• Tidak ada hasil yang ditemukan

Fluorescence “Giant” Red Edge Effect

7.7 Summary and perspective

CQDs and RPQDs, respectively. The interface modification increases charge extraction and passivation effect contributing to a highest PCE of around 8.20% and 7.14% for FTO/c-TiO2/m-TiO2/CQDs/CsPbB3/RPQDs/carbon configurations and FTO/c-TiO2/m- TiO2/CQDs/CsPbBr3/carbon configurations, respectively [49]. On the other hand, these all-inorganic PSCs are very stable more than 1056 hours and 80% relative humidity, which indicates a good environmental stability toward future commercialization.

optoelectronic applicability superior to conventionally used materials from the past.

Despite such impressive contribution and progresses in solar cells performances, all the CQD synthesis processes along with the purification processes need to be relooked to separate out reaction by-products, followed by a judicial investigation of every component which is necessary for further enhancement. Standard charac- terization protocols with careful statistical comparison need to be followed to resolve the revealed properties of CQDs. The longer device stability of CQD-based photovoltaic devices is also one of the rising concerns that demands significant research efforts. The doping with heteroatoms in the core of CQDs or functionaliz- ing at the surface is very much necessary for further advancement of the electronic and optoelectronic features in CDQs efficient light harvesting. The CQD-based pho- tovoltaic cells need to be highly stable due to their continuous exposure to light under ambient conditions for commercial application. CQDs are an excellent new player in photovoltaic devices with the potential to go greener and suitable for low- cost high-efficient solar cell applications.

Acknowledgments

This work is partially supported by Science and Engineering Research Board (SERB) (Project No.:

SB/FTP/PS-148/2013, SR/S2/RJN-55/2012, and CRG/2021/007016), Department of Science and Technology, Government of India.

References

[1] J.B. Essner, G.A. Baker, The emerging roles of carbon dots in solar photovoltaics: a crit- ical review, Environmental Science: Nano 4 (2017) 12161263.

[2] Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications, Journal of Materials Chemistry C 2 (2014) 69216939.

[3] T. Yuan, T. Meng, P. He, Y. Shi, Y. Li, X. Li, et al., Carbon quantum dots: an emerging material for optoelectronic applications, Journal of Materials Chemistry C 7 (2019) 68206835.

[4] B. O’regan, M. Gr¨atzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films, Nature 353 (1991) 737740.

[5] A. Mahapatra, P. Kumar, J. Bhansare, S.M. Surapaneni, A. Sen, B. Pradhan, Development of dye-sensitized solar cell using M. philippensis (kamala tree) fruit extract: a combined experimental and theoretical study, International Journal of Energy Research 45 (2021) 2150921515.

[6] A. Mahapatra, P. Kumar, B. Pradhan, Improved performance of cadmium sulfide- sensitized solar cells by interface engineering, Journal of Materials Science: Materials in Electronics 31 (2020) 62746278.

[7] P. Mirtchev, E.J. Henderson, N. Soheilnia, C.M. Yip, G.A. Ozin, Solution phase synthe- sis of carbon quantum dots as sensitizers for nanocrystalline TiO 2 solar cells, Journal of Materials Chemistry 22 (2012) 12651269.

[8] X. Yan, X. Cui, B. Li, L.-s Li, Large, solution-processable graphene quantum dots as light absorbers for photovoltaics, Nano Letters 10 (2010) 18691873.

[9] X. Guo, H. Zhang, H. Sun, M.O. Tade, S. Wang, Green synthesis of carbon quantum dots for sensitized solar cells, ChemPhotoChem 1 (2017) 116119.

[10] P. Huang, S. Xu, M. Zhang, W. Zhong, Z. Xiao, Y. Luo, Green allium fistulosum derived nitrogen self-doped carbon dots for quantum dot-sensitized solar cells, Materials Chemistry and Physics 240 (2020) 122158.

[11] H. Wang, P. Sun, S. Cong, J. Wu, L. Gao, Y. Wang, et al., Nitrogen-doped carbon dots for “green” quantum dot solar cells, Nanoscale Research Letters 11 (2016) 16.

[12] Q. Zhang, G. Zhang, X. Sun, K. Yin, H. Li, Improving the power conversion efficiency of carbon quantum dot-sensitized solar cells by growing the dots on a TiO2photoanode in situ, Nanomaterials 7 (2017) 130.

[13] Y. Zhao, J. Duan, B. He, Z. Jiao, Q. Tang, Improved charge extraction with N-doped car- bon quantum dots in dye-sensitized solar cells, Electrochimica Acta 282 (2018) 255262.

[14] W. Zhu, J. Duan, Y. Duan, Y. Zhao, Q. Tang, Efficiency enhancement of hybridized solar cells through co-sensitization and fast charge extraction by up-converted polyeth- ylene glycol modified carbon quantum dots, Journal of Power Sources, 367 (2017) 158166.

[15] K.P. Shejale, A. Jaiswal, A. Kumar, S. Saxena, S. Shukla, Nitrogen doped carbon quan- tum dots as Co-active materials for highly efficient dye sensitized solar cells, Carbon 183 (2021) 169175.

[16] D. Dou, J. Duan, Y. Zhao, B. He, Q. Tang, Cubic carbon quantum dots for light- harvesters in mesoscopic solar cells, Electrochimica Acta 275 (2018) 275280.

[17] Y. Zhang, Y. Zhao, J. Duan, Q. Tang, S-doped CQDs tailored transparent counter elec- trodes for high-efficiency bifacial dye-sensitized solar cells, Electrochimica Acta 261 (2018) 588595.

[18] K. Lee, S. Cho, M. Kim, J. Kim, J. Ryu, K.-Y. Shin, et al., Highly porous nanostruc- tured polyaniline/carbon nanodots as efficient counter electrodes for Pt-free dye-sensi- tized solar cells, Journal of Materials Chemistry A 3 (2015) 1901819026.

[19] V.-D. Dao, P. Kim, S. Baek, L.L. Larina, K. Yong, R. Ryoo, et al., Facile synthesis of carbon dot-Au nanoraspberries and their application as high-performance counter elec- trodes in quantum dot-sensitized solar cells, Carbon 96 (2016) 139144.

[20] W. Zhu, Y. Zhao, J. Duan, Y. Duan, Q. Tang, B. He, Carbon quantum dot tailored counter electrode for 7.01%-rear efficiency in a bifacial dye-sensitized solar cell, Chemical Communications 53 (2017) 98949897.

[21] S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, et al., High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder, Nature Photonics 14 (2020) 300305.

[22] B. Pradhan, S. Albrecht, B. Stiller, D. Neher, Inverted organic solar cells comprising low-temperature-processed ZnO films, Applied Physics A 115 (2014) 365369.

[23] Y. Yang, X. Lin, W. Li, J. Ou, Z. Yuan, F. Xie, et al., One-pot large-scale synthesis of carbon quantum dots: efficient cathode interlayers for polymer solar cells, ACS Applied Materials & Interfaces 9 (2017) 1495314959.

[24] L. Yan, Y. Yang, C.-Q. Ma, X. Liu, H. Wang, B. Xu, Synthesis of carbon quantum dots by chemical vapor deposition approach for use in polymer solar cell as the elec- trode buffer layer, Carbon 109 (2016) 598607.

[25] H. Lim, K.S. Lee, Y. Liu, H.Y. Kim, D.I. Son, Photovoltaic performance of inverted polymer solar cells using hybrid carbon quantum dots and absorption polymer materi- als, Electronic Materials Letters 14 (2018) 581586.

[26] B. Cui, L. Yan, H. Gu, Y. Yang, X. Liu, C.-Q. Ma, et al., Fluorescent carbon quantum dots synthesized by chemical vapor deposition: an alternative candidate for electron acceptor in polymer solar cells, Optical Materials 75 (2018) 166173.

[27] R. Kang, S. Park, Y.K. Jung, D.C. Lim, M.J. Cha, J.H. Seo, et al., High-efficiency poly- mer homo-tandem solar cells with carbon quantum-dot-doped tunnel junction interme- diate layer, Advanced Energy Materials 8 (2018) 1702165.

[28] R. Zhang, M. Zhao, Z. Wang, Z. Wang, B. Zhao, Y. Miao, et al., Solution-processable ZnO/carbon quantum dots electron extraction layer for highly efficient polymer solar cells, ACS Applied Materials & Interfaces 10 (2018) 48954903.

[29] C. Liu, K. Chang, W. Guo, H. Li, L. Shen, W. Chen, et al., Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells, Applied Physics Letters 105 (2014) 131. 131.

[30] Y. Wang, L. Yan, G. Ji, C. Wang, H. Gu, Q. Luo, et al., Synthesis of N, S-doped car- bon quantum dots for use in organic solar cells as the ZnO modifier to eliminate the light-soaking effect, ACS Applied Materials & Interfaces 11 (2018) 22432253.

[31] H. Lim, Y. Liu, H.Y. Kim, D.I. Son, Facile synthesis and characterization of carbon quantum dots and photovoltaic applications, Thin Solid Films 660 (2018) 672677.

[32] B. Lee, J. He, R.P. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency, Nature 485 (2012) 486489.

[33] J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn, M. Titirici, Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells, Angewandte Chemie International Edition 54 (2015) 44634468.

[34] D. Carolan, C. Rocks, D.B. Padmanaban, P. Maguire, V. Svrcek, D. Mariotti, Environmentally friendly nitrogen-doped carbon quantum dots for next generation solar cells, Sustainable Energy & Fuels 1 (2017) 16111619.

[35] C. Xie, B. Nie, L. Zing, F.-X. Liang, M.-Z. Wang, L. Luo, et al., Coreshell hetero- junction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photo detectors, ACS Nano 8 (2014) 40154022.

[36] C. Geng, Y. Shang, J. Qiu, Q. Wang, X. Chen, S. Li, et al., Carbon quantum dots inter- facial modified graphene/silicon Schottky barrier solar cell, Journal of Alloys and Compounds 835 (2020) 155268.

[37] D. Dai, X. To, X. Li, T. Live, F. Han, Tuning solar absorption spectra via carbon quan- tum dots/VAE composite layer and efficiency enhancement for crystalline Si solar module, Progress in Photovoltaics: Research and Applications 27 (2019) 283289.

[38] E. Pelayo, A. Zarzuela, R. Lopez, E. Saucedo, R. Rules, A. Ayton, Silicon solar cell effi- ciency improvement employing the photoluminescent, down-shifting effects of carbon and CdTe quantum dots, Materials for Renewable and Sustainable Energy 5 (2016) 5.

[39] A. Mahapatra, S. Kumar, P. Kumar, B. Pradhan, Recent progress in perovskite solar cells: challenges from efficiency to stability, Materials Today Chemistry 23 (2022) 100686.

[40] J. Han, Y. Zhou, X. Yin, H. Nan, M. Tai, Y. Gu, et al., An excellent modifier: carbon quantum dots for highly efficient carbon-electrode-based methylammonium lead iodide solar cells, Solar RRL 3 (2019) 1900146.

[41] J.K. Kim, D.N. Nguyen, J.-H. Lee, S. Kang, Y. Kim, S.-S. Kim, et al., Carbon quantum dot-incorporated nickel oxide for planar pin type perovskite solar cells with enhanced efficiency and stability, Journal of Alloys and Compounds 818 (2020) 152887.

[42] S. Paulo, G. Stoica, W. Cambarau, E. Martinez-Ferrero, E. Palomares, Carbon quantum dots as new hole transport material for perovskite solar cells, Synthetic Metals 222 (2016) 1722.

[43] H. Li, W. Shi, W. Huang, E.-P. Yao, J. Han, Z. Chen, et al., Carbon quantum dots/TiO x electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%, Nano Letters 17 (2017) 23282335.

[44] S. Kasi Matta, C. Zhang, A.P. O’Mullane, A. Du, Density functional theory investigation of carbon dots as hole-transport material in perovskite solar cells, Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry 19 (2018) 30183023.

[45] H. Zou, D. Guo, B. He, J. Yu, K. Fan, Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots, Applied Surface Science 430 (2018) 625631.

[46] A.A. Maxim, S.N. Sadyk, D. Aidarkhanov, C. Surya, A. Ng, Y.-H. Hwang, et al., PMMA thin film with embedded carbon quantum dots for post-fabrication improve- ment of light harvesting in perovskite solar cells, Nanomaterials 10 (2020) 291.

[47] W. Hui, Y. Yang, Q. Xu, H. Gu, S. Feng, Z. Su, et al., Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells, Advanced Materials 32 (2020) 1906374.

[48] S. Zhou, R. Tang, L. Yin, Slow-photon-effect-induced photoelectrical-conversion effi- ciency enhancement for carbon-quantum-dot-sensitized inorganic CsPbBr3 inverse opal perovskite solar cells, Advanced Materials 29 (2017) 1703682.

[49] G. Liao, J. Duan, Y. Zhao, Q. Tang, Toward fast charge extraction in all-inorganic CsPbBr3 perovskite solar cells by setting intermediate energy levels, Solar Energy 171 (2018) 279285.

[50] Q. Tang, All-weather solar cells: a rising photovoltaic revolution, ChemistryA European Journal 23 (2017) 81188127.

[51] Y. Meng, Y. Zhang, W. Sun, M. Wang, B. He, H. Chen, et al., Biomass converted carbon quantum dots for all-weather solar cells, Electrochimica Acta 257 (2017) 259266.

[52] J. Yang, Q. Tang, Q. Meng, Z. Zhang, J. Li, B. He, et al., Photoelectric conversion beyond sunny days: all-weather carbon quantum dot solar cells, Journal of Materials Chemistry A 5 (2017) 21432150.

[53] Q. Tang, W. Zhu, B. He, P. Yang, Rapid conversion from carbohydrates to large-scale carbon quantum dots for all-weather solar cells, ACS Nano 11 (2017) 15401547.

8

Light-emitting diode application of carbon quantum dots

Morteza Sasani Ghamsari1and Ashkan Momeni Bidzard2

1Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, Tehran, Iran,2Department of Basic Sciences, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran