• Tidak ada hasil yang ditemukan

F. Experimental Protocols

XII. Conclusions and Prospects

Exceptional opportunities now exist for understanding brain function from flow-based markers. Flow changes indicating changes in neuronal activity can be detected Figure 9 Stimulating a row of whiskers (the middle row C) activates the appropriate barrels (row C) and generally increases flow in the cortex of row C (shading). Different methods monitor different flow-related changes in different components of blood. Qualitative changes observed in rat barrel cortex with whisker stimulation are indicated for each technique. As shown in Fig. 8, flow may be reduced or unchanged in nearby regions that are not directly activated (not hatched). For some methods (?) the effects in cortex not directly activated have not yet been determined. (For details, see Woolsey et al., 1996.)

noninvasively. It is imperative to have a firm handle on the basis of those changes. Table 1 summarizes the salient fea- tures of each method. The cranial window technique requires a craniotomy and is invasive up to the cortical surface. It is possible to install windows chronically to over- come the limitations imposed by anesthesia, and awake, sedated subjects can be secured under the microscope.

Direct observation of single vessels is limited to compara- tively small microscopic fields. Several of these techniques can be considered together to estimate local flow changes which, depending on assumptions, approach the values from the gold standard methods. A number of the video tech- niques have been used to determine the timing, extent, and stimulus parameters in activation of cortical blood flow changes with natural stimulation. As these and other factors are further understood, they will provide useful information for the design of activation and imaging sequences (e.g., Sereno et al., 1995).

Acknowledgments

This work was supported by NIH Grants NS 28781 and NS 37372 and by an award from the Spastic Paralysis Foundation of the Illinois–Eastern Iowa District of the Kiwanis International.

References

Ances, B. M., Detre, J. A., Takahashi, K., and Greenberg, J. H. (1998).

Transcranial laser Doppler mapping of activation flow coupling of the rat somatosensory cortex. Neurosci. Lett. 257, 25–28.

Ances, B. M., Greenberg, J. H., and Detre, J. A. (1999). Laser Doppler imaging of activation-flow coupling in the rat somatosensory cortex.

NeuroImage 10, 716–723.

Blasdel, G. G., and Salama, G. (1986). Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585.

Boero, J. A., Ascher, J., Arregui, A., Rovainen, C., and Woolsey, T. A.

(1999). Increased brain capillaries in chronic hypoxia. J. Appl. Physiol.

86, 1211–1219.

Borowsky, I. W., and Collins, R. C. (1989). Metabolic anatomy of brain: A comparison of regional capillary density, glucose metabolism, and enzyme activities. J. Comp. Neurol. 288, 401–413.

Bryan, R. M., and Duckrow, R. B. (1995). Radial columns in autoradi- ographs generated from tracer methods for measuring cerebral cortical blood flow. Am. J. Physiol. 269, H583–H489.

Busija, D. W., Heistad, D. D., and Marcus, M. L. (1981). Continuous meas- urement of cerebral blood flow in anesthetized cats and dogs. Am. J.

Physiol. 241, H228–H234.

Chen, Z., Milner, T. E., Wang, X., Srinivas, S., and Nelson, J. S. (1998).

Optical Doppler tomography: Imaging in vivo blood flow dynamics fol- lowing pharmacological intervention and photodynamic therapy.

Photochem. Photobiol. 67, 56–60.

Cox, S. B., Woolsey, T. A., and Rovainen, C. M. (1993). Localized dynamic changes in cerebral blood flow in rat barrel cortex with whisker stimu- lation. J. Cereb. Blood Flow Metab. 13, 899–913.

Detre, J. A., Ances, B. M., Takahashi, K., and Greenberg, J. H. (1998).

Signal averaged laser Doppler measurements of activation-flow coupling in the rat forepaw somatosensory cortex. Brain Res. 796, 91–98.

Dirnagl, U., Kaplan, B., Jacewicz, M., and Pulsinelli, W. (1989).

Continuous measurement of cerebral cortical blood flow by laser- Doppler flowmetry in a rat stroke model. J. Cereb. Blood Flow Metab.

9, 589–596.

Dowling, J. L., Henegar, M. M., Liu, D., Rovainen, C. M., and Woolsey, T.

A. (1996). Rapid optical imaging of whisker responses in rat barrel cortex. J. Neurosci. Methods 66, 113–122.

Table 1 Summary of Techniques

Method Craniotomy Spatial Temporal Observations Tissue Measure

resolution resolution

14C IAP99Tc HM-PAO 100µm 30 s Once Whole brain Flow

autoradiography

Occlusive beads >1 mm 10 s Several Whole brain Flow

Laser-Doppler flowmetry + 1 mm 200 ms Continuously At probe tip “Flow,” “velocity,”

(or thinned skull) “volume”

H2polarography + >300µm <1 s Continuously At electrode tip Flow

(or thinned skull)

Intrinsic signal + <1µm <33 ms 1.2–30/min At or near brain surface Hemoglobin

(or thinned skull) Video rates (30–60/s)a,b volumea

Vessel diameters + <1µm 17 ms Video rates (30–60/s)a,b At or near brain surface Volume

AVTT + <1µm 17 ms 4/min At or near brain surface Flow

Fluorescent beads + <1µm Strobe rates, Video rates (30–60/s) At or near brain surface Velocity e.g., 2.5 ms

Fluorescent RBCs + <1µm 17 ms (strobe Video rates (30–60/s) At or near brain surface Flow, velocity,

2.5 ms) volume

aDetection rate, depth of view, and signal source depend on illumination λ , acquisition, and processing.

bSome cameras permit faster video rates (i.e., 1000/s).

Dunn, A. K., Bolay, H., Moskowitz, M. A., and Boas, D. A. (2001).

Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb.

Blood Flow Metab. 21, 195–201.

Durham, D., and Woolsey, T. A. (1978). Acute whisker removal reduces neuronal activity in barrels of mouse SmI cortex. J. Comp. Neurol. 178, 629–644.

Eke, A. (1993). Multiparametric imaging of microregional circulation over the brain cortex by videoreflectometry. In “Optical Imaging of Brain Function and Metabolism” (U. Dirnagl, A. Villringer, and K. Einhaupl, eds.), pp. 183–191. Plenum, New York.

Erinjeri, J. P., and Woolsey, T. A. (2002). Spatial integration of vascular changes with neural activity in mouse cortex. J. Cereb. Blood Flow Metab., 22, 353–360.

Fabricius, M., Akgoren, N., Dirnagl, U., and Lauritzen, M. (1997). Laminar analysis of cerebral blood flow in cortex of rats by laser-Doppler flowmetry: A pilot study. J. Cereb. Blood Flow Metab. 17, 1326–1336.

Fabricius, M., and Lauritzen, M. (1996). Laser-Doppler evaluation of rat brain microcirculation: Comparison with the [14C]iodoantipyrine method suggests discordance during cerebral blood flow increases.

J. Cereb. Blood Flow Metab. 16, 156–161.

Feindel, W., Hodge, C. P., and Yamamoto, Y. L. (1968). Epicerebral angiog- raphy by fluorescein during craniotomy. Prog. Brain Res. 30, 471–477.

Foltz, G. D., Rovainen, C. M., and Woolsey, T. A. (1992). Developmental changes in identified cerebral arterioles and venules in individual mice at two ages. Soc. Neurosci. Abstr. 18, 154.

Frostig, R. D., Lieke, E. E., Tso, D. Y., and Grinvald, A. (1990). Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. USA 87, 6082–6086.

Fujii, K., Heistad, D. D., and Faraci, F. M. (1991). Flow-mediated dilata- tion of the basilar artery in vivo. Circ. Res. 69, 697–705.

Fujita, H., Matsuura, T., Yamada, K., Inagaki, N., and Kanno, I. (2000). A sealed cranial window system for simultaneous recording of blood flow, and electrical and optical signals in the rat barrel cortex. J. Neurosci.

Methods 99, 71–78.

Gerrits, R. J., Stein, E. A., and Greene, A. S. (1998). Laser-Doppler flowmetry utilizing a thinned skull cranial window preparation and auto- mated stimulation. Brain Res. Protoc. 3, 14–21.

Ginsberg, M. D., Dietrich, W. D., and Busto, R. (1987). Coupled forebrain increases of local cerebral glucose utilization and blood flow during physiologic stimulation of a somatosensory pathway in the rat.

Neurology 37, 11–19.

Greenberg, J., Hand, P., Sylvestro, A., and Reivich, M. (1979). Localized metabolic–flow couple during functional activity. Acta Neurol. Scand.

60, 12–13.

Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., and Wiesel, T. N.

(1986). Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–364.

Gross, P. M., Sposito, N. M., Pettersen, S. E., Panton, D. G., and Fenstermach, J. D. (1987). Topography of capillary density, glucose metabolism, and microvascular function within the rat inferior collicu- lus. J. Cereb. Blood Flow Metab. 7, 154–160.

Haberl, R. L., Heizer, M. L., Marmarou, A., and Ellis, E. F. (1989). Laser- Doppler assessment of brain microcirculation: Effect of systemic alter- ations. Am. J. Physiol. 256, H1247–H1254.

Haglund, M. M., Ojemann, G. A., and Hochman, D. W. (1992). Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 358, 668–671.

Harvey, W. (1978). “Circulation of the Blood.” University Park Press, Baltimore.

Heiss, W. D., and Traupe, H. (1981). Comparison between hydrogen clearance and microsphere technique for rCBF measurement. Stroke 12, 161–167.

Heistad, D., and Kontos, H. (1983). Cerebral circulation. In “Handbook of Physiology” (J. Shepherd, F. Abboud, and S. Geiger, eds.), Vol. 3, pp. 137–182. Am. Physiol. Soc., Bethesda, MD.

Heistad, D. D., Marcus, M. L., and Mueller, S. (1977). Measurement of cerebral blood flow with microspheres. Arch. Neurol. 34, 657–659.

Helmchen, F., Fee, M. S., Tank, D. W., and Denk, W. (2001). A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals. Neuron 31, 903–912.

Horton, R. W., Pedley, T. A., Meldrum, B. S., and Chir, B. (1980). Regional cerebral blood flow in the rat as determined by particle distribution and by diffusible tracer. Stroke 11, 39–44.

Hubel, D. H. (1982). Exploration of the primary visual cortex, 1955–78.

Nature 299, 515–524.

Hudetz, A. G. (1997). Blood flow in the cerebral capillary network: A review emphasizing observations with intravital microscopy. Microcirculation 4, 233–252.

Hudetz, A. G., Feeher, G., Weigle, C. G. M., Knuese, D. E., and Kampine, J. P. (1995). Video microscopy of cerebrocortical capillary flow:

Response to hypotension and intracranial hypertension. Am. J. Physiol.

268, H2202–H2210.

Hudetz, A. G., Weigle, C. G. M., Fenoy, F. J., and Roman, R. J. (1992). Use of fluorescently labeled erythrocytes and digital cross-correlation for the measurement of flow velocity in the cerebral microcirculation.

Microvasc. Res. 43, 334–341.

Ido, Y., Chang, K., Woolsey, T. A., and Williamson, J. R. (2001). NADH:

Sensor of blood flow need in brain, muscle, and other tissues. FASEB J.

15, 1419–1421.

Ingvar, D. H. (1975). Patterns of brain activity revealed by measurements of regional cerebral blood flow. In “Brain Work: The Coupling of Function Metabolism and Blood Flow in the Brain” (D. H. Ingvar and N. A. Lassen, eds.), pp. 397–413. Munksgaard, Copenhagen.

Irikura, K., Maynard, K. I., and Moskowitz, M. A. (1994). Importance of nitric oxide synthase inhibition to the attenuated vascular responses induced by topical L-nitroarginine during vibrissal stimulation. J. Cereb.

Blood Flow Metab. 14, 45–48.

Ishikawa, M., Sekizuka, E., Shimizu, K., Yamaguchi, N., and Kawase, T.

(1998). Measurement of RBC velocities in the rat pial arteries with an image-intensified high-speed video camera system. Microvasc. Res. 56, 166–172.

Jacquin, M. F., McCasland, J. S., Henderson, T. A., Rhoades, R. W., and Woolsey, T. A. (1993a). 2-DG uptake patterns related to single vibrissae during exploratory behaviors. J. Comp. Neurol. 332, 38–58.

Jacquin, M. F., Renehan, W. E., Rhoades, R. W., and Panneton, W. M. (1993b).

Morphology and topography of identified primary afferents in trigeminal subnuclei principalis and oralis. J. Neurophysiol. 70, 1911–1936.

Jallo, J., Saetzler, R., Mishke, C., Young, W. F., Vasthare, U., and Tuma, R.

F. (1997). A chronic model to simultaneously measure intracranial pressure, cerebral blood flow, and study the pial microvasculature.

J. Neurosci. Methods 75, 155–160.

Jay, T. M., Lucignani, G., Crane, A. M., Jehle, J., and Sokoloff, L. (1988).

Measurement of local cerebral blood flow with [14C]iodoantipyrine in the mouse. J. Cereb. Blood Flow Metab. 8, 121–129.

Johnson, P. C. (1995). Biophoton. Int. 2.

Kety, S. S. (1960). Measurement of local blood flow by the exchange of an inert, diffusible substance. Methods Med. Res. 8, 228–236.

Kety, S. S., and Schmidt, C. F. (1945). The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am. J.

Physiol. 143, 53–66.

Klein, B., Kuschinsky, W., Schrock, H., and Vetterlein, F. (1986).

Interdependency of local capillary density, blood flow and metabolism in rat brains. Am. J. Physiol. 251, H1333–H1340.

Kleinfeld, D., Mitra, P. P., Helmchen, F., and Denk, W. (1998). Fluctuations and stimulus-induced changes in blood flow observed in individual cap- illaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA 95, 15741–15746.

Knuese, D. E., Feher, G., and Hudetz, A. G. (1994). Automated measure- ment of fluorescently labeled erythrocyte flux in cerebrocortical capil- laries. Microvasc. Res. 47, 392–400.

Landis, E. M. (1982). The capillary circulation. In “Circulation of the Blood, Men and Ideas” (A. P. Fishman and D. W. Richards, eds.), pp.

355–406. Am. Physiol. Soc., Bethesda, MD.

Lasjaunias, P. L., and Berenstein, A. (1990). “Surgical Neuroangiography,”

Vol. 3. Springer Verlag, Berlin.

Lassen, N. A., Roland, P. E., Larsen, B., Melamed, E., and Soh, K. (1977).

Mapping of human cerebral functions: A study of the regional cerebral blood flow pattern during rest, its reproducibility and the activations seen during basic sensory and motor functions. Acta Neurol. Scand.

Suppl. 64, 262–263, 274–275.

Lear, J. L. (1988). Quantitative local cerebral blood flow measurements with technetium-99m HM-PAO: Evaluation using multiple radionuclide digital quantitative autoradiography. J. Nucl. Med. 29, 1387–1392.

Liang, G. E., Thompson, B. P., Erinjeri, J. P., Liu, D., Rovainen, C. M., and Woolsey, T. A. (1995). RBC flow and vessel diameter changes with stimulation of rat whisker barrel cortex. Microcirc. Soc. Abstr. 2, 96.

Lindauer, U., Villringer, A., and Dirnagl, U. (1993). Characterization of CBF response to somatosensory stimulation: Model and influence of anesthetics. Am. J. Physiol. 264, H1223–H1228.

Linde, R., Schmalbruch, I. K., Paulson, O. B., and Madsen, P. L. (1999).

The Kety–Schmidt technique for repeated measurements of global cere- bral blood flow and metabolism in the conscious rat. Acta Physiol.

Scand. 165, 395–401.

Lindsberg, P. J., O’Neill, J. T., Paakkari, I. A., Hallenbeck, J. M., and Feuerstein, G. (1989). Validation of laser-Doppler flowmetry in meas- urement of spinal cord blood flow. Am. J. Physiol. 257, H674–H680.

Liu, D., Dowling, J., Spence, M. E., Rovainen, C. M., and Woolsey, T. A.

(1994). Blood flow responses in the rat barrel cortex during whisker stimulation. Soc. Neurosci. Abstr. 20, 1422.

Ma, Y. P., Koo, A., Kwan, H. C., and Cheng, K. K. (1974). On-line meas- urement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat. Microvasc. Res. 8, 1–13.

Maeda, K., Mies, G., Olah, L., and Hossmann, K. A. (2000). Quantitative measurement of local cerebral blood flow in the anesthetized mouse using intraperitoneal [14C]iodoantipyrine injection and final arterial heart blood sampling. J. Cereb. Blood Flow Metab. 20, 10–14.

Malonek, D., Dirnagl, U., Lindauer, U., Yamada, K., Kanno, I., and Grinvald, A. (1997). Vascular imprints of neuronal activity:

Relationships between the dynamics of cortical blood flow, oxygena- tion, and volume changes following sensory stimulation. Proc. Natl.

Acad. Sci. USA 94, 14826–14831.

Marcus, M. L., Heistad, D. D., Ehrhardt, J. C., and Abboud, F. M. (1976).

Total and regional cerebral blood flow measurement with 7-, 10-, 15-, 25-, and 50µm microspheres. J. Appl. Physiol. 40, 501–507.

Masino, S. A., Kwon, M. C., Dory, Y., and Frostig, R. D. (1993).

Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc.

Natl. Acad. Sci. USA 90, 9998–10002.

McCasland, J. S., and Woolsey, T. A. (1988). High resolution 2DG mapping of functional cortical columns in mouse barrel cortex. J. Comp. Neurol.

278, 555–569.

Merzenich, M. M., Kaas, J. H., Wall, J., Nelson, R. J., Sur, M., and Felleman, D. (1983). Topographic reorganization of somatosensory cor- tical areas 3b and 1 in adult monkeys following restricted deafferenta- tion. Neuroscience 8, 33–55.

Morii, S., Ngai, A., and Winn, H. (1986). Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: With detailed description of the closed cranial window technique in rats. J. Cereb. Blood Flow Metab. 6, 34–41.

Morris, D. C., Zhang, Z., Davies, K., Fenstermacher, J., and Chopp, M.

(1999). High resolution quantitation of microvascular plasma perfusion in non-ischemic and ischemic rat brain by laser-scanning confocal microscopy. Brain Res. Protoc. 4, 185–191.

Moskalenko, Y. E., Dowling, J., Liu, D., Rovainen, C. M., Spence, M. E., and Woolsey, T. A. (1996). LCBF changes in rat somatosensory cortex

during whisker stimulation: Dynamic H2 clearance studies. Int. J.

Psychophysiol. 21, 45–59.

Moskalenko, Y. E., Rovainen, C. M., Woolsey, T. A., Wei, L., Liu, D., Spence, M. E., Semernia, V. N., Weinstein, G. B., and Malisheva, N. G.

(1994). Comparison of local CBF measurements by H2-clearance with H2inhalation and with transient electrochemical H2generation in brain tissue. Sechenov. Physiol. J. 80, 119–125.

Moskalenko, Y. E., Weinstein, G. B., Demchencko, I. T., Kislyakov, Y. Y., and Krivchenko, A. I. (1980). “Biophysical Aspects of Cerebral Circulation.” Pergamon, Oxford.

Moskalenko, Y. E., Woolsey, T. A., Rovainen, C., Weinstein, G. B., Liu, D., Semernya, V. N., and Mitrofanov, V. F. (1998). Blood flow dynamics in different layers of the somatosensory region of the cerebral cortex on the rat during mechanical stimulation of the vibrissae. Neurosci. Behav.

Physiol. 28, 459–467.

Muller, T. B., Jones, R. A., Haraldseth, O., Westby, J., and Unsgard, G.

(1996). Comparison of MR perfusion imaging and microsphere meas- urements of regional cerebral blood flow in a rat model of middle cere- bral artery occlusion. Magn. Reson. Imaging 14, 1177–1183.

Narayan, S. M., Santori, E. M., and Toga, A. W. (1994). Mapping functional activity in rodent cortex using optical intrinsic signals. Cereb. Cortex 4, 195–204.

Neirinckx, R. D., Canning, L. R., Piper, I. M., Nowotnik, D. P., Pickett, R.

D., Holmes, R. A., Volkert, W. A., Forster, A. M., Weisner, P. S., and Marriott, J. A. (1987). Technetium-99m d,l-HM-PAO: A new radiophar- maceutical for SPECT imaging of regional cerebral blood perfusion. J.

Nucl. Med. 28, 191–202.

Ngai, A., Ko, K., Morii, S., and Winn, H. (1988). Effect of sciatic nerve stimulation on pial arterioles in rats. Am. J. Physiol. 254, H133–H139.

Ngai, A. C., Meno, J. R., and Winn, H. R. (1995). Simultaneous measure- ments of pial arteriolar diameter and laser-Doppler flow during somatosensory stimulation. J. Cereb. Blood Flow Metab. 15, 124–127.

Ngai, A. C., and Winn, H. R. (1996). Estimation of shear and flow rates in pial arterioles during somatosensory stimulation. Am. J. Physiol. 270, H1712–H1717.

Parekh, N., Zou, A. P., Jungling, E., Endlich, K., Sadowski, J., and Steinhausen, M. (1993). Sex differences in control of renal outer medullary circulation in rats: Role of prostaglandins. Am. J. Physiol.

264, F629–F636.

Peterson, B. E., and Goldreich, D. (1994). A new approach to optical imaging applied to rat barrel cortex. J. Neurosci. Methods 54, 39–47.

Posner, M. I., and Raichle, M. E. (1994). “Images of Mind: Exploring the Brain’s Activity.” Freeman, New York.

Prakash, N., Vanderhaeghen, P., Cohen-Cory, S., Frisen, J., Flanagan, J. G., and Frostig, R. D. (2000). Malformation of the functional organization of somatosensory cortex in adult ephrin-A5 knock-out mice revealed by in vivo functional imaging. J. Neurosci. 20, 5841–5847.

Ratzlaff, E. H., and Grinvald, A. (1991). A tandem-lens epifluorescence microscope: Hundred-fold brightness advantage for widefield imaging.

J. Neurosci. Methods 36, 127–137.

Rausch, M., and Eysel, U. T. (1996). Visualization of lCBF changes during cortical infarction using IR thermo-encephaloscopy. NeuroReport 7, 2603–2606.

Rosenblum, W. I. (1969). Erythrocyte velocity and a velocity pulse in minute blood vessels on the surface of the mouse brain. Circ. Res. 24, 887–892.

Rosenblum, W. I. (1970). Effects of blood pressure and blood viscosity on fluorescein transit time in the cerebral microcirculation in the mouse.

Circ. Res. 27, 825–833.

Rovainen, C. M., Wang, D. B., and Woolsey, T. A. (1992). Strobe epi-illu- mination of fluorescent beads indicates similar velocities and shear rates in brain arterioles of newborn and adult mice. Microvasc. Circ. 43, 235–239.

Rovainen, C. M., Woolsey, T. A., Blocher, N. C., Wang, D. B., and Robinson, O. F. (1993). Blood flow in single surface arterioles and venules on the

mouse somatosensory cortex measured with videomicroscopy, fluorescent dextrans, non-occluding fluorescent beads, and computer-assisted image analysis. J. Cereb. Blood Flow Metab. 13, 359–371.

Roy, C. S., and Sherrington, C. S. (1890). On the regulation of the blood supply of the brain. J. Physiol. (London) 11, 85–108.

Sakurada, O., Kennedy, C., Jehle, J., Brown, J. D., Carbin, G. L., and Sokoloff, L. (1978). Measurement of local cerebral blood flow with iodo[14C]antipyrine. Am. J. Physiol. 234, H59–H66.

Sarelius, I. H., and Duling, B. R. (1982). Direct measurement of microves- sel hematocrit, red cell flux, velocity, and transit time. Am. J. Physiol.

243, H1018–H1026.

Schiszler, I., Tomita, M., Fukuuchi, Y., Tanahashi, N., and Inoue, K. (2000).

New optical method for analyzing cortical blood flow heterogeneity in small animals: Validation of the method. Am. J. Physiol. 279, H1291–H1298.

Seki, J., Sasaki, Y., Oyama, T., and Yamamoto, J. (1996). Fiber-optic laser- Doppler anemometer microscope applied to the cerebral microcircula- tion in rats. Biorheology 33, 463–470.

Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., and Tootell, R. B. H. (1995). Borders of mul- tiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893.

Seylaz, J., Charbonne, R., Nanri, K., Von Euw, D., Borredon, J., Kacem, K., Meric, P., and Pinard, E. (1999). Dynamic in vivo measurement of ery- throcyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy. J. Cereb. Blood Flow Metab.

19, 863–870.

Simons, D. J. (1985). Temporal and spatial integration in the rat SI vibrissa cortex. J. Neurophysiol. 54, 615–635.

Simons, D. J. (1995). Neuronal integration in the somatosensory whisker/barrel cortex. In “Cerebral Cortex” (E. G. Jones and I. T.

Diamond, eds.), Vol. 11, pp. 263–297. Plenum, New York.

Skarphedinsson, J. O., Harding, H., and Thoren, P. (1988). Repeated meas- urements of cerebral blood flow in rats. Comparisons between the hydrogen clearance method and laser Doppler flowmetry. Acta Physiol.

Scand. 134, 133–142.

Stosseck, K., Lübbers, D. W., and Cottin, N. (1974). Determination of local blood flow (microflow) by electrochemically generated hydrogen:

Construction and application of the measuring probe. Acta Physiol.

Scand. 134, 133–142.

Tomita, M., Gotoh, F., Amano, T., Tanahashi, N., Kobari, M., Shinohara, T., and Mihara, B. (1983). Transfer function through regional cerebral cortex evaluated by a photoelectric method. Am. J. Physiol. 245, H385–H398.

Ts’o, D. Y., Frostig, R. D., Lieke, E. E., and Grinvald, A. (1990). Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249, 417–420.

Uranishi, R., Nakase, H., Sakaki, T., and Kempski, O. S. (1999). Evaluation of absolute cerebral blood flow by laser-Doppler scanning—

Comparison with hydrogen clearance. J. Vasc. Res. 36, 100–105.

Villringer, A., Them, A., Lindauer, U., Einhaupl, K., and Dirnagl, U.

(1994). Capillary perfusion of the rat brain cortex: An in vivo confocal microscopy study. Circ. Res. 75, 55–62.

Wang, D. B., Blocher, N. C., Spence, M. E., Rovainen, C. M., and Woolsey, T. A. (1992). Development and remodeling of cerebral blood vessels and their flow in postnatal mice observed with in vivo videomicroscopy. J.

Cereb. Blood Flow Metab. 12, 935–946.

Wardell, K., and Nilsson, G. E. (1996). Duplex laser Doppler perfusion imaging. Microvasc. Res. 52, 171–182.

Wei, L., Craven, K., Erinjeri, J., Liang, G. E., Bereczki, D., Rovainen, C.

M., Woolsey, T. A., and Fenstermacher, J. D. (1998). Local cerebral blood flow during the first hour following acute ligation of multiple arte- rioles in rat whisker barrel cortex. Neurobiol. Dis. 5, 142–150.

Wei, L., J. P., E., Rovainen, C. M., and Woolsey, T. A. (2001). Collateral growth and angiogenesis around cortical stroke. Stroke 32, 2179–2184.

Wei, L., Rovainen, C. M., and Woolsey, T. A. (1995). Ministrokes in rat barrel cortex. Stroke 36, 1459–1462.

Welker, C., and Woolsey, T. A. (1974). Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse. J. Comp. Neurol. 158, 437–454.

Woolsey, C. N., Erickson, T. C., and Gilson, W. E. (1979). Localization in somatic sensory and motor areas of human cerebral cortex as deter- mined by direct recording of evoked potentials and electrical stimula- tion. J. Neurosurg. 51, 476–506.

Woolsey, T. A. (1967). Somatosensory, auditory and visual cortical areas of the mouse. Johns Hopkins Med. J. 121, 91–112.

Woolsey, T. A. (1990). Peripheral alteration and somatosensory develop- ment. In “Development of Sensory Systems in Mammals” (J. Coleman, ed.), pp. 465–520. Wiley, New York.

Woolsey, T. A. (1993). Glomerulos, barrels, columns and maps in cortex:

An homage to Dr. Rafael Lorente de Nó. In “The Mammalian Cochlear Nuclei: Organization and Function” (M. A. Merchán, J. M. Juiz, D. A.

Godfrey, and E. Mugnaini, eds.), pp. 479–501. Plenum, New York.

Woolsey, T. A., and Rovainen, C. M. (1991). Whisker barrels: A model for direct observation of changes in the cerebral microcirculation with neu- ronal activity. In “Brain Work and Mental Activity: Alfred Benzon Symposium” (N. A. Lassen, D. H. Ingvar, M. E. Raichle, and L. Friberg, eds.), Vol. 31, pp. 189–200. Munksgaard, Copenhagen.

Woolsey, T. A., Rovainen, C. M., Cox, S. B., Henegar, M. H., Liang, G. E., Liu, G., Moskalenko, Y. E., Sui, J., and Wei, L. (1996). Neuronal units linked to microvascular modules in cerebral cortex: Response elements for imaging the brain. Cereb. Cortex 6, 647–660.

Woolsey, T. A., and Van der Loos, H. (1970). The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242.

Young, W. (1980). H2clearance measurement of blood flow: A review of technique and polarographic principles. Stroke 11, 552–564.

Yu, D. Y., Alder, V. A., and Cringle, S. J. (1991). Measurement of blood flow in rat eyes by hydrogen clearance. Am. J. Physiol. 261, H960–H968.

Zhao, W., Busto, R., Truettner, J., and Ginsberg, M. D. (2001).

Simultaneous measurement of cerebral blood flow and mRNA signals:

Pixel-based inter-modality correlational analysis. J. Neurosci. Methods 108, 161–170.