500—875 ms Post—Cue
VI. Summary and Conclusions
The neurophysiology of mentation involves rapid coordi- nation of processes in widely distributed cortical and sub- cortical areas. The electrical signals that accompany higher cognitive functions are subtle, are spatially complex, and change both in a tonic multisecond fashion and phasically in subsecond intervals in response to environmental demands and internal representations of environment and self. No one brain imaging technology is currently capable of providing both near-millimeter precision in localizing regions of acti- vated tissue and subsecond temporal precision for charac- terizing changes in patterns of activation over time.
However, by combining several technologies, it seems pos- sible to achieve this fine degree of spatiotemporal resolu- tion. Modern high-resolution EEG is especially well suited to monitoring rapidly changing regional patterns of neuronal activation accompanying purposive behaviors, while fMRI seems ideal for precisely determining their three-dimen- sional localization and distribution. It is a topic of current research to determine how to combine EEG and fMRI data from the same subjects doing the same tasks. Because of the relative low expense and unobtrusiveness of the technology required for EEG recordings relative to other means of neu- rofunctional assessment, combined with its high level of sensitivity to changes in neuronal activity, the EEG has long played an important role in contexts in which it is important to continuously monitor brain function. Its most promising future contributions are also likely to be closely related to this monitoring function.
Acknowledgments
We thank our many colleagues at the San Francisco Brain Research Institute (formerly called EEG Systems Laboratory) and SAM Technology, past and present, for their contributions to the work described here. This research was supported by grants from the Air Force Office of Scientific Research, the National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke, the National Science Foundation, the National Aeronautics and Space Administration, the Air Force Research Laboratory, the Office of Naval Research, the National Institute of Alcoholism and Alcohol Abuse, the National Institute of Drug Abuse, the National Institute of Child Health and Human Development, and the National Institute of Aging of the United States federal government.
References
Abraham, K., and Ajmone-Marsan, C. (1958). Patterns of cortical dis- charges and their relation to routine scalp electroencephalography.
Electroencephalogr. Clin. Neurophysiol. 10, 447–452.
Akerstedt, T., Torsvall, L., et al. (1982). Sleepiness and shift work: Field studies. Sleep 5(Suppl. 2), S95–106.
Akerstedt, T., Torsvall, L., et al. (1987). Sleepiness in shiftwork: A review with emphasis on continuous monitoring of EEG and EOG. Chronobiol.
Int. 4, 129–140.
Aminoff, M. J. (1986). “Electrodiagnosis in Clinical Neurology.” Churchill Livingstone, New York.
Berger, H. (1929). Uber das Elektroenzephalogramm des Menschen. Arch.
Psychiatry 87, 527–570.
Brazier, M. A. B., and Casby, J. U. (1952). Crosscorrelation and autocorre- lation studies of electroencephalographic potentials.
Electroencephalogr. Clin. Neurophysiol. 4, 201–211.
Bressler, S. L., Coppola, R., et al. (1993). Episodic multiregional cortical coherence at multiple frequencies during visual task performance.
Nature 366, 153–155.
Buchel, C., and Friston, K. (2000). Assessing interactions among neuronal systems using functional neuroimaging. Neural Networks 13, 871–882.
Callaway, E., and Harris, P. (1974). Coupling between cortical potentials from different areas. Science 183, 873–875.
Carpenter, P. A., Just, M. A., et al. (1990). What one intelligence test meas- ures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychol. Rev. 97, 404–431.
Carskadon, M. A., and Rechtschaffen, A. (1989). Monitoring and staging human sleep. In “Principles and Practice of Sleep Medicine” (M. H.
Kryger, T. Roth, and W. C. Dement, eds.), pp. 943–960. Saunders, Philadelphia.
Chiappa, K. H. (1983). “Evoked Potentials in Clinical Medicine.” Raven Press, New York.
Chung, S. S., McEvoy, L. K., et al. (2002). Neurophysiological assessment of cognitive dysfunction associated with phenytoin. Clin. Neurophysiol., in press.
Cooper, R., Winter, A., et al. (1965). Comparison of subcortical, cortical, and scalp activity using chronically indwelling electrodes.
Electroencephalogr. Clin. Neurophysiol. 18, 217–230.
Dale, A. M., and Halgren, E. (2001). Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr. Opin.
Neurobiol. 11, 202–208.
Daly, D. D., and Pedley, T. A. (1990). “Current Practice of Clinical Electroencephalography,” 2nd edition. Raven Press, New York.
Dien, J. (1998). Addressing misallocation of variance in principal compo- nents analysis of event-related potentials. Brain Topogr. 11, 43–55.
Engle, R. W., Tuholski, S., et al. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex. In
“Models of Working Memory” (A. Miyake and P. Shah, eds.), pp.
102–134. Cambridge Univ. Press, Cambridge, UK.
Fender, D. H. (1987). Source localization of brain electrical activity. In
“Methods of Analysis of Brain Electrical and Magnetic Signals” (A. S.
Gevins and A. Rémond, eds.), Vol. 1, pp. 355–403 Elsevier, Amsterdam.
Freeman, W. J. (1978). Spatial properties of an EEG event in the olfactory bulb and cortex. Electroencephalogr. Clin. Neurophysiol. 44, 586–605.
Freeman, W. J., and Baird, B. (1987). Relation of olfactory EEG to behav- ior: Spatial analysis. Behav. Neurosci. 3, 393–408.
Frisk, V., and Milner, B. (1990). The relationship of working memory to the immediate recall of stories following unilateral temporal or frontal lobectomy. Neuropsychologia 28, 121–135.
George, J. S., Aine, C. J., et al. (1995). Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J. Clin.
Neurophysiol. 12, 406–431.
Gersch, W. (1987). Non-stationary multichannel time series analysis. In
“Methods of Analysis of Brain Electrical and Magnetic Signals” (A. S.
Gevins and A. Rémond, eds.), Vol. 1, pp. 261–296. Elsevier, Amsterdam.
Gevins, A. (1998). The future of electroencephalography in assessing neu- rocognitive functioning. Electroencephalogr. Clin. Neurophysiol. 106, 165–172.
Gevins, A., and Smith, M. E. (1999). Detecting transient cognitive impair- ment with EEG pattern recognition methods. Aviat. Space Environ.
Med. 70, 1018–1024.
Gevins, A., and Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb. Cortex 10, 829–839.
Gevins, A., Le, J., et al. (1994a). High resolution EEG: 124-channel record- ing, spatial deblurring and MRI integration methods.
Electroencephalogr. Clin. Neurophysiol. 90, 337–358.
Gevins, A., Smith, M. E., et al. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cereb. Cortex 7, 374–385.
Gevins, A., Smith, M. E., et al. (1998). Monitoring working memory load during computer-based tasks with EEG pattern recognition methods.
Hum. Factors 40, 79–91.
Gevins, A., Smith, M. E., et al. (2001). Tracking the cognitive pharmaco- dynamics of psychoactive substances with combinations of behavioral and neurophysiological measures. Neuropsychopharmacology, in press.
Gevins, A. S., and Bressler, S. L. (1988). Functional topography of the human brain. In “Functional Brain Imaging” (G. Pfurtscheller, ed.), pp.
99–116. Huber, Toronto.
Gevins, A. S., and Cutillo, B. A. (1995). Neuroelectric measures of the mind. In “Neocortical Dynamics and Human EEG Rhythms” (P. Nunez, ed.), pp. 304–338. Oxford Univ. Press, New York.
Gevins, A. S., and Schaffer, R. E. (1980). A critical review of electroen- cephalographic EEG correlates of higher cortical functions. CRC Crit.
Rev. Bioeng. 4, 113–164.
Gevins, A. S., Bressler, S. L., et al. (1989a). Event-related covariances during a bimanual visuomotor task. Part I. Methods and analysis of stimulus and response-locked data. Electroencephalogr. Clin.
Neurophysiol. 74, 58–75.
Gevins, A. S., Bressler, S. L., et al. (1989b). Event-related covariances during a bimanual visuomotor task. Part II. Preparation and feedback.
Electroencephalogr. Clin. Neurophysiol. 74, 147–160.
Gevins, A. S., Bressler, S. L., et al. (1990a). Effects of prolonged mental work on functional brain topography. Electroencephal. Clin.
Neurophysiol. 76, 339–350.
Gevins, A. S., Brickett, P., et al. (1990b). Beyond topographic mapping:
Towards functional–anatomical imaging with 124-channel EEGs and 3- D MRIs. Brain Topogr. 3, 53–64.
Gevins, A. S., Cutillo, B. A., et al. (1994b). Subdural grid recordings of dis- tributed neocortical networks involved with somatosensory discrimina- tion. Electroencephalogr. Clin. Neurophysiol. 92, 282–290.
Gevins, A. S., Cutillo, B. A., et al. (1995a). Regional modulation of high resolution evoked potentials during verbal and nonverbal matching tasks. Electroencephalogr. Clin. Neurophysiol. 94, 129–147.
Gevins, A. S., Doyle, J. C., et al. (1981). Electrical potentials in human brain during cognition: New method reveals dynamic patterns of corre- lation. Science 213, 918–922.
Gevins, A. S., Le, J., et al. (1991). Seeing through the skull: Advanced EEGs use MRIs to accurately measure cortical activity from the scalp.
Brain Topogr. 4, 125–131.
Gevins, A. S., Leong, H., et al. (1995b). Towards measurement of brain function in operational environments. Biol. Psychol. 40, 169–186.
Gevins, A. S., Morgan, N. H., et al. (1987). Human neuroelectric patterns predict performance accuracy. Science 235, 580–585.
Gevins, A. S., Schaffer, R. E., et al. (1983). Shadows of thought: Shifting lateralization of human brain electrical patterns during brief visuomotor task. Science 220, 97–99.
Gevins, A. S., Smith, M. E., et al. (1996). High resolution evoked potential imaging of the cortical dynamics of human working memory.
Electroencephalogr. Clin. Neurophysiol. 98, 327–348.
Gilliam, F., Kuzniecky, R., et al. (1999). Ambulatory EEG monitoring. J.
Clin. Neurophysiol. 16, 111–115.
Goldman-Rakic, P. (1987). Circuitry of primate prefrontal cortex and regu- lation of behavior by representational memory. In “Handbook of Physiology: The Nervous System—Higher Functions of the Brain” (F.
Plum and V. Mountcastle, eds.), Vol. 5, pp. 373–417. Am. Physiol. Soc., Bethesda, MD.
Goldman-Rakic, P. (1988). Topography of cognition: Parallel distributed net- works in primate association cortex. Annu. Rev. Neurosci. 11, 137–156.
Gorodnitsky, I. F., George, J. S., et al. (1995). Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algo- rithm. Electroencephalogr. Clin. Neurophysiol. 95, 231–251.
Gratton, G., Goodman-Wood, M. R., et al. (2001). Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation:
An optical imaging study. Hum. Brain Mapp. 13, 13–25.
Grave de Peralta-Menendez, R., and Gonzalez-Andino, S. L. (1998). A crit- ical analysis of linear inverse solutions to the neuroelectric inverse problem. IEEE Trans. Biomed. Eng. 45, 440–448.
Gray, C. M., Engel, A. K., et al. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337.
Halgren, E., Marinkovic, K., et al. (1998). Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr.
Clin. Neurophysiol. 106, 156–164.
Hillyard, S. A., and Picton, T. W. (1987). Electrophysiology of cognition.
In “Handbook of Physiology” (V. B. Mountcastle, ed.), Vol. 5, pp.
519–584. Am. Physiol. Soc., Bethesda, MD.
Ilan, A. B., and Gevins, A. (2001). Prolonged neurophysiological effects of cumulative wine drinking. Alcohol, 25, 137–152.
Jasper, H. H. (1958). The ten–twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375.
John, E. R., Bartlett, F., et al. (1973). Neural readout from memory. J.
Neurophysiol. 36, 893–924.
John, E. R., Prichep, L. S., et al. (2001). Invariant reversible QEEG effects of anesthetics. Consciousness Cognit. 10, 165–183.
Koles, Z. J. (1998). Trends in EEG source localization. Electroencephalogr.
Clin. Neurophysiol. 106, 127–137.
Kyllonen, P. C., and Christal, R. E. (1990). Reasoning ability is little more than working memory capacity?! Intelligence 14, 389–433.
Le, J., and Gevins, A. S. (1993). Method to reduce blur distortion from EEGs using a realistic head model. IEEE Trans. Biomed. Eng. 40, 517–528.
Le, J., Menon, V., et al. (1994). Local estimate of the surface Laplacian der- ivation on a realistically shaped scalp surface and its performance on noisy data. Electroencephalogr. Clin. Neurophysiol. 92, 433–441.
Liu, A. K., Belliveau, J. W., et al. (1998). Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalogra- phy data: Monte Carlo simulations. Proc. Natl. Acad. Sci. USA 95, 8945–8950.
Livanov, M. N. (1977). “Spatial Organization of Cerebral Processes.”
Wiley, New York.
Lopes da Silva, F. (1991). Neural mechanisms underlying brain waves:
From neural membranes to networks. Electroencephalogr. Clin.
Neurophysiol. 79, 81–93.
Lopes da Silva, F., Pijn, J. P., et al. (1989). Interdependence of EEG signals:
Linear vs. nonlinear associations and the significance of time delays and phase shifts. Brain Topogr. 2, 9–18.
Mangun, G. R., Buonocore, M. H., et al. (1998). ERP and fMRI measures of visual spatial selective attention. Hum. Brain Mapp. 6, 383–389.
Mars, N. J., and Lopes da Silva, F. H. (1987). EEG analysis methods based on information theory. In “Methods of Analysis of Brain Electrical and Magnetic Signals” (A. S. Gevins and A. Rémond, eds.), Vol. 1, pp.
297–307. Elsevier, Amsterdam.
McEvoy, L. K., Chellaramani, R., et al. (2001). Effects of a benzodiazepine on behavioral and neurophysiological measures of working memory.
Presented at the Annual Meeting of the Society for Neuroscience, San Diego, CA.
McEvoy, L. K., Smith, M. E., et al. (1998). Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice. Cereb. Cortex 8, 563–574.
McEvoy, L. K., Smith, M. E., et al. (2000). Test–retest reliability of cogni- tive EEG. Clin. Neurophysiol. 111, 457–463.
McIntosh, A. R. (1998). Understanding neural interactions in learning and memory using functional neuroimaging. Ann. N. Y. Acad. Sci. 855, 556–571.
Miller, E. K., and Desimone, R. (1994). Parallel neuronal mechanisms for short-term memory. Science 263, 520–522.
Miltner, W., Braun, C., et al. (1994). A test of brain electrical source analy- sis (BESA): A simulation study. Electroencephalogr. Clin.
Neurophysiol. 91, 295–310.
Moeller, J. R., Nakamura, T., et al. (1999). Reproducibility of regional metabolic covariance patterns: Comparison of four populations. J. Nucl.
Med. 40, 1264–1269.
Murphy, V. N., and Fetz, E. E. (1992). Coherent 25–35 Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl. Acad.
Sci. 89, 5670–5674.
Nichols, E. A., Ilan, A. B., et al. (2001). Effects of marijuana on neurophysi- ological correlates of working and intermediate-term memory. Presented at the Annual Meeting of the Society for Neuroscience, San Diego, CA.
Nunez, P. L. (1981). “Electric Fields in the Brain: The Neurophysics of EEG.” Oxford Univ. Press, New York.
Nunez, P. L., and Pilgreen, K. L. (1991). The spline–Laplacian in clinical neurophysiology: A method to improve EEG spatial resolution. J. Clin.
Neurophysiol. 8, 397–413.
Nunez, P. L., and Silberstien, R. B. (2000). On the relationship of synaptic activity to macroscopic measurements: Does co-registration of EEG with fMRI make sense? Brain Topogr. 13, 79–96.
Nyberg, L., McIntosh, A. R., et al. (1996). Network analysis of positron emission tomography regional cerebral blood flow data: Ensemble inhi- bition during episodic memory retrieval. J. Neurosci. 16, 3753–3759.
O’Connor, M. F., Daves, S. M., et al. (2001). BIS monitoring to prevent awareness during general anesthesia. Anesthesiology 94, 520–522.
Owen, A. M., Evans, A. C., et al. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex:
A positron emission tomography study. Cereb. Cortex 6, 31–38.
Picton, T. W. (1992). The P300 wave of the human event-related potential.
J. Clin. Neurophysiol. 9, 456–479.
Posner, M. I., and Peterson, S. E. (1990). The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42.
Regan, D. (1989). “Human Brain Electrophysiology.” Elsevier, New York.
Rogers, L. (1991). Determination of the number and waveshapes of event related potential components using comparative factor analysis. Int. J.
Neurosci. 56, 219–246.
Scherg, M., and Von Cramon, D. (1985). Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr.
Clin. Neurophysiol. 62, 32–44.
Sereno, M. I. (1998). Brain mapping in animals and humans. Curr. Opin.
Neurobiol. 8, 188–194.
Simpson, G. V., Pflieger, M. E., et al. (1995). Dynamic neuroimaging of brain function. J. Clin. Neurophysiol. 12, 432–449.
Smith, E. E., and Jonides, J. (1995). Working memory in humans:
Neuropsychological evidence. In “The Cognitive Neurosciences” (M.
Gazzaniga, ed.), pp. 1009–1020. MIT Press, Cambridge, MA.
Smith, E. E., Jonides, J., et al. (1995). Spatial versus object working memory: PET investigations. J. Cognit. Neurosci. 7, 337–356.
Smith, M. E., Gevins, A., et al. (2001). Monitoring task load with multi- variate EEG measures during complex forms of human computer inter- action. Hum. Factors, 43, 366–380.
Smith, M. E., Halgren, E., et al. (1990). The intracranial topography of the P3 event-related potential elicited during auditory oddball.
Electroencephalogr. Clin. Neurophysiol. 76, 235–248.
Smith, M. E., McEvoy, L. K., et al. (1999). Neurophysiological indices of strategy development and skill acquisition. Brain Res. Cognit. Brain Res. 7, 389–404.
Spinelli, L., Andino, S. G., et al. (2000). Electromagnetic inverse solutions in anatomically constrained spherical head models. Brain Topogr. 13, 115–125.
Suarez, E., Viegas, M. D., et al. (2000). Relating induced changes in EEG signals to orientation of visual stimuli using the ESI-256 machine.
Biomed. Sci. Instrument. 36, 33–38.
Sutton, S., Braren, M., et al. (1965). Evoked potential correlates of uncer- tainty. Science 150, 1187–1188.
Tesche, C. D., Uusitalo, M. A., et al. (1995). Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr. Clin. Neurophysiol. 95, 189–200.
Thompson, J. L., and Ebersole, J. S. (1999). Long-term inpatient audiovi- sual scalp EEG monitoring. J. Clin. Neurophysiol. 16, 91–99.
van den Broek, S. P., Reindeers, F., et al. (1998). Volume conductions effects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol. 106, 522–534.
Vespa, P., Nenov, V., et al. (1999). Continuous EEG monitoring in the intensive care unit: Early findings and clinical efficacy. J. Clin.
Neurophysiol. 16, 1–13.
Walter, D. O. (1963). Spectral analysis for electroencephalograms:
Mathematical determination of neurophysiological relationships from records of limited duration. Exp. Neurol. 8, 155–181.
Walter, W. G., Cooper, R., et al. (1964). Slow potential changes in the human brain associated with expectancy, decision and intention.
Electroencephalogr. Clin. Neurophysiol. Suppl. 26, 123–130.
Wang, J. Z., Williamson, S. J., et al. (1993). Magnetic source imaging based on the minimum-norm least-squares inverse. Brain Topogr. 5, 365–371.
Wikswo, J. P., Gevins, A. S., et al. (1993). The future of EEG and MEG.
Electroencephalogr. Clin. Neurophysiol. 87, 1–9.
Wilson, G. F., Fullenkamp, B. S., et al. (1994). Evoked potential, cardiac, blink, and respiration measures of pilot workload in air-to-ground mis- sions. Aviat. Space Environ. Med. 100–105.
Wood, C. C., and McCarthy, G. (1984). Principal component analysis of event-related potentials: Simulation studies demonstrate misallocation of variance across components. Electroencephalogr. Clin. Neurophysiol.
59, 249–260.
Woody, C. D. (1967). Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals. Med. Biol. Eng. 5, 539–553.
9
Electrophysiological Methods for Mapping Brain Motor
and Sensory Circuits
Paul D. Cheney
Smith Mental Retardation Research Center and Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
X. Mapping Motor Output with High-Density Microelectrode Arrays
XI. Mapping Motor Output with Spike-Triggered Averaging of EMG Activity from Single Neurons
XII. Mapping Motor Output with Stimulus- Triggered Averaging of EMG Activity (Single-Pulse ICMS)
XIII. Comparison of Results from Spike-Triggered Averaging, Stimulus-Triggered Averaging, and Repetitive ICMS
XIV. Mapping the Output Terminations of Single Neurons Electrophysiologically
XV. The Future of Electrophysiological Mapping
References
189 I. Introduction and Historical Perspective
II. Structural versus Functional Brain Maps III. Strengths of Electrophysiological Mapping
Methods Compared to Other Brain Mapping Methods
IV. Contrasts between Sensory versus Motor System Mapping
V. Output Measures for Mapping Motor System Organization
VI. Electrical Stimulation and Other Input Measures for Mapping Motor System Organization
VII. Mapping Motor Output with Transcranial Stimulation of Cortex
VIII. Mapping Motor Output with Electrical Stimulation of the Cortical Surface
IX. Mapping Motor Output with Intracortical Microstimulation (ICMS)
▼ ▼
Brain Mapping: The Methods, 2nd edition
Copyright © 2002 by Elsevier Science (USA) All rights reserved.