Fluorescence “Giant” Red Edge Effect
4.4 Conclusions
CQDs have high fluorescence, tunable excitation-dependent PL activity, and excellent photostability across a wide pH range due to their unique physical, chemical, optical, and electrical properties. Confined size, shape, surface func- tional groups, and doping on CQDs determine and provide the tunability to the physical and chemical properties of the CQDs, which in turn provide remarkable electrochemical, photophysical, electroluminescence, high hardness, good den- sity, and solubility features. There are so many characterization techniques used to study various physical and chemical properties of the CQDs such as XRD for crystallinity, SEM and TEM for morphology, and the surface functionality by FTIR spectroscopy, Raman spectroscopy, and XPS. CQDs have strong, inert, and stable luminous characteristics that might be useful in optoelectronics and bioimaging applications.
L
Figure 4.29 (A) The integral overlap region (i), the riboflavin absorption (ii), and the CDs emission spectra (iii). (B) Fluorescence spectra of CDs in the presence of different amounts of riboflavin, lex1/4380 nm. (C) The efficiency of the FRET process as a function of the riboflavin concentration with the excitation wavelength of the CDs/riboflavin varying from 340 to 400 nm.
Source: Adapted with permission from S. S. Monte-Filho, S. I. E. Andrade, M. B. Lima, M.
C. U. Araujo, Synthesis of highly fluorescent carbon dots from lemon and onion juices for determination of riboflavin in multivitamin/mineral supplements, Journal of Pharmaceutical Analysis 9 (3) (2019) 209216, doi:10.1016/j.jpha.2019.02.003.
References
[1] P. Karfa, S. De, K.C. Majhi, R. Madhuri, P.K. Sharma, Functionalization of carbon nanostructures, Comprehensive Nanoscience and Nanotechnology 15 (2019) 123144.
Available from:https://doi.org/10.1016/B978-0-12-803581-8.11225-1.
[2] X. Xu, et al., Electrophoretic analysis and purification of fluorescent single-walled car- bon nanotube fragments, Journal of the American Chemical Society 126 (40) (2004) 1273612737. Available from:https://doi.org/10.1021/ja040082h.
[3] X. Wang, et al., Green preparation of fluorescent carbon quantum dots from cyanobac- teria for biological imaging, Polymers (Basel) 11 (4) (2019). Available from: https://
doi.org/10.3390/polym11040616.
[4] R. Jelinek, Introductionno. 9783319439099 Carbon nanostructures, Springer International Publishing, 2017pp. 13.
[5] P.G. Luo, et al., Carbon ‘quantum’ dots for optical bioimaging, Journal of Materials Chemistry B 1 (16) (2013) 21162127. Available from:https://doi.org/10.1039/c3tb00018d.
[6] K.J. Mintz, Y. Zhou, R.M. Leblanc, Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure, Nanoscale (2019) 4634465211, no. 11. Royal Society of Chemistry. Available from:
https://doi.org/10.1039/c8nr10059d.
[7] S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mecha- nism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): cur- rent state and future perspective, Nano Research 8 (2) (2015) 355381. Available from:https://doi.org/10.1007/s12274-014-0644-3.
[8] T.J. Pillar-Little, N. Wanninayake, L. Nease, D.K. Heidary, E.C. Glazer, D.Y. Kim, Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: detailed comparison study of top-down-synthesized and bottom-up- synthesized carbon quantum dots, Carbon 140 (2018) 616623. Available from:
https://doi.org/10.1016/j.carbon.2018.09.004.
[9] M.P. Ajith, S. Pardhiya, P. Rajamani, Carbon dots: an excellent fluorescent probe for contaminant sensing and remediation, Small (Weinheim an der Bergstrasse, Germany) 2105579 (2022) 127. Available from:https://doi.org/10.1002/smll.202105579.
[10] V.L. John, Y. Nair, T.P. Vinod, Doping and surface modification of carbon quantum dots for enhanced functionalities and related applications, Particle & Particle Systems Characterization 38 (11) (2021) 128. Available from:https://doi.org/10.1002/ppsc.202100170.
[11] F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan, Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes, Advanced Materials 29 (2017) 1604436. Available from:https://doi.org/10.1002/adma.201604436.
[12] H. Ding, S.B. Yu, J.S. Wei, H.M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism, ACS Nano 10 (1) (2016) 484491.
Available from:https://doi.org/10.1021/acsnano.5b05406.
[13] E. Feature, “Carbon quantum dots found and isolated from egg yolk oil,”, Scientific Reports 7 (2017) 17 [Online]. Available from:https://www.azoquantum.com/Article.
aspx?ArticleID553.
[14] B. Gayen, S. Palchoudhury, J. Chowdhury, Carbon dots: a mystic star in the world of nanoscience, Journal of Nanomaterials 2019 (2019) 3451307. Available from: https://
doi.org/10.1155/2019/3451307.
[15] R. Jelinek, Characterization and physical properties of carbon-dotsno. 9783319439099 Carbon Nanostructures, 0, Springer International Publishing, 2017pp. 2946.
[16] P. Bhartiya, A. Singh, H. Kumar, T. Jain, B.K. Singh, P.K. Dutta, Carbon dots: chemis- try, properties and applications, Journal of the Indian Chemical Society 93 (7) (2016) 759766.
[17] R. Wang, K.Q. Lu, Z.R. Tang, Y.J. Xu, Recent progress in carbon quantum dots: syn- thesis, properties and applications in photocatalysisno. 8 Journal of Materials Chemistry A, 5, Royal Society of Chemistry, 2017pp. 37173734.
[18] A.P. Demchenko, M.O. Dekaliuk, Novel fluorescent carbonic nanomaterials for sensing and imagingno. 4 Methods and applications in fluorescence, 1, IOP Publishing Ltd, 2013.
[19] M. Varisco, D. Zufferey, A. Ruggi, Y. Zhang, R. Erni, O. Mamula, Synthesis of hydro- philic and hydrophobic carbon quantum dots from waste of wine fermentation, Royal Society Open Science 4 (12) (2017). Available from:https://doi.org/10.1098/rsos.170900.
[20] M. Kova´ˇcova´, E. ˇSpitalska´, Z. Markovic, Z. ˇSpita´lsky´, Carbon quantum dots as antibac- terial photosensitizers and their polymer nanocomposite applications, Particle &
Particle Systems Characterization 37 (1) (2020) 111. Available from:https://doi.org/
10.1002/ppsc.201900348.
[21] Y.-P. Sun, Carbon dots: the classical synthesis and properties, Carbon Dots (2020) 69107. Available from:https://doi.org/10.1007/978-3-030-41184-8_4.
[22] H. Liu, R. Shen, K. Song, H. Liu, Y. Li, Dramatic fluorescence enhancement of bare carbon dots through facile reduction chemistry, Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry 13 (15) (2012) 35493555. Available from:https://doi.org/10.1002/cphc.201200018.
[23] M. Jorns, D. Pappas, A review of fluorescent carbon dots, their synthesis, physical and chemical characteristics, and applicationsno. 6 Nanomaterials, 11, MDPI AG, 2021.
[24] L. Cao, et al., Competitive performance of carbon ‘quantum’ dots in optical bioima- ging, Theranostics 2 (3) (2012) 295301. Available from: https://doi.org/10.7150/
thno.3912.
[25] X. Wu, B. Zhao, J. Zhang, H. Xu, K. Xu, G. Chen, Photoluminescence and photode- tecting properties of the hydrothermally synthesized nitrogen-doped carbon quantum dots, The Journal of Physical Chemistry C 123 (42) (2019) 2557025578. Available from:https://doi.org/10.1021/acs.jpcc.9b06672.
[26] H.C. Yao, et al., Construction of magnetic-carbon-quantum-dots-probe-labeled apoferri- tin nanocages for bioimaging and targeted therapy, International Journal of Nanomedicine 11 (2016) 44234438. Available from: https://doi.org/10.2147/IJN.
S108039.
[27] S. Dey, P. Chithaiah, S. Belawadi, K. Biswas, C.N.R. Rao, New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content, Journal of Materials Research 29 (3) (2014) 383391. Available from: https://doi.org/10.1557/
jmr.2013.295.
[28] Y. Dong, et al., Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission, Angewandte Chemie International Edition 52 (30) (2013) 78007804. Available from:https://doi.org/10.1002/anie.201301114.
[29] U. Abd, L. Yong, C. Yin, E. Mahmoudi, A review of carbon quantum dots and their applications in wastewater treatment, Advances in Colloid and Interface Science 278 (102124) (2020). Available from:https://doi.org/10.1016/j.cis.2020.102124.
[30] J.Y. Liang, et al., Spectrochimica Acta Part A : molecular and biomolecular spec- troscopy green fl uorescent carbon quantum dots as a label-free probe for rapid and sensitive detection of hematin, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 212 (2019) 167172. Available from: https://doi.org/
10.1016/j.saa.2019.01.001.
[31] H. Lin, J. Huang, L. Ding, Preparation of carbon dots with high-fluorescence quantum yield and their application in dopamine fluorescence probe and cellular imaging, Journal of Nanomaterials 2019 (2019) 5037243.
[32] J.P. Wilcoxon, no. 1 1st (ed.), Nanoparticles-preparation, characterization and physical properties, 3, Elsevier Ltd., 2012.
[33] J. Liu, X. Liu, H. Luo, Y. Gao, One-step preparation of nitrogen-doped and surface- passivated carbon quantum dots with high quantum yield and excellent optical proper- ties, RSC Advance 4 (15) (2014) 76487654. Available from:https://doi.org/10.1039/
c3ra47577h.
[34] N. Shaari, S.K. Kamarudin, R. Bahru, Carbon and graphene quantum dots in fuel cell application: An overview no. 2, International Journal of Energy Research, 45, John Wiley and Sons Ltd, 2021, pp. 13961424.
[35] N.K. Bakirhan, S.A. Ozkan, Quantum Dots as a New Generation Nanomaterials and Their Electrochemical Applications in Pharmaceutical Industry, Elsevier Inc, 2018.
[36] V. Rimal, S. Shishodia, P.K. Srivastava, Novel synthesis of high-thermal stability car- bon dots and nanocomposites from oleic acid as an organic substrate, Applied Nanoscience 10 (2) (2020) 455464. Available from: https://doi.org/10.1007/s13204- 019-01178-z.
[37] M. Javed, et al., Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries, Electrochimica Acta 297 (2019) 250257. Available from:https://doi.org/10.1016/j.electacta.2018.11.167.
[38] F. Wang, S. Wang, Z. Sun, H. Zhu, Study on ultrasonic single-step synthesis and opti- cal properties of nitrogen-doped carbon fluorescent quantum dots, Fullerenes Nanotub.
Carbon Nanostructures 23 (9) (2015) 769776. Available from: https://doi.org/
10.1080/1536383X.2014.996287.
[39] B.D. Mansuriya, Z. Altintas, Carbon dots: classification, properties, synthesis, charac- terization, and applications in health care-an updated review (20182021), Nanomaterials 11 (10) (2021). Available from:https://doi.org/10.3390/nano11102525.
[40] Z. Zhang, T. Zheng, X. Li, J. Xu, H. Zeng, Progress of carbon quantum dots in photo- catalysis applicationsno. 8 Particle and particle systems characterization, 33, Wiley- VCH Verlag, 2016pp. 457472.
[41] X. Wang, Y. Feng, P. Dong, J. Huang, A mini review on carbon quantum dots: prepara- tion, properties, and electrocatalytic application, Frontiers in chemistry, 7, Frontiers Media S.A, 2019.
[42] Edinburgh Instruments, Fluorescence, phosphorescence, photoluminescence differences.
2012, [Online]. Available:https://www.edinst.com/blog/photoluminescence-differences/.
[43] T. Yuan, et al., Carbon quantum dots: an emerging material for optoelectronic applica- tions, Journal of Materials Chemistry C 7 (2019) 68206835no. 23. Royal Society of Chemistry. Available from:https://doi.org/10.1039/C9TC01730E.
[44] A. Luque, A. Martı´, A. J. Nozik, “Solar Cells Based on Quantum Dots : Multiple Exciton Generation and Intermediate Bands,” vol. 32, Cambridge University Press, 2007, pp. 236241.
[45] V. Ramar, S. Moothattu, K. Balasubramanian, Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: a green way to remove pollution, Solar Energy 169 (2018) 120127. Available from:https://doi.org/
10.1016/j.solener.2018.04.040.
[46] H. Li, R. Liu, S. Lian, Y. Liu, H. Huang, Z. Kang, Near-infrared light controlled photocata- lytic activity of carbon quantum dots for highly selective oxidation reaction, Nanoscale 5 (8) (2013) 32893297. Available from:https://doi.org/10.1039/c3nr00092c.
[47] B.B. Rasulkhan, S.K. Ponnaiah, P. Periakaruppan, G. Venkatachalam, J. Balasubramanian, A new CQDs/f-MWCNTs/GO nanocomposite electrode for arsenic (1012M) quantifica- tion in bore-well water and industrial effluents, New Journal of Chemistry 44 (42) (2020) 1814918156. Available from:https://doi.org/10.1039/d0nj04252h.
[48] K. Dimos, Carbon quantum dots: surface passivation and functionalization, Current Organic Chemistry 20 (6) (2015) 682695. Available from: https://doi.org/10.2174/
1385272819666150730220948.
[49] H. Li, et al., One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties, Carbon 49 (2) (2011) 605609. Available from:
https://doi.org/10.1016/j.carbon.2010.10.004.
[50] J. Tan, J. Zhang, W. Li, L. Zhang, D. Yue, Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications, Journal of Materials Chemistry C 4 (42) (2016) 1014610153. Available from: https://doi.org/
10.1039/c6tc03027k.
[51] N. Sarmasti, A. Khazaei, J. Yousefi Seyf, High density sulfonated magnetic carbon quantum dots as a photo enhanced, photo-induced proton generation, and photo switch- able solid acid catalyst for room temperature one-pot reaction, Research on Chemical Intermediates 45 (7) (2019) 39293942. Available from: https://doi.org/10.1007/
s11164-019-03829-w.
[52] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applicationsno. 1 Chemical society reviews, 44, Royal Society of Chemistry, 2015pp. 362381.
[53] Y. Xu, J. Liu, C. Gao, E. Wang, Applications of carbon quantum dots in electrochemi- luminescence: a mini review, Electrochemistry communications, 48, Elsevier Inc, 2014, pp. 151154.
[54] B.K. Walther, et al., Nanobiosensing with graphene and carbon quantum dots: recent advances, Materials Today, 39, Elsevier B.V, 2020, pp. 2346.
[55] Z. Zhang, Y. Duan, Y. Yu, Z. Yan, J. Chen, Carbon quantum dots: synthesis, character- ization, and assessment of cytocompatibility, Journal of Materials Science. Materials in Medicine 26 (7) (2015). Available from:https://doi.org/10.1007/s10856-015-5536-x.
[56] Y. Zhang, Y. Xiao, Y. Zhang, Y. Wang, Carbon quantum dots as fluorescence turn-off-on probe for detecting Fe31 and ascorbic acid, Journal of Nanoscience and Nanotechnology 20 (6) (2019) 33403347. Available from:https://doi.org/10.1166/jnn.2020.17412.
[57] S.S. Monte-Filho, S.I.E. Andrade, M.B. Lima, M.C.U. Araujo, Synthesis of highly fluo- rescent carbon dots from lemon and onion juices for determination of riboflavin in mul- tivitamin/mineral supplements, Journal of Pharmaceutical Analysis 9 (3) (2019) 209216. Available from:https://doi.org/10.1016/j.jpha.2019.02.003.
[58] Q. Xiao, Y. Liang, F. Zhu, S. Lu, S. Huang, Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing, Microchimica Acta 184 (7) (2017) 24292438. Available from: https://doi.org/
10.1007/s00604-017-2242-z.
[59] T. S, R.S. D, Green synthesis of highly fluorescent carbon quantum dots from sugar- cane bagasse pulp, Applied Surface Science 390 (2016) 435443. Available from:
https://doi.org/10.1016/j.apsusc.2016.08.106.
[60] I. Singh, R. Arora, H. Dhiman, R. Pahwa, Carbon quantum dots: synthesis, characteri- zation and biomedical applications, Turkish Journal Of Pharmaceutical Sciences 15 (2) (2018) 219230. Available from:https://doi.org/10.4274/tjps.63497.
[61] Y. Chen, X. Qin, C. Yuan, Y. Wang, Switch on fluorescence mode for determination of l-cysteine with carbon quantum dots and Au nanoparticles as a probe, RSC Advance 10 (4) (2020) 19891994. Available from:https://doi.org/10.1039/c9ra09019c.
[62] P. Zuo, X. Lu, Z. Sun, Y. Guo, H. He, A review on syntheses, properties, characteriza- tion and bioanalytical applications of fluorescent carbon dots, Microchimica Acta (2016) 519542. Available from:https://doi.org/10.1007/s00604-015-1705-3.
[63] B. De, B. Voit, N. Karak, Carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposite: Mechanical, thermal and photocatalytic activity, RSC Advance 4 (102) (2014) 5845358459. Available from:https://doi.org/10.1039/c4ra11120f.
[64] D. Kumar, K. Singh, V. Verma, H.S. Bhatti, Synthesis and characterization of carbon quantum dots from orange juice, Journal of Bionanoscience 8 (4) (2014) 274279.
Available from:https://doi.org/10.1166/jbns.2014.1236.
[65] Y. Li, X. Zhong, A.E. Rider, S.A. Furman, K. Ostrikov, Fast, energy-efficient synthesis of luminescent carbon quantum dots, Green Chemistry: An International Journal and Green Chemistry Resource: GC 16 (5) (2014) 25662570. Available from:https://doi.
org/10.1039/c3gc42562b.
[66] M. Farshbaf, S. Davaran, F. Rahimi, N. Annabi, R. Salehi, A. Akbarzadeh, Carbon quantum dots: recent progresses on synthesis, surface modification and applicationsno.
7 Artificial cells, nanomedicine and biotechnology, 46, Taylor and Francis Ltd, 2018pp. 13311348.
[67] Y. Zhang, et al., One-step synthesis of chiral carbon quantum dots and their enantiose- lective recognition, RSC Advance 6 (65) (2016) 5995659960. Available from:https://
doi.org/10.1039/c6ra12420h.
[68] L. Wang, et al., Full-color fluorescent carbon quantum dots, Science Advance 6 (2020) eabb6772 [Online]. Available from:http://advances.sciencemag.org/.
[69] V.A. Online, et al., Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate †, Nanoscale 6 (2014) 18901895. Available from:https://doi.
org/10.1039/c3nr05380f.
[70] L. Lin, Y. Luo, P. Tsai, J. Wang, X. Chen, Metal ions doped carbon quantum dots: syn- thesis, physicochemical properties, and their applications, TrAC - Trends in analytical chemistry, 103, Elsevier B.V, 2018, pp. 87101. 10.1016/j.trac.2018.03.015.
[71] Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications, Carbon 60 (2013) 421428. Available from:https://doi.org/10.1016/j.carbon.2013.04.055.
[72] M. He, J. Zhang, H. Wang, Y. Kong, Y. Xiao, W. Xu, Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reac- tion, Nanoscale Research Letters 13 (2018). Available from: https://doi.org/10.1186/
s11671-018-2581-7.
[73] A.F. Shaikh, M.S. Tamboli, R.H. Patil, A. Bhan, J.D. Ambekar, B.B. Kale, Bioinspired car- bon quantum dots: an antibiofilm agents, Journal of Nanoscience and Nanotechnology 19 (4) (2018) 23392345. Available from:https://doi.org/10.1166/jnn.2019.16537.
5
Surface engineering of carbon quantum dots
Ankita Saha1, Lopamudra Bhattacharjee2and Rama Ranjan Bhattacharjee3
1Amity School of Applied Sciences, Amity University, Kolkata, West Bengal, India,
2PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India,3Department of Chemistry, Sister Nivedita University, Kolkata, West Bengal, India