CLASSES OF MATERIALS
1.04 Cemented Tungsten Carbide HardmetaldAn Introduction
1.04.5 Conclusions
The unique thermodynamic and intrinsic mechanical properties of WC have provided the essential qualities that, when combined with Co and other materials, encompass a class of composite materials critical to modern industries. Advancements in manufacturing processes have resulted in fully dense materials, as well as in specialized microstructures, that address crucial industrial needs and which substantively benefit society. The current state of the cemented carbide industry is quite mature, and is a cornerstone of modern manufacturing.
Efforts are ongoing to further bolster surface hardness and wear resistance, while maintaining good fracture toughness, and continued investigations promise expansion of the range of ultimate properties and applications.
References
Arroyo, J. M., Diniz, A. E., & Fernandes de Lima, M. S. (2010). Cemented carbide surface modifications using laser treatment and its effects on hard coating adhesion.Surface and Coatings Technology, 204, 2410–2416.
Cemented Tungsten Carbide HardmetaldAn Introduction 135
Biksa, A., Yamamoto, K., Dosbaeva, G., Veldhuis, S. C., Fox-Rabinovich, G. S., Elfizy, A., et al. (2010). Wear behavior of adaptive nano-multilayered AlTiN/MexN PVD coatings during machining of aerospace alloys.Tribology International, 43, 1491–1499.
Bolton, D., & Keely, R. J. (1982). Effects of nonstoichiometric carbon contents on the fracture toughness of WC–Co hardmetal alloys.International Journal of Refractory Metals and Hard Materials, 3, 103–111.
Bouzakis, K.-D., Makrimallakis, S., Katirtzoglou, G., Skordaris, G., Gerardis, S., Bouzakis, E., et al. (2010). Adaption of graded Cr/CrN-interlayer thickness to cemented carbide substrates’roughness for improving the adhesion of HPPMS PVDfilms and the cutting performance.Surface and Coatings Technology, 205, 1564–1570.
Bouzakis, K.-D., Skordaris, G., Gerardis, S., Katirtzoglou, G., Makrimallakis, S., Pappa, M., et al. (2010). The effect of substrate pretreatments and HPPMS-deposited adhesive interlayers’ materials on the cutting performance of coated cemented carbide inserts. CIRP Annals – Manufacturing Technology, 59, 73–76.
Chen, L., Du, Y., Wang, S., Wang, J., & Xu, H. (2009). Mechanical properties and microstructural evolution of TiN coatings alloyed with Al and Si.Materials Science and Engineering A, 502, 139–143.
Chernyavsky, K. S. (1986). Stereological analysis of structure formation for solid WC–Co alloys in the process of carbide powder consolidation.Poroshkovaga Metallurgiya, 3, 65–69.
Dawihl, W., & Dinglinger, E. (1953).Handbuch der hartmetallwerkzeuge. Germany: Springer.
Deng, X., Patterson, B. R., Chawla, K. K., Koopman, M. C., Fang, Z., Lockwood, G., et al. (2001). Mechanical properties of a hybrid cemented carbide composite.International Journal of Refractory Metals and Hard Materials, 19, 547–552.
Doi, H., Fujiwara, Y., & Miyake, K. (1969). Mechanism of plastic deformation and dislocation damping of cemented carbides.Transactions of the Metallurgical Society AIME, 245, 1457–1470.
Eso, O., Fang, Z. Z., & Griffo, A. (2005). Liquid phase sintering of functionally graded WC–Co composites.International Journal of Refractory Metals and Hard Materials, 23, 233–241.
Exner, H. E., & Gurland, J. (1970). A review of parameters influencing some mechanical properties of tungsten carbide–cobalt alloys.Powder Metallurgy, 13, 13–31.
Fan, P., Guo, J., Fang, Z. Z., & Prichard, P. (2009). Effects of liquid phase composition on its migration during liquid-phase sintering of cemented carbide.
Metallurgical and Materials Transactions, 40A, 1995–2006.
Fang, Z. (1998). Wear resistance of powder metallurgy alloys.ASM handbook(Vol. 7).
Fang, Z. Z. (2005). Correlation of transverse rupture strength of WC–Co with hardness.International Journal of Refractory Metals and Hard Materials, 23, 119–127.
Fang, Z. Z., & Eso, O. (2005). Liquid phase sintering of functionally graded WC–Co composites.Scripta Materiala, 52, 785–791.
Fang, Z., Lockwood, G., & Griffo, A. (1999). A dual composite of WC–Co.Metallurgical and Materials Transactions A, 30, 3231–3323.
Fang, Z., & Sue, J. (2005). US Patent No. 5880382.
Fisher, U. K. R., Hartzell, E. T., & Akerman, J. G. H. (1988). US Patent No. 4,743,515.
Fox-Rabinovich, G. S., Yamamoto, K., Aguirre, M. H., Cahill, D. G., Veldhuis, S. C., Biksa, A., et al. (2010). Multi-functional nano-multilayered AlTiN/Cu PVD coating for machining of Inconel 718 superalloy.Surface and Coatings Technology, 204, 2465–2471.
Frandsen, M. V., & Williams, W. S. (1991). Thermal conductivity and electrical resistivity of cemented transition-metal carbides at low temperatures.Journal of the American Ceramic Society, 74, 1411–1416.
Glühmann, J., Schneeweiß, M., van den Berg, H., Kassel, D., Rödiger, K., Dreyer, K., et al. (2010). Functionally graded WC–Ti(C, N)–(Ta, Nb)C–Co hardmetals:
metallurgy and performance.International Journal of Refractory Metals and Hard Materials.
Guo, J., Fan, P., Wang, X., & Fang, Z. Z. (2011). A novel approach for manufacturing functionally graded cemented tungsten carbide.International Journal of Powder Metallurgy, 47, 55–62.
Guo, J., Koopman, M., Fang, Z. Z., Wang, X., Fan, P., & Rowe, M. C. (2012). FE–EPMA measurements of compositional gradients in cemented tungsten carbides.International Journal of Refractory Metals and Hard Materials, 36, 265–270.
Hibbs, M. K., & Sinclair, R. (1981). Room-temperature deformation mechanisms and the defect structure of tungsten carbide. Acta Metallurgica, 29, 1645–1654.
Konyashin, I., Hlawatschek, S., Ries, B., Lachmann, F., Sologubenko, A., & Weirich, T. (2010). A new approach to fabrication of gradient WC–Co hardmetals.
International Journal Refractory Metals and Hard Materials, 28, 228–237.
Larsson, C., & Odén, M. (2004). Hardness profile measurements in functionally graded WC–Co composites. Materials Science and Engineering A, 382, 141–149.
Liu, Y., Wang, H., Long, Z., Liaw, P., Yang, J., & Huang, B. (2006). Microstructural evolution and mechanical behaviors of graded cemented carbides.Materials Science and Engineering A, 426, 346–354.
Luyckx, S., Sacks, N., & Love, A. (2007). Increasing the abrasion resistance without decreasing the toughness of WC–Co of a wide range of compositions and grain sizes.International Journal of Refractory Metals and Hard Materials, 25, 57–61.
Mahale, A. E. (1994).Phase diagrams for ceramists, X. USA: American Ceramic Society.
Nemeth, B. J., & Grab, G. P. (1986). US Patent No. 4,610,931.
Percherla, A., & Williams, W. S. (1988). Room-temperature thermal conductivity of cemented transition-metal carbides.Journal of the American Ceramic Society, 71, 1130–1133.
Peters, C. T. (1979). The relationship between Palmqvist indentation toughness and bulk fracture toughness for some WC–Co cemented carbides.Journal of Materials Science, 14, 1619–1623.
Ravichandran, K. S. (1994). Fracture toughness of two phase WC–Co cermets.Acta Metallurgica et Materialia, 42, 143–150.
Sarin, V. K., & Johannesson, T. (1975). On the deformation of WC–Co cemented carbides.Metal Science, 9, 472–476.
Schwartzkopf, P., & Kieffer, R. (1960).Cemented carbides. New York, USA: The Macmillan Company.
Sigl, L. S., & Exner, H. E. (1987). Experimental study of the mechanics of fracture in WC–Co alloys.Metallurgical and Materials Transactions A, 18, 1299–1308.
Sigl, L. S., Exner, H. E., & Fischmeister, H. F. (1986). In E. A. Almond, C. A. Brookes, & R. Warren (Eds.),Science of hard metals. Bristol, UK: Adam Hilger.
Takahashi, T., & Freise, E. J. (1965). Determination of the slip systems in single crystals of tungsten monocarbide.Philosophical Magazine, 12, 1–8.
Upadhyaya, G. S. (1998).Cemented tungsten carbides; production, properties and testing. Westwood, New Jersey, USA: Noyes Publications.
Wang, S., Chen, L., Yang, B., Chang, K., Du, Y., Li, J., et al. (2010). Effect of Si addition on microstructure and mechanical properties of Ti–Al–N coating.
International Journal of Refractory Metals and Hard Materials, 28, 593–596.
Wang, X., Hwang, K. S., Koopman, M., Fang, Z., & Zhang, L. (2013). Mechanical properties and wear resistance of functionally graded WC–Co.International Journal of Refractory Metals and Hard Materials, 36, 46–51.
Zhang, L., Chen, S., Xiong, X., He, Y., Huang, B., & Zhang, C. (2007). Phase composition, transition and structure stability of functionally graded cemented carbide with dual phase structure.Journal of the Central South University of Technology, 14, 149–152.
Zhang, H., Fang, Z. Z., & Belnap, J. D. (2007). Quasi-plastic deformation of WC–Co composites loaded with a spherical indenter.Metallurgical and Materials Transactions A, 38, 552–561.
Cemented Tungsten Carbide HardmetaldAn Introduction 137