. K. Kota, Y. X. Li, j. M. Mabry and a. tuteja, Adv. Mater., 2012, 24, 5838.

83. d. tian, X. Zhang, Y. tian, Y. Wu, X. Wang, j. Zhai and L. jiang, J. Mater.

Chem., 2012, 22, 19652.

84. G. Kwon, a. K. Kota, Y. Li, a. Li, a. Sohani, j. M. Mabry and a. tuteja, Adv. Mater., 2012, 24, 3666.

85. W. B. Zhang, Z. Shi, F. Zhang, X. Liu, j. jin and L. jiang, Adv. Mater., 2013, 25, 2071.

86. X. Gao, L. p. Xu, Z. Xue, L. Feng, j. peng, Y. Wen, S. Wang and X. Zhang, Adv. Mater., 2014, 26, 1771.

87. M. tao, L. Xue, F. Liu and L. jiang, Adv. Mater., 2014, 26, 2943.

88. W. B. Zhang, Y. Z. Zhu, X. Liu, d. Wang, j. Y. Li, L. jiang and j. jin, Angew.

Chem., Int. Ed., 2014, 53, 856.

89. Z. G. Guo, W. M. Liu and B. L. Su, Appl. Phys. Lett., 2008, 92, 063104.

90. Z. G. Guo, F. Zhou, j. C. hao and W. M. Liu, J. Am. Chem. Soc., 2005, 127, 15670.

91. j. L. Song, S. huang, K. hu, Y. Lu, X. Liu and W. Xu, J. Mater. Chem. A, 2013, 1, 14783.

92. S. Sethi and a. dhinojwala, Langmuir, 2009, 25, 4311.

93. L. B. Zhang, Y. j. Zhong, d. Cha and p. Wang, Sci. Rep., 2013, 3, 2326.

94. Y. Z. Cao, X. Y. Zhang, L. tao, K. Li, Z. X. Xue, L. Feng and Y. Wei, ACS Appl. Mater. Interfaces, 2013, 5, 4438.

95. F. Zhang, W. B. Zhang, Z. Shi, d. Wang, j. jin and L. jiang, Adv. Mater., 2013, 25, 4192.

96. C. Gao, Z. Sun, K. Li, Y. Chen, Y. Cao, S. Zhang and L. Feng, Energy Envi- ron. Sci., 2013, 6, 1147.

97. a. K. Kota, G. Kwon, W. Choi, j. M. Mabry and a. tuteja, Nat. Commun., 2012, 3, 1025.

98. h. Li, Y. Cao, j. Qin, X. jie, t. Wang, j. Liu and Q. Yuan, J. Membr. Sci., 2006, 279, 328.

99. X. Chen, L. hong, Y. Xu and Z. W. ong, ACS Appl. Mater. Interfaces, 2012, 4, 1909.

100. Q. Chang, j. Zhou, Y. Wang, j. Liang, X. Zhang, S. Cerneaux, X. Wang, Z.

Zhu and Y. dong, J. Membr. Sci., 2014, 456, 128.

101. S. Maphutha, K. Moothi, M. Meyyappan and S. e. iyuke, Sci. Rep., 2013, 3, 1509.

102. L. Yang, a. thongsukmak, K. K. Sirkar, K. B. Gross and G. Morduk- hovich, J. Membr. Sci., 2011, 378, 138.

103. X. S. Yi, S. L. Yu, W. X. Shi, S. Wang, n. Sun, L. M. jin and C. Ma, Desali- nation, 2013, 319, 38.

104. d. rana and t. Matsuura, Chem. Rev., 2010, 110, 2448.

105. i. Sadeghi, a. aroujalian, a. raisi, B. dabir and M. Fathizadeh, J. Membr.

Sci., 2013, 430, 24.

106. X. Yi, W. Shi, S. Yu, C. Ma, n. Sun, S. Wang, L. jin and L. Sun, J. Hazard.

Mater., 2011, 193, 37.

107. W. Chen, Y. Su, L. Zheng, L. Wang and Z. jiang, J. Membr. Sci., 2009, 337, 108. j. hyun, h. jang, K. Kim, K. na and t. tak, J. Membr. Sci., 2006, 282, 52.98.

109. n. a. hashim, F. Liu and K. Li, J. Membr. Sci., 2009, 345, 134.

110. a. asatekin and a. M. Mayes, Environ. Sci. Technol., 2009, 43, 4487.

111. Q. Shi, Y. Su, W. Zhao, C. Li, Y. hu, Z. jiang and S. Zhu, J. Membr. Sci., 2008, 319, 271.

112. a. C. Sagle, e. M. V. Wagner, h. ju, B. d. McCloskey, B. d. Freeman and M. M. Sharma, J. Membr. Sci., 2009, 340, 92.

113. d. Lin, C. Chang, F. huang and L. Cheng, Polymer, 2003, 44, 413.

114. M. Yeow, Y. Liu and K. Li, J. Membr. Sci., 2005, 258, 16.

115. h. C. Yang, j. K. pi, K. j. Liao, h. huang, Q. Y. Wu, X. j. huang and Z. K.

Xu, ACS Appl. Mater. Interfaces, 2014, 6, 12566.

116. h.-C. Yang, K.-j. Liao, h. huang, Q.-Y. Wu, L.-S. Wan and Z.-K. Xu, J.

Mater. Chem. A, 2014, 2, 10225.

117. Z.-X. Wang, C.-h. Lau, n.-Q. Zhang, Y.-p. Bai and L. Shao, J. Mater. Chem.

A, 2015, 3, 2650.

118. Y. Zhu, F. Zhang, d. Wang, X. F. pei, W. Zhang and j. jin, J. Mater. Chem.

A, 2013, 1, 5758.

119. X. S. peng, j. jin, Y. nakamura, t. ohno and i. ichinose, Nat. Nanotech- nol., 2009, 4, 353.

120. C. C. Striemer, t. r. Gaborski, j. L. McGrath and p. M. Fauchet, Nature, 2007, 445, 749.

121. j. K. holt, a. noy, t. huser, d. eaglesham and o. Bakajin, Nano Lett., 2004, 4, 2245.

122. S. Karan, S. Samitsu, X. peng, K. Kurashima and i. ichinose, Science, 2012, 335, 444.

123. r. r. nair, h. a. Wu, p. n. jayaram, i. V. Grigorieva and a. K. Geim, Sci- ence, 2012, 335, 442.

124. h. Li, Z. Song, X. Zhang, Y. huang, S. Li, Y. Mao, h. j. ploehn, Y. Bao and M. Yu, Science, 2013, 342, 95.

125. B. Mi, Science, 2014, 343, 740.

126. h. huang, Z. Song, n. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu and X.

peng, Nat. Commun., 2013, 4, 2979.

127. h. huang, Y. Mao, Y. Ying, Y. Liu, L. Sun and X. peng, Chem. Commun., 2013, 49, 5963.

128. K. huang, G. Liu, Y. Lou, Z. dong, j. Shen and W. jin, Angew. Chem., Int.

Ed., 2014, 53, 1.

129. j. Shen, G. Liu, K. huang, W. jin, K.-r. Lee and n. Xu, Angew. Chem., Int.

Ed., 2015, 54, 578.

130. L. Sun, Y. Ying, h. huang, Z. Song, Y. Mao, Z. Xu and X. peng, ACS Nano, 2014, 8, 6304.

131. Z. Shi, W. Zhang, F. Zhang, X. Liu, d. Wang, j. jin and L. jiang, Adv. Mater., 2013, 25, 2422.

132. S. j. Gao, Z. Shi, W. Zhang, F. Zhang and j. jin, ACS Nano, 2014, 8, 6344.

133. S. j. Gao, Y. Zhu, F. Zhang and j. jin, J. Mater. Chem. A, 2015, 3, 2895.

134. S. j. Gao, h. Qin, p. Liu and j. jin, J. Mater. Chem. A, 2015, 3, 6649.

135. Y. Long, j. F. hui, p. p. Wang, G. L. Xiang, B. Xu, S. hu, W. C. Zhu, X. Q.

Lu, j. Zhuang and X. Wang, Sci. Rep., 2012, 2, 612.

91 RSC Smart Materials No. 20

Smart Materials for Advanced Environmental Applications Edited by Peng Wang

© The Royal Society of Chemistry 2016

Published by the Royal Society of Chemistry, www.rsc.org

Chapter 4

Responsive Particle-Stabilized Emulsions: Formation and

Applications

Man-hin KwoK

a

and to ngai*

a,b

adepartment of Chemistry, the Chinese University of hong Kong, Shatin, n. t., hong Kong, China; bthe Chinese University of hong Kong Shenzhen research institute, Shenzhen, 518057, pr China

*e-mail: [email protected]